首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study identified ventilatory and behavioural responses in the marbled sole Pseudopleuronectes yokohamae under experimentally induced progressive decreases in dissolved oxygen (DO) levels. Ventilation frequency showed an increase with decreasing DO levels from normoxia to 2·75 mg O2 l?1, followed by a decrease in ventilation frequency at decreased DO levels from 2·00 to 0·75 mg O2 l?1. At DO levels below 2·00 mg l?1, behaviours at the bottom were suppressed, whereas avoidance behaviours increased. A decrease in avoidance behaviours was observed from 1·00 to 0·75 mg O2 l?1. Upside‐down reversal and incapacitation at DO levels of 1·00–0·75 mg O2 l?1 suggested that sublethal effects on P. yokohamae were induced. The responses observed before the sublethal DO level could be interpreted as an effort to maintain oxygen uptake, reduce routine activities and facilitate avoidance. The observed DO level thresholds that induce behavioural responses, in addition to sublethal effects, indicate hypoxia‐tolerance that is important for understanding the effects of hypoxia on coastal ecosystems.  相似文献   

2.
Swimming speed, angular correlation and expected displacement were measured in juvenile summer flounder Paralichthys dentatus acclimated to either oxygen saturation (c. 7·8 mg O2 l?1; saturation‐acclimated fish) or diel‐cycling hypoxia (cycling between 11·0 and 2·0 mg O2 l?1) for 10 days and subsequently exposed to more severe diel‐cycling hypoxia (cycling between 7·0 and 0·4 mg O2 l?1). Saturation‐acclimated P. dentatus exhibited an active response to declining dissolved oxygen (DO) by increasing swimming speed, angular correlation and expected displacement to peak levels at 1·4 mg O2 l?1 that were 3·5, 5·5 and 4·2 fold, respectively, greater than those at DO saturation. Diel‐cycling hypoxia‐acclimated P. dentatus also exhibited an active response to declining DO, although it was relatively less pronounced. Diel‐cycling hypoxia‐acclimated P. dentatus swimming speed, however, still doubled as DO decreased from 7·0 to 2·8 mg O2 l?1. Diel‐cycling hypoxia‐acclimated P. dentatus did not recover as well from low DO exposure as did saturation‐acclimated fish. This was reflected in their relatively more random swimming (low angular correlation between successive moves) and poor maintenance of rank order between individuals during the recovery phase. Even saturation‐acclimated P. dentatus did not resume swimming at speeds observed at saturation until DO was 4·2 mg O2 l?1. Paralichthys dentatus were very sensitive to decreasing DO, even at DO levels that were not lethal or growth limiting. This sensitivity and their poor recovery may preclude juvenile P. dentatus from using highly productive nursery habitats affected by diel‐cycling hypoxia.  相似文献   

