首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study zona pellucida antigens involved in human fertilization, five monoclonal antibodies (MAbs)--2A1, 2G3, 4A2, 4E12, and 5H4--were produced to a glycoprotein family (ZP4) isolated from heat-solubilized porcine zonae pellucidae. Each MAb reacted not only with solubilized porcine zona glycoproteins but also with the glycoproteins deglycosylated by trifluoromethanesulfonic acid treatment. They also reacted with intact zonae pellucidae of porcine and human oocytes. Three (4A2, 4E12, and 5H4) of the five MAbs showed a significant blocking effect on human sperm binding and penetration of human zonae pellucidae. The 5H4 MAb showed a strong reaction with ZP4 and ZP1 glycoprotein families of porcine zonae pellucidae, and four other MAbs reacted more strongly with ZP3 than with ZP4. The reactivity of 5H4 with porcine zona glycoproteins was destroyed by chymotrypsin digestion, but the antigen epitope was resistant to proteolysis by trypsin and endoproteinase Lys-C. A peptide fragment reactive to 5H4 was isolated by reverse-phase HPLC from endoproteinase Lys-C-treated ZP4 glycoproteins, and its molecular mass was determined to be 7 kDa by SDS-PAGE. These results suggested that the antigen epitope corresponding to 5H4 is a good candidate for development of a contraceptive vaccine.  相似文献   

2.
Type 2 porcine circovirus (PCV2) is associated with postweaning multisystemic wasting syndrome in pigs, whereas the genetically related type 1 PCV (PCV1) is nonpathogenic. In this study, seven monoclonal antibodies (MAbs) against PCV2-ORF2 capsid protein were generated, biologically characterized, and subsequently used to map the antigenic sites of PCV2 capsid protein by using infectious PCV DNA clones containing PCV1/PCV2-ORF2 chimeras. The PCV1/PCV2-ORF2 chimeras were constructed by serial deletions of PCV2-ORF2 and replacement with the corresponding sequences of the PCV1-ORF2. The reactivities of chimeric PCV1/PCV2 clones in transfected PK-15 cells with the seven MAbs were detected by an immunofluorescence assay (IFA). The chimera (r140) with a deletion of 47 amino acids at the N terminus of PCV2-ORF2 reacted strongly to all seven MAbs. Expanding the deletion of PCV2-ORF2 from residues 47 to 57 (r175) abolished the recognition of MAb 3B7, 3C11, 4A10, 6H2, or 8F6 to the chimera. Further deletion of PCV2-ORF2 to 62 residues disrupted the binding of this chimera to all seven MAbs. IFA reactivities with all MAbs were absent when residues 165 to 233 at the C terminus of PCV2-ORF2 was replaced with that of PCV1-ORF2. Extending the sequence of PCV2-ORF2 from residues 165 (r464) to 185 (r526), 200 (r588), or 224 (r652) restored the ability of the three chimeras to react with MAbs 3C11, 6H2, 9H7, and 12G3 but not with 8F6, 3B7, or 4A10. When the four amino acids at the C terminus of r588 were replaced with that of PCV2-ORF2, the resulting chimera (r588F) reacted with all seven MAbs. The results from this study suggest that these seven MAbs recognized at least five different but overlapping conformational epitopes within residues 47 to 63 and 165 to 200 and the last four amino acids at the C terminus of the PCV2 capsid protein.  相似文献   

3.
In this study we describe the mapping of epitopes on CYP3A4/5 recognized by a panel of monoclonal antibodies (MAbs). CYP3A4 and CYP3A5 cDNAs were cloned in GST expression vectors and the fusion proteins were subjected to Western blot. Eight MAbs reacted with the full-length GST-3A4 fusion protein as well as baculovirus cDNA-expressed CYP3A4, while six of these reacted with baculovirus cDNA-expressed CYP3A5. Five (MAb 347, 351, 352, 354, and 357) out of 8 MAbs were inhibitory in a metabolic assay using quinine as substrate. MAbs 352, 354, and 357 brought about a moderate inhibition of quinine metabolism (60-70%) while MAb 347 inhibited quinine 3- hydroxylation in human liver microsomes (n=6) by more than 70%. MAb 347 was a potent inhibitor of baculovirus-expressed CYP3A5-catalyzed metabolism of quinine (95%) at 相似文献   

