首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In plants, malate is a central metabolite and fulfills a large number of functions. Vacuolar malate may reach very high concentrations and fluctuate rapidly, whereas cytosolic malate is kept at a constant level allowing optimal metabolism. Recently, a vacuolar malate transporter (Arabidopsis thaliana tonoplast dicarboxylate transporter, AttDT) was identified that did not correspond to the well-characterized vacuolar malate channel. We therefore hypothesized that a member of the aluminum-activated malate transporter (ALMT) gene family could code for a vacuolar malate channel. Using GFP fusion constructs, we could show that AtALMT9 (A. thaliana ALMT9) is targeted to the vacuole. Promoter-GUS fusion constructs demonstrated that this gene is expressed in all organs, but is cell-type specific as GUS activity in leaves was detected nearly exclusively in mesophyll cells. Patch-clamp analysis of an Atalmt9 T-DNA insertion mutant exhibited strongly reduced vacuolar malate channel activity. In order to functionally characterize AtALMT9 as a malate channel, we heterologously expressed this gene in tobacco and in oocytes. Overexpression of AtALMT9-GFP in Nicotiana benthamiana leaves strongly enhanced the malate current densities across the mesophyll tonoplasts. Functional expression of AtALMT9 in Xenopus oocytes induced anion currents, which were clearly distinguishable from endogenous oocyte currents. Our results demonstrate that AtALMT9 is a vacuolar malate channel. Deletion mutants for AtALMT9 exhibit only slightly reduced malate content in mesophyll protoplasts and no visible phenotype, indicating that AttDT and the residual malate channel activity are sufficient to sustain the transport activity necessary to regulate the cytosolic malate homeostasis.  相似文献   

3.
The arabinose-sensitive ara1-1 mutant of Arabidopsis is deficient in arabinose kinase activity. A candidate for the ARA1 gene, ISA1, has been previously identified through the Arabidopsis genome sequencing initiative. Here we demonstrate that (1) the ARA1 gene coincides with ISA1 in a positional cloning strategy; (2) there are mutations in the ISA1 gene in both the ara1-1 mutant and an intragenic suppressor mutant; and (3) the ara1-1 and suppressor mutant phenotypes can be complemented by the expression of the ISA1 cDNA in transgenic plants. Together these observations confirm that ISA1 is the ARA1 gene. ARA1 is a member of the galactose kinase family of genes and represents a new substrate specificity among this and other families of sugar kinases. A second gene with similarities to members of the galactose kinase gene family has been identified in the EST database. A 1.8 kb cDNA contained an open reading-frame predicted to encode a 496 amino acid polypeptide. The GAL1 cDNA was expressed in a galK mutant of Escherichia coli and in vitro assays of extracts of the strain expressing GAL1 confirmed that the cDNA encodes a galactose kinase activity. Both GAL1 and ARA1 cross-hybridise at low stringency to other sequences suggesting the presence of additional members of the galactose kinase gene family.  相似文献   

4.
The Drosophila PROS-28.1 gene is a member of the proteasome gene family   总被引:4,自引:0,他引:4  
In the present communication, we report the identification of a new gene family which encodes the protein subunits of the proteasome. The proteasome is a high-Mr complex possessing proteolytic activity. Screening a Drosophila λgt11 cDNA expression library with the proteasome-specific antibody N19-28 we isolated a clone encoding the 28-kDa No. 1 proteasome protein subunit. In accordance with the nomenclature of proteasome subunits in Drosophila, the corresponding gene is designated PROS-28.1, and it encodes an mRNA of 1.1 kb with an open reading frame of 249 amino acids (aa). Genomic Southern-blot hybridization shows PROS-28.1 to be a member of a family of related genes. Analysis of the predicted aa sequence reveals a potential nuclear targeting signal, a potential site for tyrosine kinase and a potential cAMP/cGMP-dependent phosphorylation site. The aa sequence comparison of the products of PROS-28.1 and PROS-35 with the C2 proteasome subunit of rat shows a strong sequence similarity between the different proteasome subunits. The data suggest that at least a subset of the proteasome-encoding genes belongs to a family of related genes (PROS gene family) which may have evolved from a common ancestral PROS gene.  相似文献   

5.
The platelet-derived growth factor-inducible gene JE was found to encode a 148-residue basic (pI = 10.4) secretory protein which shows striking similarity to the gene products of a family of small inducible genes (SIG), LD78, TCA3, IP10, 3-10C, 9E3/pCEF4, and gro/MGSA, and to several of the proteins secreted from platelet alpha-granules. Members of the SIG family have spatially conserved cysteine residues that vary in distance by only one amino acid residue as well as conserved proline residues at analogous sites. Hydrophilicity plots show alternating hydrophobic and hydrophilic domains which are similar for all members of the SIG family except IP10 and platelet factor 4, which show similarities to each other. The genomic organization of SIG family members is similar in the location of the splice junctions and the number of introns and exons, suggesting that they were derived from a common ancestor. The collective evidence suggests that a family of inducible cytokines, which are mitogenic or chemotactic, may act as intercellular coordinators of diverse responses designed to combat infection and promote the healing and regeneration of injured tissue.  相似文献   