3.
Oxygen supply and the adaptations of animals in groundwater   总被引:7,自引:2,他引:5  
1. The first part of this review focuses on the oxygen status of natural groundwater systems (mainly porous aquifers) and hyporheic zones of streams. The second part examines the sensitivity of groundwater organisms, especially crustaceans, to low oxygen concentrations (< 3.0 mg L?1 O2). 2. Dissolved oxygen (DO) in groundwater is spatially heterogeneous at macro- (km), meso- (m) and micro- (cm) scales. This heterogeneity, an essential feature of the groundwater environment, reflects changes in sediment composition and structure, groundwater flow velocity, organic matter content, and the abundance and activity of micro-organisms. Dissolved oxygen also exhibits strong temporal changes in the hyporheic zone of streams as well as in the recharge area of aquifers, but these fluctuations should be strongly attenuated with increasing distance from the stream and the recharge zone. 3. Dissolved oxygen gradients along flow paths in groundwater systems and hyporheic zones vary over several orders of magnitude (e.g. declines of 9 × 10?5 to 1.5 ×10?2 mg L?1 O2 m?1 in confined aquifers and 2 × 10?2 to 1 mg L?1 O2 m?1 in parafluvial water). Several factors explain this strong variation. Where the water table is close to the surface, oxygen is likely to be consumed rapidly in the first few metres below the water table because of incomplete degradation of soil-generated labile dissolved organic carbon (DOC) in the vadose zone. Where the water table is far from the surface, strong oxygen depletion in the vicinity of the water table does not occur, DO being then gradually consumed as groundwater flows down the hydraulic gradient. In unconfined groundwater systems, oxygen consumption along flow paths may be compensated by down-gradient replenishment of DO, resulting either from the ingress of atmospheric oxygen or water recharge through the vadose zone. In confined groundwater systems, where replenishment of oxygen is impossible, the removal time of DO varies from a few years to more than 10 000 years, depending mainly on the organic carbon content of the sediment. Comparison of the hyporheic zones between systems also revealed strong differences in the removal time and length of underground pathways for DO. This strong variability among systems seems related to differences in contact time of water with sediment. 4. Although groundwater macro-crustaceans are much more resistant to hypoxia than epigean species, they cannot survive severe hypoxia (DO < 0.01 mg L?1 O2) for very long (lethal time for 50% of the population ranged from 46.7 to 61.7 h). In severe hypoxia, none of the hypogean crustaceans examined utilized a high-ATP yielding metabolic pathway. High survival times are mainly a result of the combination of three mechanisms: a high storage of fermentable fuels (glycogen and phosphagen), a low metabolic rate in normoxia, and a further reduction in metabolic rate by reducing locomotion and ventilation. It is suggested here that the low metabolic rate of many hypogean species may be an adaptation to low oxygen and not necessarily result from an impoverished food supply. 5. An interesting physiological feature of hypogean crustaceans is their ability to recover from anaerobic stress and, more specifically, rapidly to resynthesize glycogen stores during post-hypoxic recovery. A high storage and rapid restoration of fermentable fuels (without feeding) allows groundwater crustaceans to exploit a moving mosaic of suboxic (< 0.3 mg L?1 O2), dysoxic (0.3–3.0 mg L?1 O2) and oxic (> 3 mg L?1 O2) patches. 6. It is concluded that although hypogean animals are probably unsuited for life in extensively or permanently suboxic groundwater, they can be found in small or temporarily suboxic patches. Indeed, their adaptations to hypoxia are clearly suited for life in groundwater characterized by spatially heterogeneous or highly dynamic DO concentrations. Their capacity to survive severe hypoxia for a few days and to recover rapidly would explain partly why ecological field studies often reveal the occurrence of interstitial taxa in groundwater with a wide range of DO.  相似文献   

4.
Early life history traits of young‐of‐the‐year (YOY) round herring Etrumeus teres, caught in Tosa Bay (south‐western Japan), were studied using otolith microstructure analysis for the 2000–2003 year classes. Hatch dates ranged from October to March, and were restricted to either autumn or winter within each year class. YOY ranged from 50 to 123 mm total length (LT) and from 57 to 192 days in age. The relationship of LT to otolith radius was linear. Individual growth rates (GI) were backcalculated between the 70th and 150th days (the size range of most YOY caught) using the biological intercept method. GI ranged from 0·3 to 1·4 mm day?1 and decreased in most cases as season progressed irrespective of year class, although GI in winter cohorts were significantly higher than in autumn cohorts. Otolith growth rates (GO) ranged from 2·13 to 12·25 μm day?1 for autumn spawned YOY and from 3·12 to 12·41 μm day?1 for YOY spawned in winter. The GO trajectories followed three consistent patterns: (1) an increase in increment widths after first feeding through the second week of larval life, then (2) a plateau in increment spacing before increment widths increased again until reaching the maximum growth rate, followed by (3) a gradual decrease in increment widths until the end of the fifth month. The three stages occurred irrespective of spawning season, although YOY spawned in October and December had higher GO during stages (1) and (2) than YOY spawned in February and March, whereas higher GO was observed for late‐winter cohorts in stage (3). Otolith growth from YOY spawned in December and January showed an intermediate pattern between YOY hatched in the early autumn (October to December) and late winter (February to March). The GO trajectories were cross‐matched to the calendar date to estimate time series of otolith growth rates (GOTS) for each year. A parabolic trend was found with maximum GOTS in autumn and spring and minimum values in winter. This trend was significantly correlated to daily sea surface temperature variations. The differences in otolith growth trajectories suggest that the otolith microstructure of E. teres may be used as a natural tag for identifying autumn and winter spawned cohorts.  相似文献   