4.
We previously characterized three neutralization-positive epitopes (NP1 [1a and 1b], NP2, and NP3) and three neutralization-negative epitopes on the simian rotavirus SA11 VP4 with 13 monoclonal antibodies (MAbs). Conformational changes occurred as a result of the binding of NP1 MAbs to the SA11 spike VP4, and enhanced binding of all neutralization-negative MAbs was observed when NP1 MAbs bound VP4 in a competitive MAb capture enzyme-linked immunosorbent assay. To further understand the structure and function of VP4, we have continued studies with these MAbs. Electron microscopic and sucrose gradient analyses of SA11-MAb complexes showed that triple-layered viral particles disassembled following treatment with NP1b MAbs 10G6 and 7G6 but not following treatment with NP1a MAb 9F6, NP2 MAb 2G4, and NP3 MAb 23. Virus infectivity was reduced approximately 3 to 5 logs by the NP1b MAbs. These results suggest that NP1b MAb neutralization occurs by a novel mechanism. We selected four neutralization escape mutants of SA11 with these VP4 MAbs and characterized them by using plaque reduction neutralization assays, hemagglutination inhibition assays, and an antigen capture enzyme-linked immunosorbent assay. These analyses support the previous assignment of the NP1a, NP1b, NP2, and NP3 MAbs into separate epitopes and confirmed that the viruses were truly neutralization escape mutants. Nucleotide sequence analyses found 1 amino acid (aa) substitution in VP8* of VP4 at (i) aa 136 for NP1a MAb mutant 9F6R, (ii) aa 180 and 183 for NP1b MAb mutants 7G6R and 10G6R, respectively, and (iii) aa 194 for NP3 MAb mutant 23R. The NP1b MAb mutants showed an unexpected enhanced binding with heterologous nonneutralization MAb to VP7 compared with parental SA11 and the other mutants. Taken together, these results suggest that the NP1b epitope is a critical site for VP4 and VP7 interactions and for virus stability.  相似文献   

5.
Scrapie is a transmissible neurodegenerative disease of sheep and goats. An abnormal host protein, Sp33-37, is the major protein component of the scrapie agent and the only known disease- or agent-specific macromolecule. Two monoclonal antibodies (MAbs), 4H8 (immunoglobulin G2b [IgG2b]) and 6B11 (IgG1), produced by immunizing mice with the intact hamster 263K scrapie agent protein, Sp33-37Ha, were found to have species specificity similar to that reported previously for MAb 3F4 (IgG2a), which was produced by using PrP-27-30 as the immunogen (R. J. Kascsak, R. Rubenstein, P. A. Merz, M. Tonna-DeMasi, R. Fersko, R. I. Carp, H. M. Wisniewski, and H. Diringer, J. Virol. 61:3688-3693, 1987). These antibodies all bound to Sp33-37 derived from hamster but not from mouse cells. Competitive binding assays demonstrated that all three MAbs bound to the same or overlapping sites on Sp33-37Ha. The molecular location of the epitope for these antibodies was determined to within 10 residues by using an antigen competition enzyme-linked immunosorbent assay in which synthetic peptides spanning Sp33-37Ha residues 79 to 93 or 84 to 93 specifically inhibited binding of these antibodies to plates coated with purified Sp33-37Ha. A synthetic peptide with the mouse-specific sequence (83 to 92) that differed from the hamster sequence by substitution at two positions (MetHa-87----LeuMo-86 and MetHa-90----ValMo-89) did not inhibit antibody binding to Sp33-37Ha. MAb 3F4 binding to hamster Sp33-37 was eliminated by chemical modification of Sp33-37Ha with diethylpyrocarbonate or succinic anhydride and by cleavage with CNBr or trypsin. The effect of diethylpyrocarbonate on MAb 3F4 binding was not reversed by hydroxylamine treatment. MAb 3F4 binding was not affected by prolonged exposure of Sp33-37Ha to 70% formic acid or by boiling in sodium dodecyl sulfate. We conclude that the epitope for these MAbs is a linear determinant that includes Met-87, Lys-88, and Met-90 and that Met-90 is probably the major species-specific determinant.  相似文献   