6.
Zhou C  Miki B  Wu K 《Plant molecular biology》2003,52(6):1125-1134
The SWI/SNF complex is an ATP-dependent chromatin remodeling complex that plays an important role in the regulation of eukaryotic gene expression. Very little is known about the function of SWI/SNF complex in plants compared with animals and yeast. SWI3 is one of the core components of the SWI/SNF chromatin remodeling complexes in yeast. We have identified a putative SWI3-like cDNA clone, CHB2 (AtSWI3B), from Arabidopsis thaliana by screening the expressed sequence tag database. CHB2 encodes a putative protein of 469 amino acids and shares 23% amino acid sequence identity and 64% similarity with the yeast SWI3. The Arabidopsis genome contains four SWI3-like genes, namely CHB1 (AtSWI3A), CHB2 (AtSWI3B), CHB3 (AtSWI3C) and CHB4 (AtSWI3D). The expression of CHB2, CHB3 and CHB4 mRNA was detected in all tissues analyzed by RT-PCR. The expression of CHB1 mRNA, however, could not be detected in the siliques, suggesting that there is differential expression among CHB genes in different Arabidopsis tissues. To investigate the role of CHB2 in plants, Arabidopsis plants were transformed with a gene construct comprising a CHB2 cDNA in the antisense orientation driven by the CaMV 35S promoter. Repression of CHB2 expression resulted in pleiotropic developmental abnormalities including abnormal seedling and leaf phenotypes, dwarfism, delayed flowering and no apical dominance, suggesting a global role for CHB2 in the regulation of gene expression. Our results indicate that CHB2 plays an essential role in plant growth and development.  相似文献   

7.
The erbB gene of an avian erythroblastosis virus, AEV-H, was determined to be 1812 nucleotides long and was predicted to code for a protein of 67,638 daltons. Unexpectedly, a sequence of 285 amino acids in the middle of the protein showed a significant homology (38%) with the sequence in the carboxy terminus of p60src. The nucleotide sequence of a mutant of AEV-H, td-130, which induces sarcomas but not erythroblastosis in chicken, was also analyzed. A deletion of 169 nucleotides was identified in the 3′ half of the erbB gene, indicating that the gene codes for a truncated protein with the predicted molecular weight of 46,667. These findings suggest that the homologous domain of erbB protein with its N-terminal portion is sufficient for the transformation of fibroblasts and that one-third of the carboxy-terminal domain has a key role for the transformation of erythroid cells.  相似文献   

8.
Clones of eukaryotic initiation factor (eIF) 4B from wheat and Arabidopsis thaliana were obtained from cDNA and genomic libraries. The exon/intron organization of the genes from wheat and A. thaliana is very similar. The deduced amino acid sequences for the wheat and Arabidopsis eIF4B proteins showed overall similarity to each other, but very little similarity to eIF4B from other eukaryotes. The recombinant form of eIF4B supports polypeptide synthesis in an in vitro translation system and reacts with antibodies to native wheat eIF4B. In contrast to mammalian eIF4B and eIF4A, the combination of wheat eIF4B and eIF4A does not stimulate RNA-dependent ATP hydrolysis activity; however, wheat eIF4B does stimulate eIF4F and eIF4A RNA-dependent ATP hydrolysis activity. Interestingly, eIF4B does not stimulate eIF(iso)4F and eIF4A hydrolysis activity. Gel filtration experiments indicate wheat eIF4B, like its mammalian counterpart, self-associates to form a homodimer.  相似文献   

9.
In Arabidopsis, RPP4 confers resistance to Peronospora parasitica (P.p.) races Emoy2 and Emwa1 (downy mildew). We identified RPP4 in Col-0 as a member of the clustered RPP5 multigene family encoding nucleotide-binding leucine-rich repeat proteins with Toll/interleukin-1 receptor domains. RPP4 is the orthologue of RPP5 which, in addition to recognizing P.p. race Noco2, also mediates resistance to Emoy2 and Emwa1. Most differences between RPP4 and RPP5 occur in residues that constitute the TIR domain and in LRR residues that are predicted to confer recognition specificity. RPP4 requires the action of at least 12 defence components, including DTH9, EDS1, PAD4, PAL, PBS2, PBS3, SID1, SID2 and salicylic acid. The ndr1, npr1 and rps5-1 mutations partially compromise RPP4 function in cotyledons but not in true leaves. The identification of RPP4 as a TIR-NB-LRR protein, coupled with its dependence on certain signalling components in true leaves, is consistent with the hypothesis that distinct NB-LRR protein classes differentially signal through EDS1 and NDR1. Our results suggest that RPP4-mediated resistance is developmentally regulated and that in cotyledons there is cross-talk between EDS1 and NDR1 signalling and processes regulating systemic acquired resistance.  相似文献   