5.
The immediate effect of zinc (Zn) and hydrogen peroxide (H2O2) in Chara braunii was analyzed in short-time exposure experiments. The exposure concentrations were 12.3, 18.4, and 24.5 μmol L?1 H2O2, 12, 60, and 120 mg L?1 Zn, and 12.3 μmol L?1 H2O2 + 12 mg L?1 Zn, 12.3 μmol L?1 H2O2 + 60 mg L?1 Zn, and 18.4 μmol L?1 H2O2 + 12 mg L?1 Zn. The stress response of C. braunii was analyzed by measuring photosynthetic photosystem II activity, chlorophyll a and b and carotenoid contents, the H2O2 concentration, and antioxidant enzyme activities of ascorbic peroxidase, catalase, and guaiacol peroxidase. The short-term addition of Zn reduced pigment contents in C. braunii. Chlorophyll a and b and carotenoid contents in H2O2-exposed C. braunii were as high as in control plants. Photosynthesis was reduced in H2O2-treated C. braunii and the short-term addition of Zn did not affect the electron transport rate. H2O2 concentration and antioxidant enzyme activities in C. braunii were not significantly different between control and exposed plants. Trends of enzymatic adaptation were described: the H2O2-induced stress response was characterized by increased antioxidant enzyme activities, whereas Zn inactivated catalase in C. braunii.  相似文献   

6.
Huang L  Lu D  Zhang P  Diao J  Zhou Z 《Chirality》2012,24(8):610-614
Enantioselectivity in ecotoxicity of chiral pesticides in the aquatic environment has been a subject of growing interest. In this study, the toxicological impacts of hexaconazole enantiomers were investigated with freshwater algae Scenedesmus obliquus. After 96 h of exposure, the EC50 values for rac‐hexaconazole, (+)‐hexaconazole, and (?)‐hexaconazole were 0.178, 0.355, and 0.065 mg l?1, respectively. Therefore, the acute toxicities of hexaconazole enantiomers were enantioselective. In addition, the different toxic effects were evaluated when S. obliquus were exposed to 0.2, 0.5, and 1.0 mg l?1 of rac‐hexaconazole, (+)‐hexaconazole, and (?)‐hexaconazole during 96 h, respectively. The chlorophyll a and chlorophyll b contents of S. obliquus treated by (?)‐hexaconazole were lower than those exposed to (+)‐hexaconazole, whereas the malondialdehyde contents of S. obliquus treated by (?)‐form were higher than those exposed to (+)‐form at higher concentrations. In general, catalase activities were significantly upregulated by exposure to (?)‐enantiomer than (+)‐enantiomer at all three concentrations. However, superoxide dismutase activities exposed to (?)‐hexaconazole were lower than that exposed to (+)‐hexaconazole at 0.2 mg l?1 and 0.5 mg l?1. On the basis of these data, the acute toxicity and toxic effects of hexaconazole against S. obliquus were enantioselective, and such enantiomeric differences must be taken into consideration in pesticide risk assessment. Chirality 24:610–614, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Mathematical model parameters for the methanogenic degradation of propylene glycol were estimated in a sequential manner by means of an optimization technique. Model parameters determined from an initial experimental data set using one bioreactor were then verified with the results from a second bioreactor. The proposed methodology is a useful tool to obtain model parameters for continuous flow reactors with completely mixed regime. Abbrevations: S – substrate concentration (mg COD l–1); S in – influent substrate concentration (mg COD l–1); D L – dilution rate (day–1); – stoichiometric coefficients (ND); nx – number of microbial species (ND); X S – fixed biomass concentration (mg biomass l–1); X L – suspended biomass concentration of (mg biomass l–1); k d – decay rate of biomass (day–1); b S – specific detachment rate of biofilm (day–1); – specific growth rate of biomass (day–1); m – maximum specific growth rate of biomass (day–1); K S – half saturation constant (mg COD l–1); K I – inhibition constant (mg COD l–1).  相似文献   

