首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ten years ago, evidence from genetics gave strong support to the "recent African origin" view of the evolution of modern humans, which posits that Homo sapiens arose as a new species in Africa and subsequently spread, leading to the extinction of other archaic human species. Subsequent data from the nuclear genome not only fail to support this model, they do not support any simple model of human demographic history. In this paper, we study a process in which the modern human phenotype originates in Africa and then advances across the world by local demic diffusion, hybridization, and natural selection. While the multiregional model of human origins posits a number of independent single locus selective sweeps, and the "out of Africa" model posits a sweep of a new species, we study the intermediate case of a phenotypic sweep. Numerical simulations of this process replicate many of the seemingly contradictory features of the genetic data, and suggest that as much as 80% of nuclear loci have assimilated genetic material from non-African archaic humans.  相似文献   

2.
Genetic diversity patterns in nuclear versus mitochondrial systems and in low versus high mutation rate systems do not support the hypothesis of a recent African origin for all of humanity following a split between Africans and non-Africans 100,000 years ago, nor do genetic distance data. Geographical analyses of nuclear and mitochondrial gene trees do not support the hypothesis of a recent global replacement of humans coming out of Africa, although a local replacement event in Europe is indicated by these analyses and recent studies on Neandertal DNA. The gene tree analyses instead indicate that genetic interchanges have ensured that all of humanity has evolved as a single evolutionary lineage with no major splits.  相似文献   

3.
1983年,有学者首次发表现代人线粒体DNA进化树,认为现代人可能起源自亚洲。1987年,又有学者按照分子钟假说得到线粒体在10-20万年前出自非洲的推论。随后,以分子钟为前提的Y染色体和常染色体DNA研究也支持了出非洲的结论,该结论逐渐成为分子进化领域的主流理论。2010年,对尼安德特人常染色体基因组的研究指出其对现代人有遗传贡献,这颠覆了人们先前关于现代人只来源自非洲,其他大洲的当地古人被完全取代的认知。目前,单地区起源说已经被修正为同化说。尽管学界对非洲人遗传多样性最高这一现象有共识,但是对该现象的不同解读却可以得出两种迥然不同的结果,现代人出亚洲说和出非洲说。大量研究证实基因组的大部分序列是有功能的,并处在遗传变异水平的饱和态,这质疑了中性理论以及由它推导的现代人出非洲说的合理性,而中性理论的提出恰恰是用来解释并非普遍存在的分子钟的。近年来已经有研究者从新理论的角度解读遗传多样性的饱和态和线性态,人们对现代人起源的认识将会进一步加深完善。  相似文献   

4.
Although Africa has played a central role in human evolutionary history, certain studies have suggested that not all contemporary human genetic diversity is of recent African origin. We investigated 35 simple polymorphic sites and one T(n) microsatellite in an 8-kb segment of the dystrophin gene. We found 86 haplotypes in 1,343 chromosomes from around the world. Although a classical out-of-Africa topology was observed in trees based on the variant frequencies, the tree of haplotype sequences reveals three lineages accounting for present-day diversity. The proportion of new recombinants and the diversity of the T(n) microsatellite were used to estimate the age of haplotype lineages and the time of colonization events. The lineage that underwent the great expansion originated in Africa prior to the Upper Paleolithic (27,000-56,000 years ago). A second group, of structurally distinct haplotypes that occupy a central position on the tree, has never left Africa. The third lineage is represented by the haplotype that lies closest to the root, is virtually absent in Africa, and appears older than the recent out-of-Africa expansion. We propose that this lineage could have left Africa before the expansion (as early as 160,000 years ago) and admixed, outside of Africa, with the expanding lineage. Contemporary human diversity, although dominated by the recently expanded African lineage, thus represents a mosaic of different contributions.  相似文献   

