首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies (Hsieh, C.-H., and Griffith, J. D. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 4833-4837) of DNAs containing extra or bulged bases on one of the two strands of a duplex showed that they exhibit slower electrophoretic mobility than non-bulged DNAs, indicating that bulges create stiff kinks in the DNA. Here we paired a 97-base single-stranded DNA from the intact cystic fibrosis (CF) gene with a complementary 94-base strand containing a central 3-base deletion (delta F508), common to many CF patients. This produced a 94-base pair DNA with a central 3-base bulge. Visualization of these DNAs by electron microscopy showed that twice as many bulge-containing DNAs had a central kink as compared with the non-bulged controls. Examination of the distribution of kinking angles showed that the bulged population contained 5-7-fold more molecules with a central kink of 80 +/- 10 degrees than did the control molecules. When the 3-base bulge was replaced by a 3-base gap, the resulting duplex DNA showed central kinks with a somewhat lower frequency but greater range of kinking angles.  相似文献   

2.
Solution structure of dAATAA and dAAUAA DNA bulges   总被引:1,自引:1,他引:0       下载免费PDF全文
The NMR structure analysis is described for two DNA molecules of identical stem sequences with a five base loop containing a pyrimidine, thymin or uracil, in between purines. These five unpaired nucleotides are bulged out and are known to induce a kink in the duplex structure. The dAATAA bulge DNA is kinked between the third and the fourth nucleotide. This contrasts with the previously studied dAAAAA bulge DNA where we found a kink between the fourth and fifth nucleotide. The total kinking angle is ~104° for the dAATAA bulge. The findings were supported by electrophoretic data and fluorescence resonance energy transfer measurements of a similar DNA molecule end-labeled by suitable fluorescent dyes. For the dAAUAA bulge the NMR data result in a similar structure as reported for the dAATAA bulge with a kinking angle of ~87°. The results are discussed in comparison with a rAAUAA RNA bulge found in a group I intron. Generally, the sequence-dependent structure of bulges is important to understand the role of DNA bulges in protein recognition.  相似文献   

3.
M A Rosen  L Shapiro  D J Patel 《Biochemistry》1992,31(16):4015-4026
We have synthesized an oligodeoxynucleotide duplex, d(G-C-A-T-C-G-A-T-A-G-C-T-A-C-G).d(C-G-T-A-G-C-C-G-A-T-C-G), with a three-base bulge loop (A-T-A) at a central site in the first strand. Nuclear Overhauser experiments (NOESY) in H2O indicate that the GC base pairs flanking the bulge loop are intact between 0 and 25 degrees C. Nuclear Overhauser effects in both H2O and D2O indicate that all bases within the bulge loop are stacked into the helix. These unpaired bases retain an anti conformation about their glycosidic bonds as they stack within the duplex. The absence of normal sequential connectivities between the two cytosine residues flanking the bulge site on the opposite strand indicates a disruption in the geometry of this base step upon insertion of the bulged bases into the helix. This conformational perturbation is more akin to a shearing apart of the bases, which laterally separates the two halves of the molecule, rather than the "wedge" model often invoked for single-base bulges. Using molecular dynamics calculations, with both NOE-derived proton-proton distances and relaxation matrix-calculated NOESY cross peak volumes as restraints, we have determined the solution structure of an A-T-A bulge loop within a DNA duplex. The bulged bases are stacked among themselves and with the guanine bases on either side of the loop. All three of the bulged bases are displaced by 2-3 A into the major groove, increasing the solvent accessibility of these residues. The ATA-bulge duplex is significantly kinked at the site of the lesion, in agreement with previously reported electron microscopy and gel retardation studies on bulge-containing duplexes [Hsieh, C.-H., & Griffith, J. D. (1989) Proc. Natl. Acad. Sci. U.S.A 86, 4833-4837; Bhattacharyya, A., & Lilley, D. M. J. (1989) Nucleic Acids Res. 17, 6821-6840]. Bending occurs in a direction away from the bulge-containing strand, and we find a significant twist difference of 84 degrees between the two base pairs flanking the bulge loop site. This value represents 58% of the twist difference for base pairs four steps apart in B-DNA. These results suggest a structural mechanism for the bending of DNA induced by unpaired bases, as well as accounting for the effect bulge loops may have on the secondary and tertiary structures of nucleic acids.  相似文献   