8.
Optimal agitation and aeration conditions [assuring O2 transfer rates (OTR) from 12 to 179 mmol L?1 h?1] were determined for pectin lyase (PL) synthesis of an Aspergillus niger strain. Components of the pectolytic enzyme complex were also investigated in order to determine whether their O2 demand is identical with or different from that of pectin lyase. Should the latter be the case, a possibility would be given to produce enzyme complexes of different agitation and aeration conditions. According to our results, mycelium yield of Aspergillus niger attained a maximum at an OTR of 100 mmol L?1 h?1. The yields of the various pectolytic enzymes reached maxima at different OTRs. Pectin lyase production was the highest (0.555 µmol min?1 mL?1) at an OTR of 60 mmol L?1 h?1. Endopolygalacturonase (PG) production showed a maximum at the OTR of 49 mmol L?1 h?1 with a second peak at 100?135 mmol O2 L?1 h?1. Pectin esterase (PE) synthesis showed a maximum at on OTR of 12?14 mmol L?1 h?1, while both apple juice clarifying and macerating activities gave two maxima at 14 and 60 mmol L?1 h?1 due to the optima of PE and endo-PG. Macerating activity showed a high value at OTR optimal for PL production as well.  相似文献   

9.
The red seaweed Gracilariopsis is an important crop extensively cultivated in China for high‐quality raw agar. In the cultivation site at Nanao Island, Shantou, China, G. lemaneiformis experiences high variability in environmental conditions like seawater temperature. In this study, G. lemaneiformis was cultured at 12, 19, or 26°C for 3 weeks, to examine its photosynthetic acclimation to changing temperature. Growth rates were highest in G. lemaneiformis thalli grown at 19°C, and were reduced with either decreased or increased temperature. The irradiance‐saturated rate of photosynthesis (Pmax) decreased with decreasing temperature, but increased significantly with prolonged cultivation at lower temperatures, indicating the potential for photosynthesis acclimation to lower temperature. Moreover, Pmax increased with increasing temperature (~30 μmol O2 · g?1FW · h?1 at 12°C to 70 μmol O2 · g?1FW · h?1 at 26°C). The irradiance compensation point for photosynthesis (Ic) decreased significantly with increasing temperature (28 μmol photons · m?2 · s?1 at high temperature vs. 38 μmol photons · m?2 · s?1 at low temperature). Both the photosynthetic light‐ and carbon‐use efficiencies increased with increasing growth or temperatures (from 12°C to 26°C). The results suggested that the thermal acclimation of photosynthetic performance of G. lemaneiformis would have important ecophysiological implications in sea cultivation for improving photosynthesis at low temperature and maintaining high standing biomass during summer. Ongoing climate change (increasing atmospheric CO2 and global warming) may enhance biomass production in G. lemaneiformis mariculture through the improved photosynthetic performances in response to increasing temperature.  相似文献   