5.
The increasing abundance of human genetic data has shown that the geographical patterns of worldwide genetic diversity are best explained by human expansion out of Africa. This expansion is modelled well by prolonged migration from a single origin in Africa with multiple subsequent serial founding events. We discuss a new simulation model for the serial founder effect out of Africa and compare it with results from previous studies. Unlike previous models, we distinguish colonization events from the continued exchange of people between occupied territories as a result of mating. We conduct a search through parameter space to estimate the range of parameter values that best explain key statistics from published data on worldwide variation in microsatellites. The range of parameters we use is chosen to be compatible with an out-of-Africa migration at 50-60Kyr ago and archaeo-ethno-demographic information. In addition to a colonization rate of 0.09-0.18, for an acceptable fit to the published microsatellite data, incorporation into existing models of exchange between neighbouring populations is essential, but at a very low rate. A linear decay of genetic diversity with geographical distance from the origin of expansion could apply to any species, especially if it moved recently into new geographical niches.  相似文献   

6.
For the past seven years or so, much discussion and controversy in the field of human evolution has revolved around the application and interpretation of studies of human mitochondrial DNA variation, particularly the hypothesis that all mtDNA types in contemporary populations can be traced back to a single African ancestor who lived about 200,000 years ago. In this review I describe the evidence that led to this hypothesis, subsequent work, and where things stand now, particularly with respect to recent criticisms concerning the adequacy of phylogenetic analyses of the mtDNA data. I also describe a new method of analyzing mtDNA data that suggests that all human populations underwent a dramatic expansion some 40,000 years ago, possibly in association with revolutionary advances in human behavior, as well as an important implication of population expansions for mtDNA disease studies.  相似文献   

7.
A central issue in paleoanthropology is whether modern humans emerged in a single geographic area and subsequently replaced the preexisting people in other areas. Although the study of human mitochondrial DNAs supported this single-origin and complete-replacement model, a recent paper(1) argues that humans expanded out of Africa more than once and regionally interbred. However, both the genetic antiquity and the impact of the African contribution to modern Homo sapiens are so great as to view Africa as a central place of human evolution. Despite the possibility that out-of-Africa H. sapiens interbred with other populations, this evidence is more consistent with the uniregional hypothesis than the multiregional hypothesis of modern human origins.  相似文献   

8.
Despite the many triumphs of comparative biology during the past few decades, the field has remained strangely divorced from evolutionary genetics. In particular, comparative methods have failed to incorporate multivariate process models of microevolution that include genetic constraint in the form of the G matrix. Here we explore the insights that might be gained by such an analysis. A neutral model of evolution by genetic drift that depends on effective population size and the G matrix predicts a probability distribution for divergence of population trait means on a phylogeny. Use of a maximum likelihood (ML) framework then allows us to compare independent direct estimates of G with the ML estimates based on the observed pattern of trait divergence among taxa. We assess the departure from neutrality, and thus the role of different types of selection and other forces, in a stepwise hypothesis-testing procedure based on parameters for the size, shape, and orientation of G. We illustrate our approach with a test case of data on vertebral number evolution in garter snakes.  相似文献   

9.
The study of recent human evolution, or the origin of modern humans, is currently dominated by two theories. The recent African origin hypothesis holds that there was a single origin of modern humans in Africa about 100,000 years ago, after which these humans dispersed throughout the rest of the world, mixing little or not at all with nonmodern populations. The multiregional evolution hypothesis holds that there was no single origin of modern humans but, instead, that the mutations and other traits that led to modern humans were spread in concert throughout the old world by gene flow, leading to genetic continuity among old world populations during the past million years. Although both of these theories are based on observations stemming from the fossil record, much discussion and controversy during the past six years has focused on the application and interpretation of studies of DNA variation, particularly mitochondrial DNA (mtDNA). The past year, especially, has brought new data, interpretations, and controversies. Indeed, I initially resisted writing this review, on the grounds that new information would be likely to render it obsolete by the time it was published. However, now that the dust is starting to settle, it seems timely to review various investigations and interpretations and where they are likely to lead. While the focus of this review is the mtDNA story, brief mention is made of studies of nuclear DNA variation (both autosomal and Y-chromosome DNA) and the implications of the genetic data with regard to the fossil record and our understanding of recent human evolution.  相似文献   

10.