6.
Hybridomas secreting immunoglobulin A (IgA) monoclonal antibodies (MAbs) against Salmonella enteritidis lipopolysaccharide (LPS) were generated after mucosal immunization of BALB/c mice with heat killed bacteria. Antigen binding properties and specificity of the produced MAbs were studied in ELISA and immunoblotting with purified LPS. Two IgA MAbs agglutinated all Salmonella OD1 strains and all S. enteritidis clinical isolates. MAb 178H11 recognized O:9 antigen of subserogroup OD1 LPS. MAb 177E6/A9 reacted also with OD3 LPS antigen and agglutinated OD3 strains. These data suggest the existence of different O:9 antigen subspecificities, one presented in subgroup OD1 and the other common for OD1 and OD3. Thus the produced IgA MAbs prove to be useful reagents, which could differentiate OD1 and OD3 from OD2 strains.  相似文献   

7.
Three distinct chimpanzee Fabs against the A33 envelope glycoprotein of vaccinia virus were isolated and converted into complete monoclonal antibodies (MAbs) with human gamma 1 heavy-chain constant regions. The three MAbs (6C, 12C, and 12F) displayed high binding affinities to A33 (K(d) of 0.14 nM to 20 nM) and may recognize the same epitope, which was determined to be conformational and located within amino acid residues 99 to 185 at the C terminus of A33. One or more of the MAbs were shown to reduce the spread of vaccinia virus as well as variola virus (the causative agent of smallpox) in vitro and to more effectively protect mice when administered before or 2 days after intranasal challenge with virulent vaccinia virus than a previously isolated mouse anti-A33 MAb (1G10) or vaccinia virus immunoglobulin. The protective efficacy afforded by anti-A33 MAb was comparable to that of a previously isolated chimpanzee/human anti-B5 MAb. The combination of anti-A33 MAb and anti-B5 MAb did not synergize the protective efficacy. These chimpanzee/human anti-A33 MAbs may be useful in the prevention and treatment of vaccinia virus-induced complications of vaccination against smallpox and may also be effective in the immunoprophylaxis and immunotherapy of smallpox and other orthopoxvirus diseases.  相似文献   

8.
9.
Anti-idiotype antibodies can mimic the conformational epitopes of the original antigen and act as antigen substitutes for vaccination and/or serological purposes. To investigate this possibility concerning the tumor marker carcinoembryonic antigen (CEA), BALB/c mice were immunized with the previously described anti-CEA monoclonal antibody (MAb) 5.D11 (AB1). After cell fusion, 15 stable cloned cell lines secreting anti-Ids (AB2) were obtained. Selected MAbs gave various degrees of inhibition (up to 100%) of the binding of 125I-labeled CEA to MAb 5.D11. Absence of reactivity of anti-Id MAbs with normal mouse IgG was first demonstrated by the fact that anti-Id MAbs were not absorbed by passage through a mouse IgG column, and second because they bound specifically to non-reduced MAb 5.D11 on Western blots. Anti-5.D11 MAbs did not inhibit binding to CEA of MAb 10.B9, another anti-CEA antibody obtained in the same fusion as 5.D11, or that of several anti-CEA MAbs reported in an international workshop, with the exception of two other anti-CEA MAbs, both directed against the GOLD IV epitope. When applied to an Id-anti-Id competitive radioimmunoassay, a sensitivity of 2 ng/ml of CEA was obtained, which is sufficient for monitoring circulating CEA in carcinoma patients. To verify that the anti-Id MAbs have the potential to be used as CEA vaccines, syngeneic BALB/c mice were immunized with these MAbs (AB2). Sera from immunized mice were demonstrated to contain AB3 antibodies recognizing the original antigen, CEA, both in enzyme immunoassay and by immunoperoxidase staining of human colon carcinoma. These results open the perspective of vaccination against colorectal carcinoma through the use of anti-idiotype antibodies as antigen substitutes.  相似文献   