10.
Marc W. Beutel 《Hydrobiologia》2001,466(1-3):107-117
Walker Lake (area = 140 km2, Z mean = 19.3 m) is a large, terminal lake in western Nevada. As a result of anthropogenic desiccation, the lake has decreased in volume by 75% since the 1880s. The hypolimnion of the lake, now too small to meet the oxygen demand exerted by decaying matter, rapidly goes anoxic after thermal stratification. Field and laboratory studies were conducted to examine the feasibility of using oxygenation to avoid hypolimnetic anoxia and subsequent accumulation of ammonia in the hypolimnion, and to estimate the required DO capacity of an oxygenation system for the lake. The accumulation of inorganic nitrogen in water overlaying sediment was measured in laboratory chambers under various DO levels. Rates of ammonia accumulation ranged from 16.8 to 23.5 mg-N m–2 d–1 in chambers with 0, 2.5 and 4.8 mg L–1 DO, and ammonia release was not significantly different between treatments. Beggiatoa sp. on the sediment surface of the moderately aerated chambers (2.5 and 4.8 mg L–1 DO) indicated that oxygen penetration into sediment was minimal. In contrast, ammonia accumulation was reversed in chambers with 10 mg L–1 DO, where oxygen penetration into sediment stimulated nitrification and denitrification. Ammonia accumulation in anoxic chambers (18.1 and 20.6 mg-N m–2 d–1) was similar to ammonia accumulation in the hypolimnion from July through September of 1998 (16.5 mg-N m–2 d–1). Areal hypolimnetic oxygen demand averaged 1.2 g O2 m–2 d–1 for 1994–1996 and 1998. Sediment oxygen demand (SOD) determined in experimental chambers averaged approximately 0.14 g O2 m–2 d–1. Continuous water currents at the sediment-water interface of 5–6 cm s–1 resulted in a substantial increase in SOD (0.38 g O2 m–2 d–1). The recommended oxygen delivery capacity of an oxygenation system, taking into account increased SOD due to mixing in the hypolimnion after system start-up, is 215 Mg d–1. Experimental results suggest that the system should maintain high levels of DO at the sediment-water interface (10 mg L–1) to insure adequate oxygen penetration into the sediments, and a subsequent inhibition of ammonia accumulation in the hypolimnion of the lake.  相似文献   

11.
Maximum sustained swimming speeds, swimming energetics and swimming kinematics were measured in the green jack Caranx caballus (Teleostei: Carangidae) using a 41 l temperature‐controlled, Brett‐type swimming‐tunnel respirometer. In individual C. caballus [mean ±s.d. of 22·1 ± 2·2 cm fork length (LF), 190 ± 61 g, n = 11] at 27·2 ± 0·7° C, mean critical speed (Ucrit) was 102·5 ± 13·7 cm s?1 or 4·6 ± 0·9 LF s?1. The maximum speed that was maintained for a 30 min period while swimming steadily using the slow, oxidative locomotor muscle (Umax,c) was 99·4 ± 14·4 cm s?1 or 4·5 ± 0·9 LF s?1. Oxygen consumption rate (M in mg O2 min?1) increased with swimming speed and with fish mass, but mass‐specific M (mg O2 kg?1 h?1) as a function of relative speed (LF s?1) did not vary significantly with fish size. Mean standard metabolic rate (RS) was 170 ± 38 mg O2 kg?1 h?1, and the mean ratio of M at Umax,c to RS, an estimate of factorial aerobic scope, was 3·6 ± 1·0. The optimal speed (Uopt), at which the gross cost of transport was a minimum of 2·14 J kg?1 m?1, was 3·8 LF s?1. In a subset of the fish studied (19·7–22·7 cm LF, 106–164 g, n = 5), the swimming kinematic variables of tailbeat frequency, yaw and stride length all increased significantly with swimming speed but not fish size, whereas tailbeat amplitude varied significantly with speed, fish mass and LF. The mean propulsive wavelength was 86·7 ± 5·6 %LF or 73·7 ± 5·2 %LT. Mean ±s.d . yaw and tailbeat amplitude values, calculated from lateral displacement of each intervertebral joint during a complete tailbeat cycle in three C. caballus (19·7, 21·6 and 22·7 cm LF; 23·4, 25·3 and 26·4 cm LT), were 4·6 ± 0·1 and 17·1 ± 2·2 %LT, respectively. Overall, the sustained swimming performance, energetics, kinematics, lateral displacement and intervertebral bending angles measured in C. caballus were similar to those of other active ectothermic fishes that have been studied, and C. caballus was more similar to the chub mackerel Scomber japonicus than to the kawakawa tuna Euthynnus affinis.  相似文献   