4.
We have used gel electrophoresis to show that the pyrimidine bulge of the HIV-1 TAR sequence causes a local bending of the helical axis. The TAR bulge caused a retardation in electrophoretic mobility in polyacrylamide gels. When this was placed adjacent to an additional bulged sequence in a linear RNA fragment, the mobility of the molecule varied sinusoidally with the spacing between the two bulges. Electrophoretic mobilities suggested that the TAR sequence context of the pyrimidine bulge causes a greater degree of axial kinking than in an equivalent randomly chosen sequence. Experiments in which an A5 bulge was progressively opposed by adenine bases inserted in the opposite strand showed that even a single opposed adenine markedly reduced electrophoretic mobility, i.e. axial bending, and two adenine bases reduced the mobility virtually to that of a normal duplex. We suggest that the pronounced kinking resulting from an unopposed bulge provides a particularly recognizable feature in RNA, and that this is the basis of the interaction between the HIV Tat protein and the TAR sequence.  相似文献   

5.
A 120-base phage phi29 encoded RNA (pRNA) has a novel role in DNA packaging. This pRNA possesses five single-base bulges, one three-base bulge, one bifurcation bulge, one bulge loop, and two stem loops. Circularly permuted pRNAs (cpRNA) were constructed to examine the function of these bulges and loops as well as their adjacent sequences. Each of the five single-base bulges was nonessential. The bifurcation bulge could be deleted and replaced with a new opening to provide flexibility for maintaining an overall correct folding in three-way junction. All of these nonessential bulges or their adjacent bases could be used as new termini for cpRNAs. The three-base (C18C19A20) bulge was dispensable for procapsid binding, but was indispensable for DNA packaging. The secondary structure around this CCA bulge and the phylogenetically conserved bases within or around it were investigated. Bases A14C15U16 were confirmed, by compensatory modification, to pair with U103G102A101. A99 was needed only to allow the proper folding of CCA bulge in the appropriate sequence order and distance constraints. Beyond these, the seemingly phylogenetic conservation of other bases has little role in pRNA activity. Each of the three stem loops was essential for procapsid binding, DNA packaging, and phage assembly. Disruption of the middle of any one of the loops resulted in dramatic reductions in procapsid binding, subsequent DNA packaging, and phage assembly activities. However, disruption of the loops at sequences that were close to double-stranded regions of the RNA did not interfere with pRNA activity significantly. Our results suggest that double-stranded helical regions near these loops were most likely not involved in interactions with components of the DNA-packaging machinery. Instead, these regions appear to be merely present to serve as a scaffolding to display the single-stranded loops that are important for pRNA tertiary structure or for interaction with the procapsid or other packaging components.  相似文献   

6.
The tumor suppressor protein p53 modulates cellular response to DNA damage by a variety of mechanisms that may include direct recognition of some forms of primary DNA damage. Linear 49-base pair duplex DNAs were constructed containing all possible single-base mismatches as well as a 3-cytosine bulge. Filter binding and gel retardation assays revealed that the affinity of p53 for a number of these lesions was equal to or greater than that of the human mismatch repair complex, hMSH2-hMSH6, under the same binding conditions. However, other mismatches including G/T, which is bound strongly by hMSH2-hMSH6, were poorly recognized by p53. The general order of affinity of p53 was greatest for a 3-cytosine bulge followed by A/G and C/C mismatches, then C/T and G/T mismatches, and finally all the other mismatches.  相似文献   

7.
Thirty-four RNA duplexes containing single nucleotide bulges were optically melted, and the thermodynamic parameters deltaH degrees, deltaS degrees, deltaG degrees (37), and T(M) for each sequence were determined. Data from this study were combined with data from previous thermodynamic data [Longfellow, C. E., Kierzek, R., and Turner, D. H. (1990) Biochemistry 29, 278-85] to develop a model that will more accurately predict the free energy of an RNA duplex containing a single nucleotide bulge. Differences between purine and pyrimidine bulges as well as differences between Group I duplexes, those in which the bulge is not identical to either neighboring nucleotide, and Group II duplexes, those in which the bulge is identical to at least one neighboring nucleotide, were considered. The length of the duplex, non-nearest-neighbor effects, and bulge location were also examined. A model was developed which divides sequences into two groups: those with pyrimidine bulges and those with purine bulges. The proposed model for pyrimidine bulges predicts deltaG degrees (37,bulge) = 3.9 kcal/mol + 0.10deltaG degrees (37,nn) + beta, while the model for purine bulges predicts deltaG degrees (37,bulge) = 3.3 kcal/mol - 0.30deltaG degrees (37,nn) + beta, where beta has a value of 0.0 and -0.8 kcal/mol for Group I and Group II sequences, respectively, and deltaG degrees (37,nn) is the nearest-neighbor free energy of the base pairs surrounding the bulge. The conformation of bulge loops present in rRNA was examined. Three distinct families of structures were identified. The bulge loop was either extrahelical, intercalated, or in a "side-step" conformation.  相似文献   

