首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The effects of biofilm formation on membrane performance were evaluated for a submerged membrane bioreactor (sMBR) system with six different types of micro- and ultrafiltration membranes (working volume = 19 l). After operation for 24 h the permeability of the membranes with a larger pore size (microfiltration) decreased to that of the membranes with a much smaller pore size (ultrafiltration). Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) confirmed that biofilms could reduce the influence of the membrane surface properties. The chemical oxygen demand (COD) removal efficiency was 95% for the oily wastewater treatment in the sMBR where the filtration process made an important contribution (47% based on feed COD). Significant enhancement in COD removal occurred at the initial filtration stage because of biofilm formation and the dynamic member role of the biofilm layer. Membranes with various pore sizes had approximately the same permeate quality that was attributed to the biofilm on the membrane surfaces. Nevertheless, the ultrafiltration membranes had 43% more COD removal efficiency than the other applied membranes at the beginning of filtration (before biofilm formation) because of the smaller pore sizes and better sieving.  相似文献   

4.
This work presents a multispecies biofilm model that describes the co‐existence of nitrate‐ and sulfate‐reducing bacteria in the H2‐based membrane biofilm reactor (MBfR). The new model adapts the framework of a biofilm model for simultaneous nitrate and perchlorate removal by considering the unique metabolic and physiological characteristics of autotrophic sulfate‐reducing bacteria that use H2 as their electron donor. To evaluate the model, the simulated effluent H2, UAP (substrate‐utilization‐associated products), and BAP (biomass‐associated products) concentrations are compared to experimental results, and the simulated biomass distributions are compared to real‐time quantitative polymerase chain reaction (qPCR) data in the experiments for parameter optimization. Model outputs and experimental results match for all major trends and explain when sulfate reduction does or does not occur in parallel with denitrification. The onset of sulfate reduction occurs only when the nitrate concentration at the fiber's outer surface is low enough so that the growth rate of the denitrifying bacteria is equal to that of the sulfate‐reducing bacteria. An example shows how to use the model to design an MBfR that achieves satisfactory nitrate reduction, but suppresses sulfate reduction. Biotechnol. Bioeng. 2013; 110: 763–772. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
A fluid dynamic gauging (FDG) technique was used for on-line and in situ measurements of Pseudomonas aeruginosa PAO1 biofilm thickness and strength on flat sheet polyethersulphone membranes. The measurements are the first to be successfully conducted in a membrane cross-flow filtration system under constant permeation. In addition, FDG was used to demonstrate the removal behaviour of biofilms through local biofilm strength and removal energy estimation, which other conventional measurements such as flux and TMP cannot provide. The findings suggest that FDG can provide valuable additional information related to biofilm properties that have not been measured by other monitoring methods.  相似文献   

6.
For a stable and reliable operation of a BAS-reactor a high, active biomass concentration is required with mainly biofilm-covered carriers. The effect of reactor conditions on the formation of nitrifying biofilms in BAS-reactors was investigated in this article. A start-up strategy to obtain predominantly biofilm-covered carriers, based on the balancing of detachment and a biomass production per carrier surface area, proved tp be very successful. The amount of biomass and the fraction of covered carrier were high and development of nitrification activity was fast, leading to a volumetric conversion of 5 kg(N) . m(-3) . d(-1) at a hydraulic retention time of 1h. A 1-week, continuous inoculation with suspended purely nitrifying microorganisms resulted in a swift start-up compared with batch addition of a small number of biofilms with some nitrification activity. The development of nitrifying biofilms was very similar to the formation of heterotrophic biofilms. In contrast to heterotrophic bio-films, the diameter of nitrifying biofilms increased during start-up. The detachment rate from nitrifying biofilms decreased with lower concentrations of bare carrier, in a fashion comparable with heterotrophic biofilms, but the nitrifying biofilms were much more robust and resistant. Standard diffusion theory combined with reaction kinetics are capable of predicting the activity and conversion of biofilms on small suspended particles. (c) 1995 John Wiley & Sons Inc.  相似文献   

7.
The potential of the membrane aerated biofilm reactor (MABR) for high-rate bio-oxidation was investigated. A reaction-diffusion model was combined with a preliminary hollow-fiber MABR process model to investigate reaction rate-limiting regime and to perform comparative analysis on prospective designs and operational parameters. High oxidation fluxes can be attained in the MABR if the intra-membrane oxygen pressure is sufficiently high, however the volumetric oxidation rate is highly dependent on the membrane specific surface area and therefore the maximum performance, in volumetric terms, was achieved in MABRs with relatively thin fibers. The results show that unless the carbon substrate concentration is particularly high, there does not appear to be an advantage to be gained by designing MABRs on the basis of thick biofilms even if oxygen limitations can be overcome.  相似文献   