12.
The F/R-ratio (litres of water filtered per ml of oxygen respired) was determined for the filter-feeding demosponge Halichondria panicea to be 15.5?l?H2O?(ml O2)?1 which was used to evaluate the potential of the sponge to nourish solely on nano- (2–20?µm) and micro- (20–200?µm) phytoplankton cells in the sea. It was estimated that in order to balance the maintenance requirement of H. panicea the necessary content of suspended particulate organic carbon must be at least 0.03?mg?C?l?1, which may be compared with actually reported values of 0.04 to 0.2?mg?C?l?1 thus implying that H. panicea may be able to nourish on a sole diet of phytoplankton in nature. However, the amount of carbon represented by free-living heterotrophic bacteria, cyanobacteria and other small (0.2–2?µm) picoplankton which are also accessible to the sponge lies in the range of 0.05–0.10?mg?C?l?1, and therefore bacteria seem to be an important, although in many cases apparently a somewhat insufficient food source relative to phytoplankton. Video-microscope observations of the osculum cross-sectional area (OSA) and simultaneous measurement of the filtration rate of H. panicea showed that the filtration rate varied considerably over time concurrently with often pronounced variations in the OSA caused by disturbance when the aquarium through-flow was stopped during filtration rate measurements in the laboratory. It is concluded that the optimal and undisturbed filtration rate may be considerably higher than measured here, i.e. 6.1?ml water (ml sponge)?1 min?1, thus increasing the F/R-ratio to > 15.5?l?H2O (ml O2)?1, which is comparable to values for more advanced eumetazoan filter-feeding marine invertebrates grazing on phytoplankton.  相似文献   

13.
Changes in the resting potential (Vrest) and in the underlying ionic conductances were measured by the patch-clamp technique in SH-SY5Y human neuroblastoma cells exposed to substrate-bound or soluble Laminin (bLN: sLN), as compared to integrin-independent substrates (polylysine (PL); bovine serum albumin (BSA)). While PL and BSA were ineffective, both forms of LN caused an early (5-15 min) activation of a peculiar type of Inwardly Rectifying K? current (I,ir) characterised by a voltage-dependent inactivation in the range of membrane potentials around —50/0 mV. Iir was blocked by Cs+ ions and by the antiarrhythmic drug E-4031, a specific inhibitor of the HERG-codified channels. In cells adherent to bLN, I,ir potentiation (85%) persisted for 90-120 min and was accompanied by a similar, but transient, increase in the leakage conductance (Gl). Successively, the persistence of a high Iir conductance and the decrease of Gl progressively bring Vrest from –12 to -30 mV in about 120 min. On the other hand, in cells adherent to PL, exposure to sLN produced a similar but not persistent activation of Iir, without any increase in Gl: this caused a rapid, transient hyperpolarisation of Vrest The effects of bLN and sLN were mimicked by antibodies raised against the integrin β1 subunit, suggesting a specific integrin-mediated mechanism. In fact, when bound to the culture dishes, these antibodies simultaneously activated the Iir and Gl, whereas in soluble form they only activated Iir. Cells adherent to bLN emitted neurites, a process impaired by the block of Iir by E-4031 and Cs+. On the whole data suggest that the integrin-mediated activation of Iir plays a crucial role in the commitment to neuritogenesis of neuroblastoma cells, independently on the effects of this activation on Vrest.  相似文献   