8.
The Escherichia coli mismatch repair system does not recognize and/or repair all mismatched base pairs with equal efficiency: whereas transition mismatches (G X T and A X C) are well repaired, the repair of some transversion mismatches (e.g. A X G or C X T) appears to depend on their position in heteroduplex DNA of phage lambda. Undecamers were synthesized and annealed to form heteroduplexes with a single base-pair mismatch in the centre and with the five base pairs flanking each side corresponding to either repaired or unrepaired heteroduplexes of lambda DNA. Nuclear magnetic resonance (n.m.r.) studies show that a G X A mismatch gives rise to an equilibrium between fully helical and a looped-out structure. In the unrepaired G X A mismatch duplex the latter predominates, while the helical structure is predominant in the case of repaired G X A and G X T mismatches. It appears that the E. coli mismatch repair enzymes recognize and repair intrahelical mismatched bases, but not the extrahelical bases in the looped-out structures.  相似文献   

9.
The three-dimensional structure of a DNA tridecamer d(CGCAGAATTCGCG)2 containing bulged adenine bases was determined by single crystal X-ray diffraction methods, at 120 K, to 2.6 A resolution. The structure is a B-DNA type double helix with a single duplex in the asymmetric unit. One of the bulged adenine bases loops out from the double helix, while the other stacks in to it. This is in contrast to our preliminary finding, which indicated that both adenine bases were looped out. This revised model was confirmed by the use of a covalently bound heavy-atom derivative. The conformation of the looped-out bulge hardly disrupts base stacking interactions of the bases flanking it. This is achieved by the backbone making a "loop-the-loop" curve with the extra adenine flipping over with respect to the other nucleotides in the strand. The looped-out base intercalates into the stacked-in bulge site of a symmetrically related duplex. The looped-out and stacked-in bases form an A.A reversed Hoogsteen base-pair that stacks between the surrounding base-pairs, thus stabilizing both bulges. The double helix is frayed at one end with the two "melted" bases participating in intermolecular interactions. A related structure, of the same tridecamer, after soaking the crystals with proflavin, was determined to 3.2 A resolution. The main features of this B-DNA duplex are basically similar to the native tridecamer but differ in detail especially in the conformation of the bulged-out base. Accommodation of a large perturbation such as that described here with minimal disruption of the double helix shows both the flexibility and resiliency of the DNA molecule.  相似文献   

10.
Temperature-gradient gel electrophoresis (TGGE) was employed to determine the thermal stabilities of 48 DNA fragments that differ by single base pair mismatches. The approach provides a rapid way for studying how specific base mismatches effect the stability of a long DNA fragment. Homologous 373 bp DNA fragments differing by single base pair substitutions in their first melting domain were employed. Heteroduplexes were formed by melting and reannealing pairs of DNAs, one of which was 32P-labeled on its 5'-end. Product DNAs were separated based on their thermal stability by parallel and perpendicular temperature-gradient gel electrophoresis. The order of stability was determined for all common base pairs and mismatched bases in four different nearest neighbor environments; d(GXT).d(AYC), d(GXG).d(CYC), d(CXA).d(TYG), and d(TXT).d(AYA) with X,Y = A, T, C, or G. DNA fragments containing a single mismatch were destabilized by 1 to 5 degrees C with respect to homologous DNAs with complete Watson-Crick base pairing. Both the bases at the mismatch site and neighboring stacking interactions influence the destabilization caused by a mismatch. G.T, G.G and G.A mismatches were always among the most stable mismatches for all nearest neighbor environments examined. Purine.purine mismatches were generally more stable than pyrimidine.pyrimidine mispairs. Our results are in very good agreement with data where available from solution studies of short DNA oligomers.  相似文献   

