共查询到20条相似文献,搜索用时 15 毫秒
1.
Kulandaivelu S. Vetrivel Gopal Thinakaran 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2010,1801(8):860-867
Alzheimer's disease (AD), the most common age-associated dementing disorder, is pathologically manifested by progressive cognitive dysfunction concomitant with the accumulation of senile plaques consisting of amyloid-β (Aβ) peptide aggregates in the brain of affected individuals. Aβ is derived from a type I transmembrane protein, amyloid precursor protein (APP), by the sequential proteolytic events mediated by β-site APP cleaving enzyme 1 (BACE1) and γ-secretase. Multiple lines of evidence have implicated cholesterol and cholesterol-rich membrane microdomains, termed lipid rafts in the amyloidogenic processing of APP. In this review, we summarize the cell biology of APP, β- and γ-secretases and the data on their association with lipid rafts. Then, we will discuss potential raft targeting signals identified in the secretases and their importance on amyloidogenic processing of APP. 相似文献
2.
This article is part of a Special Issue "SBN 2014".Alzheimer's disease is one of the most prevalent and costly neurological diseases in the world. Although decades of research have focused on understanding Alzheimer's disease pathology and progression, there is still a great lack of clinical treatments for those who suffer from it. One of the factors most commonly associated with the onset of Alzheimer's disease is a decrease in levels of gonadal hormones, such as estrogens and androgens. Despite the correlational and experimental data which support the role of these hormones in the etiology of Alzheimer's disease, clinical trials involving their reintroduction through hormone therapy have had varied results and these gonadal hormones often have accompanying health risks. More recently, investigation has turned toward other hormones in the hypothalamic–pituitary–gonadal axis that are disrupted by age-related decreases in gonadal hormones. Specifically, luteinizing hormone, which is increased with age in both men and women (in response to removal of negative feedback), has surfaced as a potentially powerful player in the risk and onset of Alzheimer's disease. Mounting evidence in basic research and epidemiological studies supports the role of elevated luteinizing hormone in exacerbating age-related cognitive decline in both males and females. This review summarizes the recent developments involving luteinizing hormone in increasing the cognitive deficits and molecular pathology characteristic of Alzheimer's disease. 相似文献
3.
Burns JM Honea RA Vidoni ED Hutfles LJ Brooks WM Swerdlow RH 《Biochimica et biophysica acta》2012,1822(3):333-339
We assessed the relationship of insulin resistance with cognitive decline and brain atrophy over two years in early Alzheimer's disease (AD, n=48) and nondemented controls (n=61). Intravenous glucose tolerance tests were conducted at baseline to determine insulin area-under-the-curve (AUC). A standard battery of cognitive tasks and MRI were conducted at baseline and 2-year follow-up. In nondemented controls, higher baseline insulin AUC was associated with 2-year decline in global cognitive performance (beta=-0.36, p=0.005). In early AD, however, higher insulin AUC was associated with less decline in global cognitive performance (beta=0.26, p=0.06), slower global brain atrophy (beta=0.40, p=0.01) and less regional atrophy in the bilateral hippocampi and cingulate cortices. While insulin resistance is associated with cognitive decline in nondemented aging, higher peripheral insulin may have AD-specific benefits or insulin signaling may be affected by systemic physiologic changes associated with AD. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease. 相似文献
4.
Jeffrey M. Burns Robyn A. HoneaEric D. Vidoni Lewis J. HutflesWilliam M. Brooks Russell H. Swerdlow 《生物化学与生物物理学报:疾病的分子基础》2012,1822(3):333-339
We assessed the relationship of insulin resistance with cognitive decline and brain atrophy over two years in early Alzheimer's disease (AD, n = 48) and nondemented controls (n = 61). Intravenous glucose tolerance tests were conducted at baseline to determine insulin area-under-the-curve (AUC). A standard battery of cognitive tasks and MRI were conducted at baseline and 2-year follow-up. In nondemented controls, higher baseline insulin AUC was associated with 2-year decline in global cognitive performance (beta = − 0.36, p = 0.005). In early AD, however, higher insulin AUC was associated with less decline in global cognitive performance (beta = 0.26, p = 0.06), slower global brain atrophy (beta = 0.40, p = 0.01) and less regional atrophy in the bilateral hippocampi and cingulate cortices. While insulin resistance is associated with cognitive decline in nondemented aging, higher peripheral insulin may have AD-specific benefits or insulin signaling may be affected by systemic physiologic changes associated with AD. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease. 相似文献
5.