8.
Anaerobic oxidation of methane coupled to denitrification (AOM-D) in a membrane biofilm reactor (MBfR), a platform used for efficiently coupling gas delivery and biofilm development, has attracted attention in recent years due to the low cost and high availability of methane. However, experimental studies have shown that the nitrate-removal flux in the CH4-based MBfR (<1.0 g N/m2-day) is about one order of magnitude smaller than that in the H2-based MBfR (1.1–6.7 g N/m2-day). A one-dimensional multispecies biofilm model predicts that the nitrate-removal flux in the CH4-based MBfR is limited to <1.7 g N/m2-day, consistent with the experimental studies reported in the literature. The model also determines the two major limiting factors for the nitrate-removal flux: The methane half-maximum-rate concentration (K2) and the specific maximum methane utilization rate of the AOM-D syntrophic consortium (kmax2), with kmax2 being more important. Model simulations show that increasing kmax2 to >3 g chemical oxygen demand (COD)/g cell-day (from its current 1.8 g COD/g cell-day) and developing a new membrane with doubled methane-delivery capacity (Dm) could bring the nitrate-removal flux to ≥4.0 g N/m2-day, which is close to the nitrate-removal flux for the H2-based MBfR. Further increase of the maximum nitrate-removal flux can be achieved when Dm and kmax2 increase together.  相似文献   

9.
The biofilm thickness in membrane biofilm reactors (MBfRs) is an important factor affecting system performance because excessive biofilm formation on the membrane surface inhibits gas diffusion to the interior of the biofilm, resulting in a significant reduction in the performance of contaminant removal. This study provides innovative insights into the control of biofilm thickness in O2-based MBfRs by using the quorum quenching (QQ) method. The study was carried out in MBfRs operated at different gas pressures and hydraulic retention times (HRTs) using QQ beads containing Rhodococcus sp. BH4 at different amounts. The highest performance was observed in reactors operated with 0.21 ml QQ bead/cm2 membrane surface area, 12 HRTs and 1.40 atm. Over this period, the performance increase in chemical oxygen demand (COD) removal was 25%, while the biofilm thickness on the membrane surface was determined to be 250 μm. Moreover, acetate and equivalent oxygen flux results reached 6080 and 10 640 mg·m−2·d−1 maximum values, respectively. The extracellular polymeric substances of the biofilm decreased significantly with the increase of gas pressure and QQ beads amount. Polymerase chain reaction denaturing gradient gel electrophoresis results showed that the microbial community in the MBfR system changed depending on operating conditions and bead amount. The results showed that the QQ method was an effective method to control the biofilm thickness in MBfR and provide insights for future research.  相似文献   

10.
Chloroform (CF) can undergo reductive dechlorination to dichloromethane, chloromethane, and methane. However, competition for hydrogen (H2), the electron-donor substrate, may cause poor dechlorination when multiple electron acceptors are present. Common acceptors in anaerobic environments are nitrate (NO3), sulfate (SO42−), and bicarbonate (HCO3). We evaluated CF dechlorination in the presence of HCO3 at 1.56 e Eq/m2-day, then NO3 at 0.04–0.15 e Eq/m2-day, and finally NO3 (0.04 e Eq/m2-day) along with SO42− at 0.33 e Eq/m2-day in an H2-based membrane biofilm reactor (MBfR). When the biofilm was initiated with CF-dechlorination conditions (no NO3 or SO42−), it yielded a CF flux of 0.14 e Eq/m2-day and acetate production via homoacetogenesis up to 0.26 e eq/m2-day. Subsequent addition of NO3 at 0.05 e Eq/m2-day maintained full CF dechlorination and homoacetogenesis, but NO3 input at 0.15 e Eq/m2-day caused CF to remain in the reactor's effluent and led to negligible acetate production. The addition of SO42− did not affect CF reduction, but SO42− reduction significantly altered the microbial community by introducing sulfate-reducing Desulfovibrio and more sulfur-oxidizing Arcobacter. Dechloromonas appeared to carry out CF dechlorination and denitrification, whereas Acetobacterium (homoacetogen) may have been involved with hydrolytic dechlorination. Modifications to the electron acceptors fed to the MBfR caused the microbial community to undergo changes in structure that reflected changes in the removal fluxes.  相似文献   

