首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To understand the determinants of redox potential and protein stability in c-type cytochromes, we have characterized two mutations to a highly conserved tyrosine group, tyrosine-75, of Rhodobacter capsulatus cytochrome c2. Mutant Y75F was designed to test the importance of the tyrosine hydroxyl group to the typically high redox potentials of the cytochromes c2 while maintaining a hydrophobic core. Mutant Y75C was designed to test the importance of a large hydrophobic group to redox potential by replacing an aromatic group with a small nonpolar group. Both mutants exhibit spectral and redox properties indicating that their heme environments have been perturbed. The kinetics of reduction by lumiflavin semiquinone and photooxidation by Rhodobacter sphaeroides photosynthetic reaction centers have been used to demonstrate that both mutants are structurally analogous to the wild-type protein at the active site of electron transfer. Different degrees of relative stability of the mutants toward a denaturant have been observed with the order being Y75C less than wt less than Y75F in the oxidized state and Y75C less than Y75F less than wt in the reduced state. These results are discussed in light of the recent structure determination of the R. capsulatus wild-type ferrocytochrome c2 to suggest that R. capsulatus tyrosine-75, or its equivalent in other species, is part of a conserved hydrogen-bonding network which plays an important role in maintaining high redox potentials and protein stability of cytochromes c in general.  相似文献   

2.
Photooxidation of Rhodobacter capsulatus cytochrome c2 and four site-directed mutants by detergent solubilized Rhodobacter sphaeroides reaction centers was studied as a function of ionic strength at pH 8.0. Mutants of cytochrome c2 included K12D (lysine 12 substituted by aspartate), K14E (lysine 14 substituted by glutamate), K32E (lysine 32 substituted by glutamate), and K14E/K32E (lysines 14 and 32 substituted by glutamates). With respect to the wild-type, the mutants exhibited decreased second-order rate constants, indicating perturbation of their electrostatic interaction with the reaction center. In the transient complex, the interaction domain charges of the reaction center and wild-type cytochrome c2 were estimated to be -4.8 and +4.8, respectively. In contrast, the interaction domain charges of mutants K12D, K14E, K32E, and K14E/K32E were estimated to be +2.8, +3.7, +3.6 and +1.3, respectively. At infinite ionic strength, the second-order rate constant of the wild-type cytochrome c2 photooxidation (k infinity) was estimated to be 8.7 x 10(6) M-1 s-1. In the case of K32E, k infinity was not changed significantly (8.2 x 10(6) m-1 s-1), suggesting that the electrostatic perturbation of this mutant was largely overcome at high ionic strength. In contrast, the k infinity for K12D, K14E, and K14E/K32E were estimated to be decreased 2-7-fold. Consequently, mutations to R. capsulatus lysines 12 and 14 appear to perturb the distance and/or orientation of the cytochrome c2 relative to the reaction center in the reactive complex, as well as alter electrostatic interactions. Based upon the kinetic results presented here, the cytochrome c2-reaction center transient complex has been modeled.  相似文献   

3.
Four site-directed mutants of Rhodobacter capsulatus cytochrome c2, which substitute lysines at three positions with aspartate or glutamate, have been prepared. Mutations included the single charge substitutions K12D, K14E, and K32E and a double charge substitution K14E/K32E. Characterization of the ionic strength dependence of the wild-type and mutant redox potentials in the "nonbinding" buffer Tris-cacodylate suggests that (i) at zero ionic strength introduction of negatively charged groups stabilizes the oxidized state by 11-14 mV per charge and (ii) at high ionic strengths where the charged groups are masked, the effects of single charge substitutions are overcome; however, the redox potential of the double charge substitution is still affected. These results indicate that at physiological ionic strengths charge distribution only affects redox potential when the heme environment has been perturbed by a structural perturbation and that the determinants of redox potential in c-type cytochromes is primarily due to the local heme environment.  相似文献   