11.
Kwon Y  Xi Z  Kappen LS  Goldberg IH  Gao X 《Biochemistry》2003,42(5):1186-1198
Neocarzinostatin (NCS-chrom), a natural enediyne antitumor antibiotic, undergoes either thiol-dependent or thiol-independent activation, resulting in distinctly different DNA cleavage patterns. Structures of two different post-activated NCS-chrom complexes with DNA have been reported, revealing strikingly different binding modes that can be directly related to the specificity of DNA chain cleavage caused by NCS-chrom. The third structure described herein is based on recent studies demonstrating that glutathione (GSH) activated NCS-chrom efficiently cleaves DNA at specific single-base sites in sequences containing a putative single-base bulge. In this structure, the GSH post-activated NCS-chrom (NCSi-glu) binds to a decamer DNA, d(GCCAGAGAGC), from the minor groove. This binding triggers a conformational switch in DNA from a loose duplex in the free form to a single-strand, tightly folded hairpin containing a bulge adenosine embedded between a three base pair stem. The naphthoate aromatic moiety of NCSi-glu intercalates into a GG step flanked by the bulge site, and its substituent groups, the 2-N-methylfucosamine carbohydrate ring and the tetrahydroindacene, form a complementary minor groove binding surface, mostly interacting with the GCC strand in the duplex stem of DNA. The bulge site is stabilized by the interactions involving NCSi-glu naphthoate and GSH tripeptide. The positioning of NCSi-glu is such that only single-chain cleavage via hydrogen abstraction at the 5'-position of the third base C (which is opposite to the putative bulge base) in GCC is possible, explaining the observed single-base cleavage specificity. The reported structure of the NCSi-glu-bulge DNA complex reveals a third binding mode of the antibiotic and represents a new family of minor groove bulge DNA recognition structures. We predict analogue structures of NCSi-R (R = glu or other substituent groups) may be versatile probes for detecting the existence of various structures of nucleic acids. The NMR structure of this complex, in combination with the previously reported NCSi-gb-bulge DNA complex, offers models for specific recognition of DNA bulges of various sizes through binding to either the minor or the major groove and for single-chain cleavage of bulge DNA sequences.  相似文献   

12.
S A White  D E Draper 《Biochemistry》1989,28(4):1892-1897
The way in which a single-base bulge might affect the structure of an RNA helix has been examined by preparing a series of six RNA hairpins, all with seven base pairs and a four-nucleotide loop. Five of the hairpins have single-base bulges at different positions. The intercalating cleavage reagent (methidiumpropyl)-EDTA-Fe(II) [MPE-Fe(II)] binds preferentially at a CpG sequence in the helix lacking a bulge and in four of the five hairpins with bulges. Hairpins with a bulge one or two bases to the 3' side of the CpG sequence bind ethidium 4-5-fold more strongly than the others. V1 RNase, which is sensitive to RNA backbone conformation in helices, detects a conformational change in all of the helices when ethidium binds; the most dramatic changes, involving the entire hairpin stem, are in one of the two hairpins with enhanced ethidium affinity. Only a slight conformational change is detected in the hairpin lacking a bulge. A bulge adjacent to a CpG sequence in a 100-nucleotide ribosomal RNA fragment enhances MPE-Fe(II) binding by an order of magnitude. These results extend our previous observations of bulges at a single position in an RNA hairpin [White, S. A., & Draper, D.E. (1987) Nucleic Acids Res. 15, 4049] and show that (1) a structural change in an RNA helix may be propagated for several base pairs, (2) bulges tend to increase the number of conformations available to a helix, and (3) the effects observed in small RNA hairpins are relevant to larger RNAs with more extensive structure. A bulge in a DNA hairpin identical in sequence with the RNA hairpins does not enhance MPE-Fe(II) binding affinity, relative to a control DNA hairpin. The effects of bulges on ethidium intercalation are evidently modulated by helix structure.  相似文献   