10.
Monoclonal antibodies (MAbs) against the recently emerged Asian H5N1 virus (A/crow/Kyoto/53/2004) were generated. From five anti-hemagglutinin (HA) MAbs, four antibodies (3C11, 4C12, 3H12, and 3H4) broadly in vitro recognized and neutralized H5 subtypes, including H5N1. By contrast, the 4G6 MAb specifically reacted with H5N1-HA and not with H5N2- or H5N3-HAs from previous epidemics. The 4G6 MAb was useful for immunofluorescence assays but not for immunoblotting, suggesting that this antibody recognizes a conformational epitope of the H5N1-HA protein. An intensive epitope-mapping analysis demonstrated that the 4G6 MAb recognizes Asp59, which is highly conserved among currently circulating H5N1 lineages. Further, a 4G6-based antigen capture enzyme-linked immunosorbent assay detected H5N1 even that derived from clade 2.2 (A/chicken/Egypt/CL-61/2007) from infected chicken lung before virus isolation. Taken together, these results suggest that the established MAbs, especially 4G6, are useful for rapid and specific detection of Asian H5N1 viruses.  相似文献   

11.
We mapped the hemagglutinin (HA) antigenic epitopes of a highly pathogenic H5N1 influenza virus on the three-dimensional HA structure by characterizing escape mutants of a recombinant virus containing A/Vietnam/1203/04 (H5N1) ΔHA and neuraminidase genes in the genetic background of A/Puerto Rico/8/34 (H1N1) virus. The mutants were selected with a panel of eight anti-HA monoclonal antibodies (MAbs), seven to A/Vietnam/1203/04 (H5N1) virus and one to A/Chicken/Pennsylvania/8125/83 (H5N2) virus, and the mutants’ HA genes were sequenced. The amino acid changes suggested three MAb groups: four MAbs reacted with the complex epitope comprising parts of the antigenic site B of H3 HA and site Sa of H1 HA, two MAbs reacted with the epitope corresponding to the antigenic site A in H3 HA, and two MAbs displayed unusual behavior: each recognized amino acid changes at two widely separate antigenic sites. Five changes were detected in amino acid residues not previously reported as changed in H5 escape mutants, and four others had substitutions not previously described. The HA antigenic structure differs substantially between A/Vietnam/1203/04 (H5N1) virus and the low-pathogenic A/Mallard/Pennsylvania/10218/84 (H5N2) virus we previously characterized (N. V. Kaverin et al., J. Gen. Virol. 83:2497-2505, 2002). The hemagglutination inhibition reactions of the MAbs with recent highly pathogenic H5N1 viruses were consistent with the antigenic-site amino acid changes but not with clades and subclades based on H5 phylogenetic analysis. These results provide information on the recognition sites of the MAbs widely used to study H5N1 viruses and demonstrate the involvement of the HA antigenic sites in the evolution of highly pathogenic H5N1 viruses, findings that can be critical for characterizing pathogenesis and vaccine design.  相似文献   

12.
Astroviruses are important agents of pediatric gastroenteritis. To better understand astrovirus antigenic structure and the basis of protective immunity, monoclonal antibodies (MAbs) were produced against serotype 1 human astrovirus. Four MAbs were generated. One MAb (8G4) was nonneutralizing but reacted to all seven serotypes of astrovirus by enzyme-linked immunosorbentassay (ELISA) and immunoperoxidase staining of infected cells. Three MAbs were found to have potent neutralizing activity against astrovirus. The first (5B7) was serotype 1 specific, another (7C2) neutralized all seven human astrovirus serotypes, while the third (3B2) neutralized serotypes 1 and 7. Immunoprecipitation of radiolabeled astrovirus proteins from supernatants of astrovirus-infected cells showed that all three neutralizing antibodies reacted with VP29. MAb 5B7 also reacted strongly with VP26. A competition ELISA showed that all three neutralizing antibodies competed with each other for binding to purified astrovirus virions, suggesting that their epitopes were topographically in close proximity. None of the neutralizing MAbs competed with nonneutralizing MAb 8G4. The neutralizing MAbs were used to select antigenic variant astroviruses, which were then studied in neutralization assays. These assays also suggested a close relationship between the respective epitopes. All three neutralizing MAbs were able to prevent attachment of radiolabeled astrovirus particles to human Caco 2 intestinal cell monolayers. Taken together, these data suggest that the astrovirus capsid protein VP29 may be important in viral neutralization, heterotypic immunity, and virus attachment to target cells.  相似文献   