14.
This study presents data collected over a 6 year period on the effects of extremely low‐frequency magnetic fields (MFs) (1·4–1·6 µT, 500 Hz and 1·4–1·6 µT, 72·5 Hz) and MFs in combination with other environmental stressors (elevated temperature, 0·01 mg l?1 trichlorfon, 0·01 mg l?1 copper sulphate pentahydrate) on roach Rutilus rutilus embryos. Effects were studied during different stages of early development. Rutilus rutilus were raised in ponds for 4 months after exposure to MFs. The mass, standard length (LS) and morphological characteristics of underyearlings which were exposed as embryos were recorded. An increase in embryo mortality and a decrease in LS and mass indices in underyearlings were noted after they had been exposed to a combination of MFs and different adverse environmental factors. In addition, exposure to MFs led to changes in the total number of vertebrae and the number of seismosensory system openings in the mandibular bones of underyearlings. MFs of different frequency caused both increases (500 Hz) and decreases (72·5 Hz) in morphological diversity. The stressors used in this study, however, did not increase the fluctuating asymmetry of bilateral morphological characteristics. The possible microevolutionary effects of exposure to MFs alone and in combination with other adverse environmental factors upon natural fish populations are discussed.  相似文献   

15.
To investigate causes of anomalous development of embryos facultatively fertilized in the ovary of a non-copulatory oviparous fish Hemilepidotus gilberti (Scorpaeniformes: Cottdae), dissolved oxygen (DO) concentrations were measured in ovaries of copulatory oviparous (Alcichthys alcicornis, Bero elegans), non-copulatory oviparous (H. gilberti, Hexagrammus otakii), and viviparous (Sebastes taczanowskii, Zoarces elongatus) fishes. DO concentrations changed during vitellogenesis and ovulation cycles, and also before and after ovulation. DO concentrations in the ovary of H. gilberti and H. otakii at ovulation were 0.27±0.03 and 0.15±0.03 mg O2 l−1, respectively, whereas in A. alcicornis and B. elegans, the concentrations were 0.47±0.08 and 0.20±0.06 mg O2 l−1, respectively. In the ovaries of intralumenal gestation viviparous fishes, S. taczanowskii and Z. elongatus, DO concentration was from 0.01 to 0.11 mg O2 l−1. The average DO concentration during the artificial pregnancy of A. alcicornis was 0.97±0.19 mg O2 l−1, but all embryos showed deformity. DO concentrations recorded in oviparous fishes in this study were lower than the oxygen level at which most oviparous fish embryos exhibit retardation or death, and it probably caused the anomalous embryonic development. In contrast, the normal development of viviparous fish embryos at low oxygen level was attributed to the specialized structure of ovary, e.g. the dual arterial system to supply the developing embryos with the respiratory demands in Sebastes.  相似文献   

16.
A kinetic study was carried out in a saline medium to assess the effect of O2 on the two-step nitrification process: for the first nitritation step, 2–26 mg dissolved O2 (DO) l–1 was used and for the second nitratation step, 0.5–24 mg DO l–1 was used. Nitritation rate was measured in the presence of sodium azide so as to inhibit nitratation. Ammonia-oxidizing (AOB) and nitrite-oxidizing (NOB) bacterial in the mixed culture were determined by 16 S rRNA hybridization. The affinity constants for oxygen O2 of the AOB and the NOB were 1.66 mg O2 l–1 and 3 mg O2 l–1 respectively. The larger than the previously reported values of these constants might be due to the high salt content in the medium. High O2 concentrations did inhibit the nitrification rate.  相似文献   

17.
(S)-1-Phenylethanol derivatives, which are the precursors of many pharmacological products, have also been used as anti-Alzheimer drugs. Bioreduction experiments were performed in a batch and packed-bed bioreactor. Then, the kinetics constants were determined by examining the reaction kinetics in the batch system with free and immobilized carrot cells. Also, the effective diffusion coefficient (De) of acetophenone in calcium alginate-immobilized carrot cells was investigated. Kinetics constants for free cells, which are intrinsic values, are reaction rate Vmax?=?0.052?mmol?L?1?min?1, and constants of the Michaelis–Menten KM?=?2.31?mmol?L?1. Kinetics constants for immobilized cells, which are considered apparent values, are Vmax, app?=?0.0407?mmol?L?1 min?1, KM, app?=?3.0472?mmol?L?1 for 2?mm bead diameter, and Vmax, app?=?0.0453?mmol?L?1 min?1, KM, app?=?4.9383?mmol?L?1 for 3?mm bead diameter. Average value of effective diffusion coefficient of acetophenone in immobilized beads was determined as 1.97?×?10?6?cm2?s?1. Using immobilized carrot cells in an up-flow packed-bed reactor, continuous production of (S)-1-phenylethanol through asymmetric bioreduction of acetophenone was performed. The effects of the residence time and concentrations of substrate were investigated at pH 7.6 and 33°C. Enantiomerically pure (S)-1-phenylethanol (ee?>?99%) was produced with 75% conversion at 4-hr residence time.  相似文献   