Background

Estimating the historical and demographic parameters that characterize modern human populations is a fundamental part of reconstructing the recent history of our species. In addition, the development of a model of human evolution that can best explain neutral genetic diversity is required to identify confidently regions of the human genome that have been targeted by natural selection.

Methodology/Principal Findings

We have resequenced 20 independent noncoding autosomal regions dispersed throughout the genome in 213 individuals from different continental populations, corresponding to a total of ∼6 Mb of diploid resequencing data. We used these data to explore and co-estimate an extensive range of historical and demographic parameters with a statistical framework that combines the evaluation of multiple models of human evolution via a best-fit approach, followed by an Approximate Bayesian Computation (ABC) analysis. From a methodological standpoint, evaluating the accuracy of the parameter co-estimation allowed us to identify the most accurate set of statistics to be used for the estimation of each of the different historical and demographic parameters characterizing recent human evolution.

Conclusions/Significance

Our results support a model in which modern humans left Africa through a single major dispersal event occurring ∼60,000 years ago, corresponding to a drastic reduction of ∼5 times the effective population size of the ancestral African population of ∼13,800 individuals. Subsequently, the ancestors of modern Europeans and East Asians diverged much later, ∼22,500 years ago, from the population of ancestral migrants. This late diversification of Eurasians after the African exodus points to the occurrence of a long maturation phase in which the ancestral Eurasian population was not yet diversified.  相似文献   

11.
Fossil evidence links human ancestry with populations that evolved from modern gracile morphology in Africa 130,000-160,000 years ago. Yet fossils alone do not provide clear answers to the question of whether the ancestors of all modern Homo sapiens comprised a single African population or an amalgamation of distinct archaic populations. DNA sequence data have consistently supported a single-origin model in which anatomically modern Africans expanded and completely replaced all other archaic hominin populations. Aided by a novel experimental design, we present the first genetic evidence that statistically rejects the null hypothesis that our species descends from a single, historically panmictic population. In a global sample of 42 X chromosomes, two African individuals carry a lineage of noncoding 17.5-kb sequence that has survived for >1 million years without any clear traces of ongoing recombination with other lineages at this locus. These patterns of deep haplotype divergence and long-range linkage disequilibrium are best explained by a prolonged period of ancestral population subdivision followed by relatively recent interbreeding. This inference supports human evolution models that incorporate admixture between divergent African branches of the genus Homo.  相似文献   

12.
Nested clade phylogeographical analysis (NCPA) has become a common tool in intraspecific phylogeography. To evaluate the validity of its inferences, NCPA was applied to actual data sets with 150 strong a priori expectations, the majority of which had not been analysed previously by NCPA. NCPA did well overall, but it sometimes failed to detect an expected event and less commonly resulted in a false positive. An examination of these errors suggested some alterations in the NCPA inference key, and these modifications reduce the incidence of false positives at the cost of a slight reduction in power. Moreover, NCPA does equally well in inferring events regardless of the presence or absence of other, unrelated events. A reanalysis of some recent computer simulations that are seemingly discordant with these results revealed that NCPA performed appropriately in these simulated samples and was not prone to a high rate of false positives under sampling assumptions that typify real data sets. NCPA makes a posteriori use of an explicit inference key for biological interpretation after statistical hypothesis testing. Alternatives to NCPA that claim that biological inference emerges directly from statistical testing are shown in fact to use an a priori inference key, albeit implicitly. It is argued that the a priori and a posteriori approaches to intraspecific phylogeography are complementary, not contradictory. Finally, cross-validation using multiple DNA regions is shown to be a powerful method of minimizing inference errors. A likelihood ratio hypothesis testing framework has been developed that allows testing of phylogeographical hypotheses, extends NCPA to testing specific hypotheses not within the formal inference key (such as the out-of-Africa replacement hypothesis of recent human evolution) and integrates intra- and interspecific phylogeographical inference.  相似文献   