13.
Zhu J  Wartell RM 《Biochemistry》1999,38(48):15986-15993
Forty-eight RNA duplexes were constructed that contained all common single base bulges at six different locations. The stabilities of the RNAs were determined by temperature gradient gel electrophoresis (TGGE). The relative stability of a single base bulge was dependent on both base identity and the nearest neighbor context. The single base bulges were placed into two categories. A bulged base with no identical neighboring base was defined as a Group I base bulge. Group II-bulged bases had at least one neighboring base identical to it. Group II bulges were generally more stable than Group I bulges in the same nearest neighbor environments. This indicates that position degeneracy of an unpaired base enhances stability. Differences in the mobility transition temperatures between the RNA fragments with bulges and the completely base-paired reference RNAs were related to free energy differences. Simple models for estimating the free energy contribution of single base bulges were evaluated from the free energy difference data. The contribution of a Group I bulge 5'-(XNZ)-3'.5'-(Z'-X')-3' where N is the unpaired base and X.X' and Z.Z' the neighboring base pairs, could be well-represented (+/-0.34 kcal/mol) by the equation, DeltaG((X)(N)()(Z))(.)((Z)(')(-)(X)(')()) = 3.11 + 0. 40DeltaG(s)()((XZ))(.)((Z)(')(X)(')()). DeltaG(s)()((XZ))(. )((Z)(')(X)(')()) is the stacking energy of the closing base pair doublet. By adding a constant term, delta = -0.3 kcal/mol, to the right side of the above equation, free energies of Group II bulges could also be predicted with the same accuracy. The term delta represents the stabilizing effect due to position degeneracy. A similar equation/model was applied to previous data from 32 DNA fragments with single base bulges. It predicted the free energy differences with a similar standard deviation.  相似文献   

14.
The three-dimensional solution structure of a DNA molecule of the sequence 5'-d(GCATCGAAAAAGCTACG)-3' paired with 5'-d(CGTAGCCGATGC)-3' containing a five-adenine bulge loop (dA(5)-bulge) between two double helical stems was determined by 2D (1)H and (31)P NMR, infrared, and Raman spectroscopy. The DNA in both stems adopt a classical B-form double helical structure with Watson-Crick base pairing and C2'-endo sugar conformation. In addition, the two dG/dC base pairs framing the dA(5)-bulge loop are formed and are stable at least up to 30 degrees C. The five adenine bases of the bulge loop are localized at intrahelical positions within the double helical stems. Stacking on the double helical stem is continued for the first four 5'-adenines in the bulge loop. The total rise (the height) of these four stacked adenines roughly equals the diameter of the double helical stem. The stacking interactions are broken between the last of these four 5'-adenines and the fifth loop adenine at the 3'-end. This 3'-adenine partially stacks on the other stem. The angle between the base planes of the two nonstacking adenines (A10 and A11) in the bulge loop reflects the kinking angle of the global DNA structure. The neighboring cytosines opposite the dA(5)-bulge (being parts of the bulge flanking base pairs) do not stack on one another. This disruption of stacking is characterized by a partial shearing of these bases, such that certain sequential NOEs for this base step are preserved. In the base step opposite the loop, an extraordinary hydrogen bond is observed between the phosphate backbone of the 5'-dC and the amino proton of the 3'-dC in about two-thirds of the conformers. This hydrogen bond probably contributes to stabilizing the global DNA structure. The dA(5)-bulge induces a local kink into the DNA molecule of about 73 degrees (+/-11 degrees ). This kinking angle and the mutual orientation of the two double helical stems agree well with results from fluorescence resonance energy transfer measurements of single- and double-bulge DNA molecules.  相似文献   

15.
The solution structure of the complex formed between an oligonucleotide containing a two-base bulge (5'-CACGCAGTTCGGAC.5'-GTCCGATGCGTG) and ent-DDI, a designed synthetic agent, has been elucidated using high-resolution NMR spectroscopy and restrained molecular dynamic simulation. Ent-DDI is a left-handed wedge-shaped spirocyclic molecule whose aglycone portion is an enantiomer of DDI, which mimics the spirocyclic geometry of the natural product, NCSi-gb, formed by base-catalyzed activation of the enediyne antibiotic neocarzinostatin. The benzindanone moiety of ent-DDI intercalates between the A6.T21 and the T9.A20 base pairs, overlapping with portions of the purine bases; the dihydronaphthalenone moiety is positioned in the minor groove along the G7-T8-T9 bulge sequence; and the aminoglycoside is in the middle of the minor groove, approaching A20 of the nonbulged strand. This alignment of ent-DDI along the DNA helical duplex is in the reverse direction to that of DDI. The aminoglycoside moiety of ent-DDI is positioned in the 3' direction from the bulge region, whereas that of the DDI is positioned in the 5' direction from the same site. This reverse binding orientation within the bulge site is the natural consequence of the opposite handedness imposed by the spirocyclic ring junction and permits the aromatic ring systems of the two spirocyclic enantiomers access to the bulge region. NMR and CD data indicate that the DNA in the DDI-bulged DNA complex undergoes a larger conformational change upon complex formation in comparison to the ent-DDI-bulged DNA, explaining the different binding affinities of the two drugs to the bulged DNA. In addition, there are different placements of the bulge bases in the helical duplex in the two complexes. One bulge base (G7) stacks inside the helix, and the other one (T8) is extrahelical in the DDI-bulged DNA complex, whereas both bulge bases in the ent-DDI-bulged DNA complex prefer extrahelical positions for drug binding. Elucidation of the detailed binding characteristics of the synthetic spirocyclic enantiomers provides a rational basis for the design of stereochemically controlled drugs for bulge binding sites.  相似文献   