10.
Heartwater is an economically important disease of ruminants caused by the tick-transmitted rickettsia Cowdria ruminantium. The disease is present in Africa and the Caribbean and there is a risk of spread to the Americas, particularly because of a clinically asymptomatic carrier state in infected livestock and imported wild animals. The causative agent is closely related taxonomically to the human and animal pathogens Ehrlichia chaffeensis and Ehrlichia canis. A dominant immune response of infected animals or people is directed against variable outer membrane proteins of these agents known, in E. chaffeensis and E. canis, to be encoded by polymorphic multigene families. We demonstrate, by sequence analysis, that map1 encoding the major outer membrane protein of C. ruminantium is also encoded by a polymorphic multigene family. Two members of the gene family are located in tandem in the genome. The upstream member, orf2, is conserved, encoding only 2 amino acid substitutions among six different rickettsial strains from diverse locations in Africa and the Caribbean. In contrast, the downstream member, map1, contains variable and conserved regions between strains. Interestingly, orf2 is more closely related in sequence to omp1b of E. chaffeensis than to map1 of C. ruminantium. The regions that differ among orf2, map1, and omp1b correspond to previously identified variable sequences in outer membrane protein genes of E. chaffeensis and E. canis. These data suggest that diversity in these outer membrane proteins may arise by recombination among gene family members and offer a potential mechanism for persistence of infection in carrier animals.  相似文献   

11.
In the present communication, we report the identification of a new gene family which encodes the protein subunits of the proteasome. The proteasome is a high-Mr complex possessing proteolytic activity. Screening a Drosophila λgt11 cDNA expression library with the proteasome-specific antibody N19-28 we isolated a clone encoding the 28-kDa No. 1 proteasome protein subunit. In accordance with the nomenclature of proteasome subunits in Drosophila, the corresponding gene is designated PROS-28.1, and it encodes an mRNA of 1.1 kb with an open reading frame of 249 amino acids (aa). Genomic Southern-blot hybridization shows PROS-28.1 to be a member of a family of related genes. Analysis of the predicted aa sequence reveals a potential nuclear targeting signal, a potential site for tyrosine kinase and a potential cAMP/cGMP-dependent phosphorylation site. The aa sequence comparison of the products of PROS-28.1 and PROS-35 with the C2 proteasome subunit of rat shows a strong sequence similarity between the different proteasome subunits. The data suggest that at least a subset of the proteasome-encoding genes belongs to a family of related genes (PROS gene family) which may have evolved from a common ancestral PROS gene.  相似文献   

12.
Na(+)-activated potassium channels (K(Na)) have been identified in cardiomyocytes and neurons where they may provide protection against ischemia. We now report that K(Na) is encoded by the rSlo2 gene (also called Slack), the mammalian ortholog of slo-2 in C. elegans. rSlo2, heterologously expressed, shares many properties of native K(Na) including activation by intracellular Na(+), high conductance, and prominent subconductance states. In addition to activation by Na(+), we report that rSLO-2 channels are cooperatively activated by intracellular Cl(-), similar to C. elegans SLO-2 channels. Since intracellular Na(+) and Cl(-) both rise in oxygen-deprived cells, coactivation may more effectively trigger the activity of rSLO-2 channels in ischemia. In C. elegans, mutational and physiological analysis revealed that the SLO-2 current is a major component of the delayed rectifier. We demonstrate in C. elegans that slo-2 mutants are hypersensitive to hypoxia, suggesting a conserved role for the slo-2 gene subfamily.  相似文献   

13.
14.
The regulation of the nutrient-deprivation-induced Sinorhizobium meliloti homogentisate dioxygenase (hmgA) gene, involved in tyrosine degradation, was examined. hmgA expression was found to be independent of the canonical nitrogen regulation (ntr) system. To identify regulators of hmgA, secondary mutagenesis of an S. meliloti strain harboring a hmgA-luxAB reporter gene fusion (N4) was carried out using transposon Tn1721. Two independent Tn1721 insertions were found to be located in a positive regulatory gene (nitR), encoding a protein sharing amino acid sequence similarity with proteins of the ArsR family of regulators. NitR was found to be a regulator of S. meliloti hmgA expression under nitrogen deprivation conditions, suggesting the presence of a ntr-independent nitrogen deprivation regulatory system. nitR insertion mutations were shown not to affect bacterial growth, nodulation of Medicago sativa (alfalfa) plants, or symbiotic nitrogen fixation under the physiological conditions examined. Further analysis of the nitR locus revealed the presence of open reading frames encoding proteins sharing amino acid sequence similarities with an ATP-binding phosphonate transport protein (PhnN), as well as transmembrane efflux proteins.  相似文献   