4.
F E Jenney  Jr  F Daldal 《The EMBO journal》1993,12(4):1283-1292
Mutants of Rhodobacter capsulatus lacking the soluble electron carrier cytochrome c2 are able to grow photosynthetically (Ps+), whereas Rhodobacter sphaeroides is unable to do so. To understand this unusual electron transfer pathway the gene required for cyt c2-independent growth of R.capsulatus was sought using chromosomal libraries derived from a cyt c2- mutant of this species to complement a Ps- cyt c2- mutant of R.sphaeroides to Ps+ growth. The complementing 1.2 kbp DNA fragment contained a gene, cycY, encoding a novel membrane-associated c-type cytochrome, cyt cy, based on predicted amino acid sequence, optical difference spectra and SDS-PAGE analysis of chromatophore membranes. The predicted primary sequence of cyt cy is unusual in having two distinct domains, a hydrophobic amino-terminal region and a carboxyl-terminus with strong homology to cytochromes c. A cyt cy- mutant of R.capsulatus remains Ps+ as does the cyt c2- mutant. However, a mutant lacking both cyt c2 and cy is Ps-, and can be complemented to Ps+ by either cyt c2 or cyt cy. These findings demonstrate that each of the cytochromes c2 and cy is essential for photosynthesis only in the absence of the other. Thus, two distinct electron transfer pathways, unrecognized until now, operate during photosynthesis in R.capsulatus under appropriate conditions, one via the soluble cyt c2 and the other via the membrane-associated cyt cy.  相似文献   

5.
We have recently established that the facultative phototrophic bacterium Rhodobacter sphaeroides, like the closely related Rhodobacter capsulatus species, contains both the previously characterized mobile electron carrier cytochrome c2 (cyt c2) and the more recently discovered membrane-anchored cyt cy. However, R. sphaeroides cyt cy, unlike that of R. capsulatus, is unable to function as an efficient electron carrier between the photochemical reaction center and the cyt bc1 complex during photosynthetic growth. Nonetheless, R. sphaeroides cyt cy can act at least in R. capsulatus as an electron carrier between the cyt bc1 complex and the cbb3-type cyt c oxidase (cbb3-Cox) to support respiratory growth. Since R. sphaeroides harbors both a cbb3-Cox and an aa3-type cyt c oxidase (aa3-Cox), we examined whether R. sphaeroides cyt cy can act as an electron carrier to either or both of these respiratory terminal oxidases. R. sphaeroides mutants which lacked either cyt c2 or cyt cy and either the aa3-Cox or the cbb3-Cox were obtained. These double mutants contained linear respiratory electron transport pathways between the cyt bc1 complex and the cyt c oxidases. They were characterized with respect to growth phenotypes, contents of a-, b-, and c-type cytochromes, cyt c oxidase activities, and kinetics of electron transfer mediated by cyt c2 or cyt cy. The findings demonstrated that both cyt c2 and cyt cy are able to carry electrons efficiently from the cyt bc1 complex to either the cbb3-Cox or the aa3-Cox. Thus, no dedicated electron carrier for either of the cyt c oxidases is present in R. sphaeroides. However, under semiaerobic growth conditions, a larger portion of the electron flow out of the cyt bc1 complex appears to be mediated via the cyt c2-to-cbb3-Cox and cyt cy-to-cbb3-Cox subbranches. The presence of multiple electron carriers and cyt c oxidases with different properties that can operate concurrently reveals that the respiratory electron transport pathways of R. sphaeroides are more complex than those of R. capsulatus.  相似文献   

6.
We have recently established that the facultative phototrophic bacterium Rhodobacter capsulatus has two different pathways for reduction of the photooxidized reaction center during photosynthesis (F.E. Jenney and F. Daldal, EMBO J. 12:1283-1292, 1993; F.E. Jenney, R.C. Prince, and F. Daldal, Biochemistry 33:2496-2502, 1994). One pathway is via the well-characterized, water-soluble cytochrome c2 (cyt c2), and the other is via a novel membrane-associated c-type cytochrome named cyt cy. In this work, we probed the role of cyt cy in respiratory electron transport by isolating a set of R. capsulatus mutants lacking either cyt c2 or cyt cy, in the presence or in the absence of a functional quinol oxidase-dependent alternate respiratory pathway. The growth and inhibitor sensitivity patterns of these mutants, their respiratory rates in the presence of specific inhibitors, and the oxidation-reduction kinetics of c-type cytochromes monitored under appropriate conditions demonstrated that cyt cy, like cyt c2, connects the bc1 complex and the cyt c oxidase during respiratory electron transport. Whether cyt c2 and cyt cy are the only electron carriers between these two energy-transducing membrane complexes of R. capsulatus is unknown.  相似文献   