11.
A H(2)-based, denitrifying and sulfate-reducing membrane biofilm reactor (MBfR) was effective for removing 1,1,1-trichloroethane (TCA) and chloroform (CF) by reductive dechlorination. When either TCA or CF was first added to the MBfR, reductive dechlorination took place immediately and then increased over 3 weeks, suggesting enrichment for TCA- or CF-dechlorinating bacteria. Increasing the H(2) pressure increased the dechlorination rates of TCA or CF, and it also increased the rate of sulfate reduction. Increased sulfate loading allowed more sulfate reduction, and this competed with reductive dechlorination, particularly the second steps. The acceptor flux normalized by effluent concentration can be an efficient indicator to gauge the intrinsic kinetics of the MBfR biofilms for the different reduction reactions. The analysis of normalized rates showed that the kinetics for reductive-dechlorination reactions were slowed by reduced H(2) bio-availability caused by a low H(2) pressure or competition from sulfate reduction.  相似文献   

12.
Halophilic (salt loving), hydrogenotrophic (H2 oxidizing) denitrifying bacteria were investigated for treatment of nitrate <$>({\rm NO}_3^ ‐ )<$> and perchlorate <$>({\rm ClO}_4^ ‐ )<$> contaminated groundwater and ion exchange (IX) brines. Hydrogenotrophic denitrifying bacteria were enriched from a denitrifying wastewater seed under both halophilc and non‐halophilc conditions. The cultures were inoculated into bench‐scale membrane biofilm reactors (MBfRs) with an “outside in” configuration, with contaminated water supplied to the lumen of the membranes and H2 supplied to the shell. Abiotic mass transfer tests showed that H2 mass transfer coefficients were lower in brines than in tap water at highest Reynolds number, possibly due to increased transport of salts and decreased H2 solubility at the membrane/liquid interface. An average <$>{\rm NO}_3^ ‐ <$> removal efficiency of 93% was observed for the MBfR operated in continuous flow mode with synthetic contaminated groundwater. Removal efficiencies of 30% for <$>{\rm NO}_3^ ‐ <$> and 42% for <$>{\rm ClO}_4^ ‐ <$> were observed for the MBfR operated with synthetic IX brine in batch operating mode with a reaction time of 53 h. Phylogenetic analysis focused on the active microbial community and revealed that halotolerant, <$>{\rm NO}_3^ ‐ <$> ‐reducing bacteria of the bacterial classes Gamma‐Proteobacteria and Sphingobacteria were the metabolically dominant members within the stabilized biofilm. This study shows that, despite decreased H2 transfer under high salt conditions, hydrogenotrophic biological reduction may be successfully used for the treatment of <$>{\rm NO}_3^ ‐ <$> and <$>{\rm ClO}_4^ ‐ <$> in a MBfR. Biotechnol. Bioeng. 2009; 104: 483–491 © 2009 Wiley Periodicals, Inc.  相似文献   

13.
14.
15.
The nitrifying bacteria in activated sludge and biofilms consisting of the bacteria immobilized on polypropylene packing were subjected to an electric current via two electrodes. In activated sludge, the metabolism of nitrifying bacteria was inhibited when the applied current was over 2.5 A m–2, whilst in biofilms, inhibition began when the current reached 5 A m–2. At 15 A m–2, the nitrification rate of NH4 +-N in a biofilm with a bacterial density of 1.62 g total solids, dry wt m–2 decreased to about 80% of its initial value. Ninety-two % of the initial biomass on the packing was retained after 36 h.  相似文献   

16.
A sequencing batch membrane biofilm reactor (SBMBfR) was developed for simultaneous carbon, nitrogen, and phosphorus removal from wastewater. This reactor was composed of two functional parts: (1) a gas-permeable membrane on which a nitrifying biofilm formed and (2) a bulk solution in which bacteria, mainly denitrifying polyphosphate-accumulating organisms (DNPAOs), were suspended. The reactor was operated sequentially under anaerobic condition and then under membrane aeration condition in one cycle. During the anaerobic period, organic carbon was consumed by DNPAOs; this was accompanied by phosphate release. During the subsequent membrane aeration period, nitrifying bacteria utilized oxygen supplied directly to them from the inside of the membrane. Consequently, the nitrite and nitrate products diffused into the bulk solution, where they were used by DNPAOs as electron acceptors for phosphate uptake. In a long-term sequencing batch operation, the mean removal efficiencies of total organic carbon (TOC), total nitrogen (T-N), and total phosphorus (T-P) under steady-state condition were 99%, 96%, and 90%, respectively. In addition, fluorescence in situ hybridization (FISH) clearly demonstrated the difference in bacterial community structure between the membrane biofilm and the suspended sludge: ammonia-oxidizing bacteria belonging to the Nitrosomonas group were dominant in the region adjacent to the membrane throughout the operation, and the occupation ratio of the well-known polyphosphate-accumulating organism (PAO) Candidatus "Accumulibacter phosphates" in the suspended sludge gradually increased to a maximum of 37%.  相似文献   