15.
Diener AC  Ausubel FM 《Genetics》2005,171(1):305-321
Arabidopsis thaliana ecotypes differ in their susceptibility to Fusarium wilt diseases. Ecotype Taynuilt-0 (Ty-0) is susceptible to Fusarium oxysporum forma specialis (f.) matthioli whereas Columbia-0 (Col-0) is resistant. Segregation analysis of a cross between Ty-0 and Col-0 revealed six dominant RESISTANCE TO FUSARIUM OXYSPORUM (RFO) loci that significantly contribute to f. matthioli resistance in Col-0 relative to Ty-0. We refer to the locus with the strongest effect as RFO1. Ty-0 plants in which only the Col-0 allele of RFO1 (RFO1(Col-0)) was introduced were resistant to f. matthioli. Surprisingly, RFO1(Col-0) also conferred resistance to f. raphani, demonstrating that RFO1-mediated resistance is not race specific. Expression of resistance by RFO2, RFO4, or RFO6 was dependent on RFO1(Col-0). Map-based cloning of RFO1(Col-0) showed that RFO1 is identical to the previously named Arabidopsis gene WAKL22 (WALL-ASSOCIATED KINASE-LIKE KINASE 22), which encodes a receptor-like kinase that does not contain an extracellular leucine-rich repeat domain. Consistent with these results, a Col-0 rfo1 loss-of-function mutant was more susceptible to f. matthioli, f. conglutinans, and f. raphani. Thus, RFO1 encodes a novel type of dominant disease-resistance protein that confers resistance to a broad spectrum of Fusarium races.  相似文献   

16.
《Gene》1997,195(2):127-130
We isolated a cDNA from Dictyostelium discoideum that encodes a 30 kDa protein with significant similarity to members of the major intrinsic protein (MIP) family of membrane transporters. The most closely related protein in the public data bases is an aquaporin from Cicadella viridis which shows 34% identity. The cDNA was used to isolate and characterize genomic fragments carrying the Dictyostelium gene which we named wacA. Genomic probes were used to recognize wacA mRNA isolated at various stages of development. The results showed that the gene is developmentally regulated such that the mRNA first appears at 12 h of development and is retained throughout the remainder of development. In situ hybridization of whole mounts prepared at 15 h of development showed that wacA mRNA accumulates exclusively in prespore cells and is absent from prestalk cells. Although wacA expression is prespore specific, disruption of the gene by homologous recombination did not result in observable alterations in the formation of spores or their resistance to osmotic challenges.  相似文献   

17.
We report the cloning and expression of a novel murine forkhead/winged helix family member--Foxn4--that is expressed during neural development in the retina, the ventral hindbrain and spinal cord and dorsal midbrain. Retinal Foxn4 expression is associated with the zone of proliferating progenitor cells. In the mouse mutant ocular retardation (or(J)), Foxn4 expression in the retina is significantly reduced and terminates prematurely.  相似文献   

18.
《Gene》1996,170(1):153-154
The Qm family of proteins, which are found in a wide variety of species such as budding yeast, plants and humans, are believed to play a role in gene expression. Here, we report the isolation of a gene, spqM, from the fission yeast Schizosaccharomyces pombe whose deduced amino-acid sequence shared 71.6 to 61.36% identity with members of the Qm family. The high degree of conservation of the Qm members suggest that they were selectively conserved, because of an important biological role  相似文献   

19.
A novel class II beta chain gene is described. This gene, tentatively called DO beta, displays considerably less polymorphism than beta genes of the DP, DQ, and DR loci. The nucleotide sequence of the DO beta gene is strikingly similar to that of the previously identified murine A beta 2 gene. The DO beta gene displays the same exon/intron organization as other beta genes although the fifth exon and the translated portion of the sixth exon are longer than in other genes. A striking feature of the amino acid sequence deduced from the DO beta gene sequence is the pronounced hydrophobicity of the NH2-terminal region. This feature distinguishes the putative DO beta chain from other class II beta chains and raises the possibility that DO beta chains may interact with an alpha chain that is structurally different from those of the DP, DQ, and DR loci. It further suggests that the putative DO molecule may have a function different from those of other class II antigens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号