7.
Mutants of the photosynthetic bacterium Rhodobacter capsulatus that have combined deficiencies in the cytochrome b/c1 complex and other c-type cytochromes have been isolated. These mutants were unable to grow anaerobically in the light or dark but could grow aerobically. Cosmids with R. capsulatus wild-type DNA that complement the mutants have been used to construct genetic and physical maps of the affected genes. Complementation profiles with Tn5 and mini-Mu insertions in these cosmids and subcloned fragments from them indicated that at least three genes (called helA, helB, and helC) are involved in the defects in cytochromes c biosynthesis. The genes are clustered, and helC is transcribed away from helA and helB. Stable insertion mutants in each gene were constructed. It is postulated that helA, helB, and helC are involved in posttranslational processing during cytochromes c synthesis.  相似文献   

8.
The cytoplasmic membrane protein CcdA and its homologues in other species, such as DsbD of Escherichia coli, are thought to supply the reducing equivalents required for the biogenesis of c-type cytochromes that occurs in the periplasm of gram-negative bacteria. CcdA-null mutants of the facultative phototroph Rhodobacter capsulatus are unable to grow under photosynthetic conditions (Ps(-)) and do not produce any active cytochrome c oxidase (Nadi(-)) due to a pleiotropic cytochrome c deficiency. However, under photosynthetic or respiratory growth conditions, these mutants revert frequently to yield Ps(+) Nadi(+) colonies that produce c-type cytochromes despite the absence of CcdA. Complementation of a CcdA-null mutant for the Ps(+) growth phenotype was attempted by using a genomic library constructed with chromosomal DNA from a revertant. No complementation was observed, but plasmids that rescued a CcdA-null mutant for photosynthetic growth by homologous recombination were recovered. Analysis of one such plasmid revealed that the rescue ability was mediated by open reading frame 3149, encoding the dithiol:disulfide oxidoreductase DsbA. DNA sequence data revealed that the dsbA allele on the rescuing plasmid contained a frameshift mutation expected to produce a truncated, nonfunctional DsbA. Indeed, a dsbA ccdA double mutant was shown to be Ps(+) Nadi(+), establishing that in R. capsulatus the inactivation of dsbA suppresses the c-type cytochrome deficiency due to the absence of ccdA. Next, the ability of the wild-type dsbA allele to suppress the Ps(+) growth phenotype of the dsbA ccdA double mutant was exploited to isolate dsbA-independent ccdA revertants. Sequence analysis revealed that these revertants carried mutations in dsbB and that their Ps(+) phenotypes could be suppressed by the wild-type allele of dsbB. As with dsbA, a dsbB ccdA double mutant was also Ps(+) Nadi(+) and produced c-type cytochromes. Therefore, the absence of either DsbA or DsbB restores c-type cytochrome biogenesis in the absence of CcdA. Finally, it was also found that the DsbA-null and DsbB-null single mutants of R. capsulatus are Ps(+) and produce c-type cytochromes, unlike their E. coli counterparts, but are impaired for growth under respiratory conditions. This finding demonstrates that in R. capsulatus the dithiol:disulfide oxidoreductases DsbA and DsbB are not essential for cytochrome c biogenesis even though they are important for respiration under certain conditions.  相似文献   