17.
Membrane-aerated biofilms (MABs) are an effective means to achieve nitrification and denitrification of wastewater. In this research, microsensors, fluorescence in situ hybridization (FISH), and modeling were used to assess the impact of bulk liquid biological oxygen demand (BOD) concentrations on the activity and microbial community structure of nitrifying MABs. With 1 g m−3 BOD in the bulk liquid, the nitrification rate was 1.3 g N m−2 day−1, slightly lower than the 1.5 g N m−2 day−1 reported for no bulk liquid BOD. With bulk liquid BOD concentrations of 3 and 10 g m−3, the rates decreased to 1 and 0.4 g N m−2 day−1, respectively. The percent denitrification increased from 20% to 100% when the BOD increased from 1 to 10 g m−3 BOD. FISH results indicated increasing abundance of heterotrophs with increasing bulk liquid BOD, consistent with the increased denitrification rates. Modeling was used to assess the effect of BOD on nitrification rates and to compare an MAB to a conventional biofilm. The model-predicted nitrification rates were consistent with the experimental results. Also, nitrification in the MAB was much less sensitive to BOD inhibition than the conventional biofilm. The MAB achieved concurrent nitrification and denitrification, whereas little denitrification occurred in the conventional biofilm.  相似文献   

18.
A study with H(2)-based membrane biofilm reactors (MBfRs) was undertaken to examine the effectiveness of direct H(2) delivery in ex-situ reductive dechlorination of chlorinated ethenes. Trichloroethene (TCE) could be reductively dechlorinated to ethene with up to 95% efficiency as long as the pH-increase effects of methanogens and homoacetogens were managed and dechlorinators were selected for during start-up by creating H(2) limitation. Based on quantitative PCR, the dominant bacterial groups in the biofilm at the end of reactor operation were Dehalococcoides, Geobacter, and homoacetogens. Pyrosequencing confirmed the dominance of the dechlorinators and identified Acetobacterium as the key homoacetogen. Homoacetogens outcompeted methanogens for bicarbonate, based on the effluent concentration of acetate, by suppressing methanogens during batch start-up. This was corroborated by the methanogenesis functional gene mcrA, which was 1-2 orders of magnitude lower than the FTHFS functional gene for homoacetogens. Imaging of the MBfR fibers using scanning electron microscopy showed a distinct Dehalococcoides-like morphology in the fiber biofilm. These results support that direct addition of H(2) can allow for efficient and complete reductive dechlorination, and they shed light into how H(2)-fed biofilms, when operated to manage methanogenic and homoacetogenic activity, can be used for ex-situ bioremediation of chlorinated ethenes.  相似文献   

19.
The observed growth yield (Y obs) of a nitrifying biofilm metabolizing ammonia in a continuous flow reactor was constant below a fixed biomass concentration of 40–50 g COD-biomass cm–2. Beyond this range, an increased Y obs with the additional accumulation of fixed biomass could be due to a considerable accumulation of inactive materials within the nitrifying biofilm.  相似文献   

20.
In this work, a three‐dimensional model of fluid–structure interactions (FSI) in biofilm systems is developed in order to simulate biofilm detachment as a result of mechanical processes. Therein, fluid flow past the biofilm surface results in a mechanical load on the structure which in turn causes internal stresses in the biofilm matrix. When the strength of the matrix is exceeded parts of the structure are detached. The model is used to investigate the influence of several parameters related to the mechanical strength of the biofilm matrix, Young's modulus, Reynolds number, and biofilm structure on biofilm detachment. Variations in biofilm strength and flow conditions significantly influence the simulation outcome. With respect to structural properties the model is widely independent from a change of Young's modulus. A further result of this work indicates that the change of biofilm structure due to growth or other processes will significantly change the stress distribution in the biofilm and thereby the detachment rate. An increase of the mechanical load by increasing fluid flow results in a flat surface of the remaining biofilm structure. It is concluded that the change of structure during biofilm development is the key determinant in terms of the detachment behavior. Biotechnol. Bioeng. 2009;103: 177–186. © 2008 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号