18.
The median lethal copper (Cu) concentration (96 hr-LC50) values for acute Cu toxicity for Tilapia sparrmanii (live mass: 30 ± 8g) in Mooi River hard water of dolomitic origin at 20 °C, pH 7.9, was 68.1 μmol l?1. At this 96 hr-LC50 value the specific oxygen consumption rate (∈ O2) decreased by 44.2 (± 2.1) % from a non-exposed value of 6.6 (±0.32) mmol O2 kg?1 hr?1 to 3.63 (±0.23) mmol O2 kg ?1 hr?1. At 46.4 μmol Cu l?1, 100% of the exposed T. sparrmanii were still alive after 96 hours, but the ∈ O2 decreased by a mean value of 1.65 (± 0.16) mmol O2 kg?1 fish hr?1 or 25% (± 2.4). Contrary to Pb and Cd, Cu as CuCl2 2H2O was not precipitated in hard water four days after it was dissolved. Thus T. sparrmanii and other cichlids are shown to be more than an order of magnitude more resistant to Cu as a toxicant than most salmonids.  相似文献   

19.
As eutrophication of coastal waters increases, water quality issues such as hypoxia have come to the forefront of environmental concerns for many estuarine systems. Chronic hypoxia during the summer has become a common occurrence in numerous estuaries, degrading nursery habitat and increasing the potential for exposure of juvenile fish to low levels of dissolved oxygen (DO).We conducted a laboratory study to investigate how hypoxic conditions and temperature affect growth rates of two juvenile estuary-dependent fish: the Atlantic menhaden (Brevoortia tyrannus) and spot (Leiostomus xanthurus). For a 2-week period, we exposed the fish to one of four constant DO levels (6.0, 4.0, 2.0 or 1.5 mg O2 l−1), at one of two temperatures (25 or 30 °C). A fifth DO treatment, included for spot at 30 °C, allowed DO to fluctuate from 10.0 mg O2 l−1 during the day, to 2.0 mg O2 l−1 at night. This diel fluctuation approximated the natural DO cycle in tidal estuarine creeks. Size measurements were recorded at the beginning, middle and end of experiments.Growth rates were generally unaffected by low DO until concentrations dropped to 1.5 mg O2 l−1, resulting in 31-89% growth reductions. Our results suggest that DO levels must be severely depressed, and in fact, approaching lethal limits, to negatively impact growth of juvenile spot and Atlantic menhaden.  相似文献   

20.
Ethanolic extract of Mentha pulegium was evaluated against the adults of important arthropod pest species, the two-spotted spider mite, Tetranychus urticae. Potential acaricidal impact of plant was determined by contact application. Phytotoxicity was recorded after 24 h. The value of LC50 was 59,149 mg L?1. Also, LT50 values were 27.42, 25.56 and 19.79 h for 35,000, 50,000 and 100,000 mg L?1, respectively. Also, results showed that this ethanolic extract had impact on repellency of T. urticae. All of the tested concentrations were similar in the repellency test. On the other hand, the used concentrations (1000, 4000, 6000 and 8000 mg L?1) affected on the oviposition of mite females. These extract doses significantly decreased the egg laying on the treated surface. The current study indicated that this ethanolic extract can be used as a safe acaricide on T. urticae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号