9.
The protein stabilities of wild type and four site-directed mutants of Rhodobacter capsulatus cytochrome c2 have been characterized. The integrity of the cytochrome c2 iron-sulfur environment was ascertained by titration of the 696-nm absorbance band with alkali, and the conformational stability was determined by titration of the 220-nm circular dichroism signal with Gdn-HCl. Analysis of the alkaline transition pK value of K12D (lysine-12 substituted by aspartate) indicated that the K12D iron-sulfur environment was destabilized by 0.6 kcal/mol relative to the wild-type cytochrome c2 at low ionic strength. In contrast, the alkaline transition pK values of K14E (lysine-14 substituted by glutamate), K32E (lysine-32 substituted by glutamate), and K14E/K32E (lysines-14 and -32 substituted by glutamates) were indistinguishable from the wild type, indicating that these substitutions have no effect on the stability of the iron-sulfur environment. Gdn-HCl denaturation of K12D and K14E indicated that both these mutations decreased conformational stability by 1.3 kcal/mol. In contrast, mutant K32E exhibited a small stabilizing effect of 0.2 kcal/mol. Gdn-HCl denaturation of K14E/K32E indicated that this mutation decreased conformational stability by 1.3 kcal/mol, which is consistent with the additive effects of the single charge mutations at positions 14 and 32. The conformational instability of mutants possessing negative charges at position 12 or 14 is best explained by their positioning at the carboxy-terminal region of the amino-terminal alpha-helix of R. capsulatus cytochrome c2. Accordingly, introduction of negatively charged groups into this region appears to destabilize cytochrome c2 through energetically unfavorable interactions with the dipole of the amino-terminal helix.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The oxidized cytochrome c(2) from the purple phototrophic bacteria, Rhodobacter sphaeroides and Rhodobacter capsulatus, bind the neutral species of imidazole (K(a) = 1440 +/- 40 M(-1)) 50 times more strongly than does horse mitochondrial cytochrome c (K(a) = 30 +/- 1 M(-1)). The kinetics of imidazole binding are consistent with a change in rate-limiting step at high ligand concentrations for all three proteins. This is attributed to a conformational change leading to breakage of the iron-methionine bond which precedes imidazole binding. The three-dimensional structure of the Rb. sphaeroides cytochrome c(2) imidazole complex (Axelrod et al., Acta Crystalogr. D50, 596-602) supports the view that the conformational changes are essentially localized to approximately seven residues on either side of the ligated methionine and there is a hydrogen bond between the Phe 102 carbonyl, an internal water, and the bound imidazole. Insertions and deletions in this region of cytochrome c(2), the presence of a proline near the methionine, and the smaller size of the dynamic region of horse cytochrome c suggest that the stabilizing hydrogen bond is not present in horse cytochrome c, hence, the dramatic difference in affinity for imidazole. The kinetics of ligand binding do not correlate with either the strength of the iron-methionine bond as measured by the pK of the 695-nm absorption band or the overall stability of the cytochromes studied. However, the very similar imidazole binding properties of the two cytochromes c(2) indicate that the Rb. sphaeroides cytochrome c(2)-imidazole complex structure is an excellent model for the corresponding Rb. capsulatus cytochrome c(2) complex. It is notable that the movement of the peptide chain in the vicinity of the ligated methionine has been preserved throughout evolution and suggests a role in the function of c-type cytochromes.  相似文献   

11.
E Darrouzet  S Mandaci  J Li  H Qin  D B Knaff  F Daldal 《Biochemistry》1999,38(25):7908-7917
The cytochrome (cyt) c1 heme of the ubihydroquinone:cytochrome c oxidoreductase (bc1 complex) is covalently attached to two cysteine residues of the cyt c1 polypeptide chain via two thioether bonds, and the fifth and sixth axial ligands of its iron atom are histidine (H) and methionine (M), respectively. The latter residue is M183 in Rhodobacter capsulatus cyt c1, and previous mutagenesis studies revealed its critical role for the physicochemical properties of cyt c1 [Gray, K. A., Davidson, E., and Daldal, F. (1992) Biochemistry 31, 11864-11873]. In the homologous chloroplast b6f complex, the sixth axial ligand is provided by the amino group of the amino terminal tyrosine residue. To further pursue our investigation on the role played by the sixth axial ligand in heme-protein interactions, novel cyt c1 variants with histidine-lysine (K) and histidine-histidine axial coordination were sought. Using a R. capsulatus genetic system, the cyt c1 mutants M183K and M183H were constructed by site-directed mutagenesis, and chromatophore membranes as well as purified bc1 complexes obtained from these mutants were characterized in detail. The studies revealed that these mutants incorporated the heme group into the mature cyt c1 polypeptides, but yielded nonfunctional bc1 complexes with unusual spectroscopic and thermodynamic properties, including shifted optical absorption maxima (lambdamax) and decreased redox midpoint potential values (Em7). The availability and future detailed studies of these stable cyt c1 mutants should contribute to our understanding of how different factors influence the physicochemical and folding properties of membrane-bound c-type cytochromes in general.  相似文献   