13.
In 1963,Margoliash discovered the unexpected genetic equidistance result after comparing cytochrome c sequences from different species.This finding,together with the hemoglobin analyses of Zuckerkandl and Pauling in 1962,directly inspired the ad hoc molecular clock hypothesis.Unfortunately,however,many biologists have since mistakenly viewed the molecular clock as a genuine reality,which in turn inspired Kimura,King,and Jukes to propose the neutral theory of molecular evolution.Many years of studies have found numerous contradictions to the theory,and few today believe in a universal constant clock.What is being neglected,however,is that the failure of the molecular clock hypothesis has left the original equidistance result an unsolved mystery.In recent years,we fortuitously rediscovered the equidistance result,which remains unknown to nearly all researchers.Incorporating the proven virtues of existing evolutionary theories and introducing the novel concept of maximum genetic diversity,we proposed a more complete hypothesis of evolutionary genetics and reinterpreted the equidistance result and other major evolutionary phenomena.The hypothesis may rewrite molecular phylogeny and population genetics and solve major biomedical problems that challenge the existing framework of evolutionary biology.  相似文献   

14.
Currently available genetic and archaeological evidence is generally interpreted as supportive of a recent single origin of modern humans in East Africa. However, this is where the near consensus on human settlement history ends, and considerable uncertainty clouds any more detailed aspect of human colonization history. Here, we present a dynamic genetic model of human settlement history coupled with explicit geographical distances from East Africa, the likely origin of modern humans. We search for the best-supported parameter space by fitting our analytical prediction to genetic data that are based on 52 human populations analyzed at 783 autosomal microsatellite markers. This framework allows us to jointly estimate the key parameters of the expansion of modern humans. Our best estimates suggest an initial expansion of modern humans approximately 56,000 years ago from a small founding population of approximately 1,000 effective individuals. Our model further points to high growth rates in newly colonized habitats. The general fit of the model with the data is excellent. This suggests that coupling analytical genetic models with explicit demography and geography provides a powerful tool for making inferences on human-settlement history.  相似文献   

15.
张野  黄石 《人类学学报》2019,38(4):491-498
1983年,科学家们根据线粒体DNA(mtDNA)系统发育树构建了首个现代人起源的分子模型,认为现代人起源于亚洲,但1987年非洲起源说的提出取代了这一亚洲起源说。非洲起源说所依赖的无限多位点假说以及分子钟假说后来被普遍认为是错误的且不切实际的。我们近几年提出了一个新的分子进化模式,即遗传多样性上限理论,重新构建了一个新的人类起源模型。这一模型与多地区起源说基本吻合, 重新把现代人类起源地定位在了东亚。非洲说与东亚说在线粒体进化树上的主要区别是单倍型N和R的关系,非洲起源说认为N是R的祖先,东亚说则反之。本研究引用了已发表的古代人群mtDNA数据,重点分析了线粒体单倍群N和R的关系。结果显示,三个最古老的人类(一个距今45000年,其他两个约40000年)都属于单倍群R;在距今39500到30000年前的人类样本中,绝大部分属于单倍群R下游的亚单倍群U,只有两例为单倍群N(Oase1距今39500年,Salkhit距今34425年)。这两例所属单倍型位于单倍群N下游最基本的未分化亚型,不属于今天存在的任何N下游单倍型,所以可能靠近单倍群N的根部。这些古DNA数据揭示单倍群R比单倍群N古老大约5000年,进一步证实了亚洲起源说的正确性,非洲说的依据不足。  相似文献   

16.
New species arise as reproductive isolation evolves between diverging populations. Here we review recent work in the genetics of postzygotic reproductive isolation-the sterility and inviability of species hybrids. Over the last few years, research has taken two new directions. First, we have begun to learn a good deal about the population genetic forces driving the evolution of postzygotic isolation. It has, for instance, become increasingly clear that conflict-driven processes, like sexual selection and meiotic drive, may contribute to the evolution of hybrid sterility. Second, we have begun to learn something about the identity and molecular characteristics of the actual genes causing hybrid problems. Although molecular genetic data are limited, early findings suggest that "speciation genes" correspond to loci having normal functions within species and that these loci sometimes diverge as a consequence of evolution in gene regulation.  相似文献   