16.
Unusual duplex formation in purine rich oligodeoxyribonucleotides   总被引:5,自引:2,他引:3  
The purine rich oligodeoxyribonucleotides 1C, d(ATGACGGAATA) and 2C, d(ATGAGCGAATA) alone exhibit highly cooperative melting transitions. Analysis of the concentration dependence of melting, and electrophoretic studies indicate that these oligomers can form an unusual purine rich offset double helix. The unusual duplex is predicted to contain four A.T, two G.C, and four G.A mismatch base pairs as well as a single A base stacked on the 3' end of each chain of the helix. Other possible models for the duplex are unlikely because they are predicted to contain many base pairs of low stability. Changing the central sequence to CGG or GGG should destabilize the duplex and this is observed. The unusual duplex of 2C is more stable than the duplex of 1C indicating that the stability of G.A base pairs is quite sensitive to the surrounding sequence. Addition of 1C and 2C to their complementary pyrimidine strands results in normal duplexes of similar stability. We feel that the unusual duplexes are significantly stabilized by the intrinsic stacking tendency of purine bases.  相似文献   

17.
Systematic study of chemical reactivity of non-Watson–Crick base pairs depending on their type and microenvironment was performed on a model system that represents two sets of synthetic DNA duplexes with all types of mismatched and unmatched bases flanked by T·A or G·C pairs. Using comparative cleavage pattern analysis, we identified the main and additional target bases and performed quantitative study of the time course and efficacy of DNA modification caused by potassium permanganate or hydroxylamine. Potassium permanganate in combination with tetraethylammonium chloride was shown to induce DNA cleavage at all mismatched or bulged T residues, as well as at thymines of neighboring canonical pairs. Other mispaired (bulged) bases and thymine residues located on the second position from the mismatch site were not the targets for KMnO4 attack. In contrast, hydroxylamine cleaved only heteroduplexes containing mismatched or unmatched C residues, and did not modify adjacent cytosines. However when G·C pairs flank bulged C residue, neighboring cytosines are also attacked by hydroxylamine due to defect migration. Chemical reactivity of target bases was shown to correlate strongly with the local disturbance of DNA double helix at mismatch or bulge site. With our model system, we were able to prove the absence of false-negative and false-positive results. Portion of heteroduplex reliably revealed in a mixture with corresponding homoduplex consists of 5% for bulge bases and “open” non-canonical pairs, and 10% for wobble base pairs giving minimal violations in DNA structure. This study provides a complete understanding of the principles of mutation detection methodology based on chemical cleavage of mismatches and clarifies the advantages and limitations of this approach in various biological and conformational studies of DNA.  相似文献   

18.
Temperature-Gradient Gel Electrophoresis (TGGE) was employed to determine the thermal stabilities of 28 DNA fragments, 373 bp long, with two adjacent mismatched base pairs, and eight DNAs with Watson-Crick base pairs at the same positions. Heteroduplex DNAs containing two adjacent mismatches were formed by melting and reannealing pairs of homologous 373 bp DNA fragments differing by two adjacent base pairs. Product DNAs were separated based on their thermal stability by parallel and perpendicular TGGE. The polyacrylamide gel contained 3.36 M urea and 19.2 % formamide to lower the DNA melting temperatures. The order of stability was determined in the sequence context d(CXYG).d(CY'X'G) where X.X' and Y.Y" represent the mismatched or Watson-Crick base pairs. The identity of the mismatched bases and their stacking interactions influence DNA stability. Mobility transition melting temperatures (T u) of the DNAs with adjacent mismatches were 1.0-3.6 degrees C (+/-0.2 degree C) lower than the homoduplex DNA with the d(CCAG).d(CTGG) sequence. Two adjacent G.A pairs, d(CGAG).d(CGAG), created a more stable DNA than DNAs with Watson-Crick A.T pairs at the same sites. The d(GA).d(GA) sequence is estimated to be 0.4 (+/-30%) kcal/mol more stable in free energy than d(AA).d(TT) base pairs. This result confirms the unusual stability of the d(GA).d(GA) sequence previously observed in DNA oligomers. All other DNAs with adjacent mismatched base pairs were less stable than Watson-Crick homoduplex DNAs. Their relative stabilities followed an order expected from previous results on single mismatches. Two homoduplex DNAs with identical nearest neighbor sequences but different next-nearest neighbor sequences had a small but reproducible difference in T u value. This result indicates that sequence dependent next neighbor stacking interactions influence DNA stability.  相似文献   