12.
The c-type cytochromes are haemoproteins that are subunits or physiological partners of electron transport chain components, like the cytochrome bc(1) complex or the cbb(3)-type cytochrome c oxidase. Their haem moieties are covalently attached to the corresponding apocytochromes via a complex post-translational maturation process. During our studies of cytochrome biogenesis, we uncovered a novel class of mutants that are unable to produce ornithine lipid and that lack several c-type cytochromes. Molecular analyses of these mutants led us to the ornithine lipid biosynthesis genes of Rhodobacter capsulatus. Herein, we have characterized these mutants, and established the chemical structure of this non-phosphorus membrane lipid from R. capsulatus. Ornithine lipids are known to induce potent host immune responses, including B-lymphocyte mitogenicity, adjuvanticity and macrophage activation. Yet, despite their widespread occurrence in Eubacteria, and the diverse biological effects they elicit in mammals, their physiological role in bacterial cells remained hitherto poorly defined. Our findings now indicate that under certain bacterial growth conditions ornithine lipids are crucial for optimal steady-state amounts of some extracytoplasmic proteins, including several c-type cytochromes, and attribute them a novel and important biological function.  相似文献   

13.
Mutants of Rhizobium leguminosarum bv. viciae unable to respire via the cytochrome aa3 pathway were identified by the inability to oxidize N,N'-dimethyl-p-phenylenediamine. Two mutants which were complemented by cosmid pIJ1942 from an R. leguminosarum clone bank were identified. Although pea nodules induced by these mutants contained many bacteroids, no symbiotic nitrogen fixation was detected. Heme staining of cellular proteins revealed that all cytochrome c-type heme proteins were absent. These mutants lacked spectroscopically detectable cytochrome c, but cytochromes aa3 and d were present, the latter at a higher-than-normal level. DNA sequence analysis of complementing plasmids revealed four apparently cotranscribed open reading frames (cycH, cycJ, cycK, and cycL). CycH, CycJ, CycK, and CycL are homologous to Bradyrhizobium japonicum and Rhizobium meliloti proteins thought to be involved in the attachment of heme to cytochrome c apoproteins; CycK and CycL are also homologous to the Rhodobacter capsulatus ccl1 and ccl2 gene products and the Escherichia coli nrfE and nrfF gene products involved in the assembly of c-type cytochromes. The absence of cytochrome c heme proteins in these R. leguminosarum mutants is consistent with the view that the cycHJKL operon could be involved in the attachment of heme to apocytochrome c.  相似文献   

14.
To determine the interaction site for cytochrome c (Cc) on cytochrome c oxidase (CcO), a number of conserved carboxyl residues in subunit II of Rhodobacter sphaeroides CcO were mutated to neutral forms. A highly conserved tryptophan, Trp(143), was also mutated to phenylalanine and alanine. Spectroscopic and metal analyses of the surface carboxyl mutants revealed no overall structural changes. The double mutants D188Q/E189N and D151Q/E152N exhibit similar steady-state kinetic behavior as wild-type oxidase with horse Cc and R. sphaeroides Cc(2), showing that these residues are not involved in Cc binding. The single mutants E148Q, E157Q, D195N, and D214N have decreased activities and increased K(m) values, indicating they contribute to the Cc:CcO interface. However, their reactions with horse and R. sphaeroides Cc are different, as expected from the different distribution of surface lysines on these cytochromes c. Mutations at Trp(143) severely inhibit activity without changing the K(m) for Cc or disturbing the adjacent Cu(A) center. From these data, we identify a Cc binding area on CcO with Trp(143) and Asp(214) close to the site of electron transfer and Glu(148), Glu(157), and Asp(195) providing electrostatic guidance. The results are completely consistent with time-resolved kinetic measurements (Wang, K., Zhen, Y., Sadoski, R., Grinnell, S., Geren, L., Ferguson-Miller, S., Durham, B., and Millett, F. (1999) J. Biol. Chem. 274, 38042-38050) and computational docking analysis (Roberts, V. A., and Pique, M. E. (1999) J. Biol. Chem. 274, 38051-38060).  相似文献   