17.
Genetic variability of the compound interrupted microsatellite DXS1238, in intron 44 of the dystrophin gene, provides evidence for a complex structure of the ancestral population that led to the emergence of modern humans. We sequenced DXS1238 in 600 X-chromosomes from all over the world. Forty four percent of African-specific chromosomes belong to the ancestral lineage that did not participate in the out-of-Africa expansion and subsequent colonization of other continents. Based on the coalescence analysis these lineages separated from those that contributed to the out-of-Africa expansion 366 ± 136 thousands years ago (Kya). Independently, the analysis of the variance in the repeat length and of the decay of the ancestral alleles of the two DXS1238 repeats, GT and GA, dates this separation at more than 200 Kya. This suggests a complex demographic history and genetic structure of the African melting pot that led to the emergence of modern humans and their out-of-Africa migration. The subsequent subdivisions of human populations among different continents appear to be preceded by even more structured population history within Africa itself, which resulted from a restricted gene flow between lineages allowing for genetic differences to accumulate. If the transition to modern humans occurred during that time, it necessarily follows that genes associated with this transformation spread between subpopulations via gene flow. Otherwise, in spite of subsequent anatomical variation, Homo sapiens as a species could have emerged in Africa already between 300 and 200 Kya, i.e. before the mitochondrial DNA and well before the Y-chromosome most recent common ancestors. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
The past few years of research in human evolutionary genetics have provided novel insights and questions regarding how human adaptations to recent selective pressures have taken place. Here, we review the advances most relevant to understanding human evolution in response to pathogen-induced selective pressures. Key insights come from theoretical models of adaptive evolution, particularly those that consider spatially structured populations, and from empirical population genomic studies of adaptive evolution in humans. We also review the CCR5-Δ32 HIV resistance allele as a case study of pathogen resistance in humans. Taken together, the results make clear that the human response to pathogen-induced selection pressures depends on a complex interplay between the age of the pathogen, the genetic basis of potential resistance phenotypes, and how population structure impacts the adaptive process in humans.  相似文献   

19.
Crucial for the establishment and development of biochemical genetics as a self-standing discipline was Beadle and Tatum's choice of Neurospora crassa as experimental organism some 60 years ago. Although Garrod's insights on biochemical genetics and his astonishingly modern concepts of biochemical individuality and susceptibility to disease had been ignored by their contemporaries, Beadle acknowledged on several occasions how close Garrod had come to the "one-gene-one-enzyme" hypothesis. In an unexpected turn of events, several genes involved in human inborn errors of metabolism, including the gene for Garrod's favorite disease, alkaptonuria, have been characterized by exploitation of the experimental advantages of another mold, Aspergillus nidulans, which shares with N. crassa the experimental advantages that prompted pioneers of biochemical genetics to use them: rapid growth, facile genetic manipulation, and an environment (the composition of the growth medium) that can be manipulated à la carte.  相似文献   

20.
We have analyzed eight human-specific Alu insertion polymorphisms in four Chinese populations belonging to three ethnic groups (98 Hans from Shanghai, 80 Hans from Guangzhou, 85 Uyghurs, and 60 Sibos). All populations exhibited high levels of average heterozygosity, and those in Uyghur and Sibo were higher than predicted by the island model of population structure. The degree of genetic differentiation among these populations is statistically significant, and lower than those observed in most parts of the world except for Europe and Sahul (Australia and New Guinea). Phylogenetic analysis of these data with published data from 29 worldwide populations shows that there is a close genetic affinity among all the East Asian populations except for the Uyghur, and that the Uyghur population was found to lie between the East Asian and the West Asian populations on the population tree. The greater heterozygosity and the significant genotype associations between unlinked loci observed for the Uyghurs support the scenario that the Uyghurs might have originated from an admixture between Europeans and East Asians. This study also provides further support for the "out-of-Africa" hypothesis of modern human evolution in East Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号