19.
Crystal structure of an RNA duplex r(gugucgcac)(2) with uridine bulges.   总被引:1,自引:0,他引:1  
The crystal structure of a nonamer RNA duplex with a uridine bulge in each strand, r(gugucgcac)(2), was determined at 1.4 A resolution. The structure was solved by multiple anomalous diffraction phasing method using a three-wavelength data set collected at the Advanced Protein Source and refined to a final R(work)/R(free) of 21.2 %/23.4 % with 33,271 independent reflections (Friedel pairs unmerged). The RNA duplex crystallized in the tetragonal space group P4(1)22 with two independent molecules in the asymmetric unit. The unit cell dimensions are a=b=47.18 A and c=80.04 A. The helical region of the nonamer adopts the A-form conformation. The uridine bulges assume similar conformations, with uracils flipping out and protruding into the minor groove. The presence of the bulge induces very large twist angles (approximately +50 degrees) between the base-pairs flanking the bulges while causing profound kinks in the helix axis at the bulges. This severe twist and the large kink in turn produces a very narrow major groove at the middle of the molecule. The ribose sugars of the guanosines before the bulges adopt the C2'-endo conformation while the rest, including the bulges, are in the C3'-endo conformation. The intrastrand phosphate-phosphate (P-P) distance of the phosphate groups flanking the bulges (approximately 4.4 A) are significantly shorter than the average P-P distance in the duplex (6.0 A). This short distance between the two phosphate groups brings the non-bridging oxygen atoms close to each other where a calcium ion is bound to each strand. The calcium ions in molecule 1 are well defined while the calcium ions in molecule 2 are disordered.  相似文献   

20.
The effects of base sequence, specifically different pyrimidines flanking a bulky DNA adduct, on translesional synthesis in vitro catalyzed by the Klenow fragment of Escherichia coli Pol I (exo(-)) was investigated. The bulky lesion was derived from the binding of a benzo[a]pyrene diol epoxide isomer [(+)-anti-BPDE] to N(2)-guanine (G*). Four different 43-base long oligonucleotide templates were constructed with G* at a site 19 bases from the 5'-end. All bases were identical, except for the pyrimidines, X or Y, flanking G* (sequence context 5'-.XGY., with X, Y = C and/or T). In all cases, the adduct G* slows primer extension beyond G* more than it slows the insertion of a dNTP opposite G* (A and G were predominantly inserted opposite G, with A > G). Depending on X or Y, full lesion bypass differed by factors of approximately 1.5-5 ( approximately 0.6-3.0% bypass efficiencies). A downstream T flanking G on the 5'-side instead of C favors full lesion bypass, while an upstream C flanking G* is more favorable than a T. Various deletion products resulting from misaligned template-primer intermediates are particularly dominant ( approximately 5.0-6.0% efficiencies) with an upstream flanking C, while a 3'-flanking T lowers the levels of deletion products ( approximately 0.5-2.5% efficiencies). The kinetics of (1) single dNTP insertion opposite G* and (2) extension of the primer beyond G* by a single dNTP, or in the presence of all four dNTPs, with different 3'-terminal primer bases (Z) opposite G* were investigated. Unusually efficient primer extension efficiencies beyond the adduct (approaching approximately 90%) was found with Z = T in the case of sequences with 3'-flanking upstream C rather than T. These effects are traced to misaligned slipped frameshift intermediates arising from the pairing of pairs of downstream template base sequences (up to 4-6 bases from G*) with the 3'-terminal primer base and its 5'-flanking base. The latter depend on the base Y and on the base preferentially inserted opposite the adduct. Thus, downstream template sequences as well as the bases flanking G* influence DNA translesion synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号