15.
16.
Plasmids encoding the structural genes for the Rhodobacter capsulatus and Rhodobacter sphaeroides cytochrome (cyt) bc1 complexes were introduced into strains of R. capsulatus lacking the cyt bc1 complex, with and without cyt c2. The R. capsulatus merodiploids contained higher than wild-type levels of cyt bc1 complex, as evidenced by immunological and spectroscopic analyses. On the other hand, the R. sphaeroides-R. capsulatus hybrid merodiploids produced only barely detectable amounts of R. sphaeroides cyt bc1 complex in R. capsulatus. Nonetheless, when they contained cyt c2, they were capable of photosynthetic growth, as judged by the sensitivity of this growth to specific inhibitors of the photochemical reaction center and the cyt bc1 complex, such as atrazine, myxothiazol, and stigmatellin. Interestingly, in the absence of cyt c2, although the R. sphaeroides cyt bc1 complex was able to support the photosynthetic growth of a cyt bc1-less mutant of R. capsulatus in rich medium, it was unable to do so when C4 dicarboxylic acids, such as malate and succinate, were used as the sole carbon source. Even this conditional ability of R. sphaeroides cyt bc1 complex to replace that of R. capsulatus for photosynthetic growth suggests that in the latter species the cyt c2-independent rereduction of the reaction center is not due to a structural property unique to the R. capsulatus cyt bc1 complex. Similarly, the inability of R. sphaeroides to exhibit a similar pathway is not due to some inherent property of its cyt bc1 complex.  相似文献   

17.
The fnr gene encodes a regulatory protein involved in the response to oxygen in a variety of bacterial genera. For example, it was previously shown that the anoxygenic, photosynthetic bacterium Rhodobacter sphaeroides requires the fnrL gene for growth under anaerobic, photosynthetic conditions. Additionally, the FnrL protein in R. sphaeroides is required for anaerobic growth in the dark with an alternative electron acceptor, but it is not essential for aerobic growth. In this study, the fnrL locus from Rhodobacter capsulatus was cloned and sequenced. Surprisingly, an R. capsulatus strain with the fnrL gene deleted grows like the wild type under either photosynthetic or aerobic conditions but does not grow anaerobically with alternative electron acceptors such as dimethyl sulfoxide (DMSO) or trimethylamine oxide. It is demonstrated that the c-type cytochrome induced upon anaerobic growth on DMSO is not synthesized in the R. capsulatus fnrL mutant. In contrast to wild-type strains, R. sphaeroides and R. capsulatus fnrL mutants do not synthesize the anaerobically, DMSO-induced reductase. Mechanisms that explain the basis for FnrL function in both organisms are discussed.  相似文献   

18.
In gram-negative bacteria, like Rhodobacter capsulatus, about 10 membrane-bound components (CcmABCDEFGHI and CcdA) are required for periplasmic maturation of c-type cytochromes. These components perform the chaperoning and thio-oxidoreduction of the apoproteins as well as the delivery and ligation of the heme cofactors. In the absence of any of these components, including CcmI, proposed to act as an apocytochrome c chaperone, R. capsulatus does not have the ability to produce holocytochromes c or consequently to exhibit photosynthetic growth and cytochrome cbb3 oxidase activity. Previously, we have demonstrated that null mutants of CcmI partially overcome cytochrome c deficiency phenotypes upon overproduction of the CcmF-R. capsulatus CcmH (CcmF-CcmH(Rc)) couple in a growth medium-dependent manner and fully bypass these defects by additional overproduction of CcmG. Here, we show that overproduction of the CcmF-CcmH(Rc) couple and overproduction of the N-terminal membrane-spanning segment of CcmI (CcmI-1) have similar suppression effects of cytochrome c maturation defects in CcmI-null mutants. Likewise, additional overproduction of CcmG, the C-terminal periplasmic segment of CcmI (CcmI-2), or even of apocytochrome c2 also provides complementation abilities similar to those of these mutants. These results indicate that the two segments of CcmI have different functions and support our earlier findings that two independent steps are required for full recovery of the loss of CcmI function. We therefore propose that CcmI-1 is part of the CcmF-CcmH(Rc)-dependent heme ligation, while CcmI-2 is involved in the CcdA- and CcmG-dependent apoprotein thioreduction steps, which intersect at the level of CcmI during cytochrome c biogenesis.  相似文献   