13.
Human monoclonal antibodies (MAbs) were selected from semisynthetic antibody phage display libraries by using whole irradiated severe acute respiratory syndrome (SARS) coronavirus (CoV) virions as target. We identified eight human MAbs binding to virus and infected cells, six of which could be mapped to two SARS-CoV structural proteins: the nucleocapsid (N) and spike (S) proteins. Two MAbs reacted with N protein. One of the N protein MAbs recognized a linear epitope conserved between all published human and animal SARS-CoV isolates, and the other bound to a nonlinear N epitope. These two N MAbs did not compete for binding to SARS-CoV. Four MAbs reacted with the S glycoprotein, and three of these MAbs neutralized SARS-CoV in vitro. All three neutralizing anti-S MAbs bound a recombinant S1 fragment comprising residues 318 to 510, a region previously identified as the SARS-CoV S receptor binding domain; the nonneutralizing MAb did not. Two strongly neutralizing anti-S1 MAbs blocked the binding of a recombinant S fragment (residues 1 to 565) to SARS-CoV-susceptible Vero cells completely, whereas a poorly neutralizing S1 MAb blocked binding only partially. The MAb ability to block S1-receptor binding and the level of neutralization of the two strongly neutralizing S1 MAbs correlated with the binding affinity to the S1 domain. Finally, epitope mapping, using recombinant S fragments (residues 318 to 510) containing naturally occurring mutations, revealed the importance of residue N479 for the binding of the most potent neutralizing MAb, CR3014. The complete set of SARS-CoV MAbs described here may be useful for diagnosis, chemoprophylaxis, and therapy of SARS-CoV infection and disease.  相似文献   

14.
Four monoclonal antibodies (MAbs) (1E7, 1F12, 2H5, 2C6) against haemocytes of scallop (Chlamys farreri) were produced by immunising Balb/C mice. Analysed by the indirect immunofluorescence assay test (IIFAT), immunocytochemical assay, flow cytometry (FCM) and Western-blotting, they showed specificity for more than one haemocyte type (hyalinocyte and granulocyte) and various haemocyte components of scallop. Using IIFAT to detect monolayers separated from gradient density centrifugation, the four MAbs were positive with haemocytes at different interfaces. The percentage of positive cells (percent reactivity, PR) that MAb 1E7 reacted with at the 20-30%, 30-40% and 40-50% interfaces were 43.50%, 41.25% and 60.00% respectively, PR of MAb 1F12 were 31.00%, 63.50% and 41.00%, MAb 2C6 were 11.00%, 51.00%, 77.00%, and MAb 2H5 were 20.25%, 34.75%, 38.25%. For the immunocytochemical assay, MAb 1E7 1F12 and 2H5 was positive with the cytoplasm of both hyalinocyte and granulocyte, 2C6 was positive with the membrane and cytoplasm of hyalinocyte and granulocyte. Analysed by FCM, the PR of the four MAbs (1E7, 1F12, 2H5, 2C6) with haemocytes were 54.23%, 38.56%, 56.4%, and 79.7% respectively; moreover, the PR with different haemocyte types was variable. The results of Western-blotting showed that MAb 1E7 recognised an antigen of molecular weight 200 kDa, MAb 2C6 an antigen of 60 kDa, however, MAb 1F12 reacted with antigens of 70 kDa, 60 kDa and 45 kDa. There was no protein band that MAb 2H5 detected. In conclusion, 2C6 seems to be a very promising MAb to identify and differentiate granulocytes, and the four MAbs will be used in further studies on cellular defence mechanism research.  相似文献   