19.
Electron transport pathways to nitrous oxide in Rhodobacter species   总被引:3,自引:0,他引:3  
1. Electron transport components involved in nitrous oxide reduction in several strains of Rhodobacter capsulatus and in the denitrifying strain of Rhodobacter sphaeroides (f. sp. denitrificans) have been investigated. Detailed titrations with antimycin A and myxothiazol, inhibitors of the cytochrome bc1 complex, show that part of the electron flow to nitrous oxide passes through this complex. The sensitivity to myxothiazol varies between strains and growth conditions of R. capsulatus; the higher rates of nitrous oxide reduction correlate with the higher sensitivities. Partial inhibition of the nitrous oxide reductase enzyme with azide decreased the sensitivity to myxothiazol of the strains that had the highest nitrous oxide reductase activity. 2. Inhibition of nitrous oxide reduction in cells of R. capsulatus by myxothiazol could be restored under dark conditions by addition of N,N,N',N'-tetramethyl-p-phenylene diamine. The highest activities observed after addition of this electron carrier were found in the strains that had the highest sensitivity to myxothiazol, consistent with the premise that this inhibitor is more effective at the higher flux rates to nitrous oxide. 3. Addition of nitrous oxide to cells of R. capsulatus strain N22DNAR+ under darkness caused oxidation of both b- and c-type cytochromes. The oxidation of b cytochromes was less pronounced in the presence of myxothiazol, consistent with a role for the cytochrome bc1 complex in the electron pathway to nitrous oxide. Ferricyanide, in the absence of myxothiazol, caused a similar extent of oxidation of b cytochromes, but a greater oxidation of c-type, suggesting that there was a pool of c-type cytochrome that was not oxidisable by nitrous oxide. The time course showed that both the b- and c-type cytochromes were oxidised within a few seconds of the addition of nitrous oxide. During the following seconds there was a partial re-reduction of the cytochromes such that after approximately 1 min a lower steady-state of oxidation was attained and this persisted until the nitrous oxide was exhausted. 4. A mutant, MTCBC1, of R. capsulatus that specifically lacked a functional cytochrome bc1 complex reduced nitrous oxide, albeit at 30% of the rate shown by the parent strain MT1131. A reduced minus nitrous-oxide-oxidised difference spectrum for MTCBC1 in the absence of myxothiazol was similar to the corresponding difference spectrum observed for strain N22DNAR+ in the presence of myxothiazol. It is suggested that these difference spectra identify the cytochrome components, including a b-type, involved in a pathway that is alternative to, and independent of, the cytochrome bc1 complex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Following chemical mutagenesis and screening for the inability to grow by photosynthesis and the absence of cyt cbb3 oxidase activity, two c-type cytochrome (cyt)-deficient mutants, 771 and K2, of Rhodobacter capsulatus were isolated. Both mutants were completely deficient in all known c-type cyts, and could not be complemented by the previously known cyt c biogenesis genes of R. capsulatus. Complementation of 771 and K2 with a wild-type chromosomal library led to the identification of two novel genes, cycJ and ccdA respectively. The cycJ is highly homologous to ccmE/cycJ, encountered in various Gram-negative species. Unlike in other species, where cycJ is a part of an operon essential for cyt c biogenesis, in R. capsulatus, it is located immediately downstream from argC, involved in arginine biosynthesis. Mutation of its universally conserved histidine residue, which is critical for its proposed haem chaperoning role, to an alanine led to loss of its function. All R. capsulatus cycJ mutants studied so far excrete copious amounts of coproporphyrin and protoporphyrin when grown on enriched media, suggesting that its product is also a component of the haem delivery branch of cyt c biogenesis in this species. In contrast, the R. capsulatus ccdA was homologous to the cyt c biogenesis gene ccdA, found in the gram-positive bacterium Bacillus subtilis, and to the central region of dipZ, encoding a protein disulphide reductase required for cyt c biogenesis in Escherichia coli. Membrane topology of CcdA was established in R. capsulatus using ccdA:phoA and ccdA :lacZ gene fusions. The deduced topology revealed that the two conserved cysteine residues of CcdA are, as predicted, membrane embedded. Mutagenesis of these cysteines showed that both are required for the function of CcdA in cyt c biogenesis. This study demonstrated for the first time that CcdA homologues are also required for cyt c biogenesis in some gram-negative bacteria such as R. capsulatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号