15.
S W Ludmerer  D Benincasa    G E Mark  rd 《Journal of virology》1996,70(7):4791-4794
Characterization of virus binding by neutralizing antibodies is important both in understanding early events in viral infectivity and in development of vaccines. Neutralizing monoclonal antibodies (MAbs) to human papillomavirus type 11 (HPV11) have been described, but mapping the binding site has been difficult because of the conformational nature of key type-specific neutralization epitopes on the L1 coat protein. We have determined those residues of the L1 protein of HPV11 which confer type specificity to the binding of HPV11-neutralizing MAbs. Binding of three HPV11-specific neutralizing MAbs could be redirected to HPV6 L1 virus-like particles in which as few as two substitutions of corresponding amino acid residues from HPV11 L1 have been made, thus demonstrating the importance of these residues to MAb binding through the transfer of a conformationally dependent epitope. In addition, a fourth neutralizing MAb could be distinguished from the other neutralizing MAbs in terms of the amino acid residues which affect binding, suggesting the possibility that it neutralizes HPV11 through a different mechanism.  相似文献   

16.
Monoclonal antibodies (MAbs) directed against epitopes in the V2 domain of human immunodeficiency virus type 1 gp120 often possess neutralizing activity, but these generally are highly type specific, neutralize only laboratory isolates, or have low potency. The most potent of these is C108g, directed against a type-specific epitope in HXB2 and BaL gp120s, which is glycan dependent and, in contrast to previous reports, dependent on intact disulfide bonds. This epitope was introduced into two primary Envs, derived from a neutralization-sensitive (SF162) and a neutralization-resistant (JR-FL) isolate, by substitution of two residues and, for SF162, addition of an N-linked glycosylation site. C108g effectively neutralized both variant Envs with considerably higher potency than standard MAbs against the V3 and CD4-binding domains and the broadly neutralizing MAbs 2G12 and 2F5. These amino acid substitutions also introduced the epitope recognized by a second V2-specific MAb, 10/76b, but this MAb possessed potent neutralizing activity only in the absence of the glycan required for C108g reactivity. In contrast to other gp120-specific neutralizing MAbs, C108g did not block binding of soluble Env proteins to either the CD4 or the CCR5 receptor, but studies with a fusion-arrested Env indicated that C108g neutralized at a step preceding the one blocked by the gp41-specific MAb, 2F5. These results indicate that the V1/V2 domain possesses targets that mediate potent neutralization of primary viral isolates via a novel mechanism and suggest that inclusion of carbohydrate determinants into these epitopes may help overcome the indirect masking effects that limit the neutralizing potency of antibodies commonly produced after infection.  相似文献   

17.
Five murine monoclonal antibodies (MAbs) were developed against purified sporozoites of Hammondia hammondi. Despite a large antigenic similarity between the 2 closely related coccidia, H. hammondi and Toxoplasma gondii, these MAbs only reacted with H. hammondi. Three MAbs, ID3, 3F2, and 4C9-7, recognized antigens of 38 kDa localized in rhoptries (1D3), in rhoptries and in oocyst and cyst walls (3F2), and in rhoptries and the apical region (4C9-7). Another MAb, 4C9-10, reacted with a 27-kDa antigen in dense granules of sporozoites and tachyzoites, and MAB 11B3 labeled an antigen of >94 kDa located in the pellicular membrane of the 3 stages of the parasite. These MAbs could be used for a rapid discrimination of the 2 coccidia in epidemiological studies or for diagnostic purposes in tissues.  相似文献   

18.
Sites in Myelin Basic Protein that React with Monoclonal Antibodies   总被引:6,自引:6,他引:0  
The epitopes (antigenic sites) for seven monoclonal antibodies (MAbs) evoked in rats or mice by guinea pig or monkey myelin basic protein (BP) have been located in four different sequences of the BPs extracted from various species. Six of the MAbs were evoked by guinea pig BP. (1) One epitope, possibly a pair, is included within residues 1-14 of all BPs tested and reacts with two rat IgG MAbs. (2) A definite pair of overlapping epitopes includes the central Phe91-Phe92 sequence. One epitope is contained entirely within sequence 90-99 and reacts with a rat IgG MAb. The substitution of Ser in chicken BP for Thr97 destroys this epitope. The other epitope appears to include residues on the amino side of Phe44 and even of His32 and suggests some tertiary structure in BP. This epitope reacts with a mouse IgM MAb that does not recognize the chicken substitution. (3) The third epitope lies within residues 114-121, specifically including Trp118, and reacts with a rat IgG MAb. A cross-reacting epitope probably includes residues 44-45 in certain species (guinea pig and bovine but not rabbit). (4) Another pair of epitopes is located within residues 131-140 but is severely species-restricted. This region in guinea pig BP evoked a species-specific mouse IgM MAb. The same region in monkey BP evoked the seventh MAb, a mouse IgG, which reacts with human, chimpanzee, monkey, bovine, and rat-18.5 kDa BPs and to a lesser extent rabbit BP but not with guinea pig, pig, or chicken BPs. Some tertiary structure in guinea pig BP is also suggested by the reactivities with the IgM MAb. All of the MAbs react with myelin in histologic preparations, but the optimum method of preparation of the tissue varies with each.  相似文献   

19.
The CC-chemokine receptor CCR5 mediates fusion and entry of the most commonly transmitted human immunodeficiency virus type 1 (HIV-1) strains. We have isolated six new anti-CCR5 murine monoclonal antibodies (MAbs), designated PA8, PA9, PA10, PA11, PA12, and PA14. A panel of CCR5 alanine point mutants was used to map the epitopes of these MAbs and the previously described MAb 2D7 to specific amino acid residues in the N terminus and/or second extracellular loop regions of CCR5. This structural information was correlated with the MAbs' abilities to inhibit (i) HIV-1 entry, (ii) HIV-1 envelope glycoprotein-mediated membrane fusion, (iii) gp120 binding to CCR5, and (iv) CC-chemokine activity. Surprisingly, there was no correlation between the ability of a MAb to inhibit HIV-1 fusion-entry and its ability to inhibit either the binding of a gp120-soluble CD4 complex to CCR5 or CC-chemokine activity. MAbs PA9 to PA12, whose epitopes include residues in the CCR5 N terminus, strongly inhibited gp120 binding but only moderately inhibited HIV-1 fusion and entry and had no effect on RANTES-induced calcium mobilization. MAbs PA14 and 2D7, the most potent inhibitors of HIV-1 entry and fusion, were less effective at inhibiting gp120 binding and were variably potent at inhibiting RANTES-induced signaling. With respect to inhibiting HIV-1 entry and fusion, PA12 but not PA14 was potently synergistic when used in combination with 2D7, RANTES, and CD4-immunoglobulin G2, which inhibits HIV-1 attachment. The data support a model wherein HIV-1 entry occurs in three stages: receptor (CD4) binding, coreceptor (CCR5) binding, and coreceptor-mediated membrane fusion. The antibodies described will be useful for further dissecting these events.  相似文献   

20.
The fine structural specificities of six monoclonal antibodies (MAbs) to ganglioside GD2, GalNAc beta 1----4(NeuAc alpha 2----8NeuAc alpha 2----3)Gal beta 1----4Glc-Cer, were studied. The binding specificities of these MAbs were found to differ from each other by virtue of their binding to structurally related authentic standard glycolipids as revealed by three different assay systems, including enzyme immunostaining on thin-layer chromatography, enzyme-linked immunosorbent assay, and immune adherence inhibition assay. The MAbs examined could be divided into three binding types. MAbs A1-201, A1-410, and A1-425 bound specifically to ganglioside GD2 and none of the other gangliosides tested. Two other MAbs (A1-245 and A1-267) reacted not only with GD2, but also with several other gangliosides having the sequence NeuAc alpha 2----8NeuAc alpha 2----3Gal (GD3, GD1b, GT1a, GT1b, and GQ1b). The reactivities with these gangliosides varied to some degree. In addition, these MAbs were found to react with both GD3(NeuAc-NeuAc) and GD3(NeuGc-NeuAc), but not with GD3(NeuAc-NeuGc) or GD3(NeuGc-NeuGc). The last MAb (A1-287) also reacted with several other gangliosides but with lower avidity than A1-245 and A1-267. These findings suggest that each MAb to ganglioside GD2 may have an individual binding specificity and avidity. These MAbs represent potentially useful reagents for analyzing the function of GD2 on cell surface membranes, and provide a system for precisely studying the interactions between an anti-ganglioside antibody and the binding epitope of the antigenic determinant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号