Immunotherapeutic approaches designed to induce a humoral immune response have recently been developed for possible vaccination to the treatment of Alzheimer's disease (AD). Based on the identification of Abeta(4-10) (FRHDSGY) as the predominant B-cell epitope recognized by therapeutically active antisera from transgenic AD mice, branched polypeptide conjugates with this epitope peptide were synthesized and characterized. In order to produce immunogenic constructs, the Abeta(4-10) epitope alone or together with a promiscuous T-helper cell epitope peptide (FFLLTRILTIPQSLD) were attached via thioether linkage to different branched chain polymeric polypeptides with Ser or Glu in the side chains. A single peptide containing both an Abeta(4-10) and T-helper cell epitope, joined by a dipeptide Cys-Acp spacer, was also attached through the thiol function to chloroacetylated poly[Lys(Seri-DL-Alax)] (SAK). Comparative binding studies of the conjugates with a monoclonal antibody against the beta-amyloid(1-17) peptide in mice were performed by direct ELISA. The conformational preferences of carriers and conjugates in water and in a 9:1 trifluoroethanol:water mixture (v/v) was analyzed by CD spectroscopy. Experimental data showed that the chemical nature of the carrier macromolecule, and the attachment site of the epitope to the carrier, have significant effects on antibody recognition, but have no marked influence on the solution conformation of the conjugates. 相似文献
6.
Alzheimer's disease is characterized by the presence of abundant neurofibrillary tangles and beta-amyloid deposits in neocortex, hippocampus and amygdala. The major protein components of tangles and plaques have recently been identified. These findings, briefly reviewed here, will allow researchers to design investigations that will lead to an understanding of the pathogenesis of the disease and to the development of new therapeutic approaches that may result in an effective treatment. 相似文献
7.
Ono M Maya Y Haratake M Ito K Mori H Nakayama M 《Biochemical and biophysical research communications》2007,361(1):116-121
A novel series of aurone derivatives for in vivo imaging of beta-amyloid plaques in the brain of Alzheimer's disease (AD) were synthesized and characterized. When in vitro binding studies using Abeta(1-42) aggregates were carried out with aurone derivatives, they showed high binding affinities for Abeta(1-42) aggregates at the K(i) values ranging from 1.2 to 6.8 nM. When in vitro plaque labeling was carried out using double transgenic mice brain sections, the aurone derivatives intensely stained beta-amyiloid plaques. Biodistribution studies in normal mice after i.v. injection of the radioiodinated aurones displayed high brain uptake (1.9-4.6% ID/g at 2 min) and rapid clearance from the brain (0.11-0.26% ID/g at 60 min), which is highly desirable for amyloid imaging agents. The results in this study suggest that novel radiolabeled aurones may be useful amyloid imaging agents for detecting beta-amyloid plaques in the brain of AD. 相似文献
8.
Formation of beta-amyloid plaques in Alzheimer's disease is initiated by intermolecular contact of the 5-amino acid sequence, KLVFF, in beta-amyloid peptides ranging in size from 40 to 43 residues. Through optimization of binding avidity using structure/function studies, we have found that the retro-inverso peptide, ffvlk, binds artificial fibrils made from Abeta(1)(-)(40) with moderate affinity (K(d) = 5 x 10(-)(7) M). Conjugates having two copies of this peptide, whether connected by a long poly(ethylene glycol) (PEG) spacer or just two amino acids, display about 100-fold greater affinity for fibrils. Placing six copies of ffvlk on a branched PEG resulted in a 10 000-fold greater affinity (K(d) = 1 x 10(-)(10) M) than the monomer peptide. This increased affinity was accompanied by more effective inhibition of the thioflavin T fluorescence signal, which correlates with neurotoxicity of plaques and fibrils. We propose that conjugates bearing several copies of ffvlk may be useful as diagnostic and therapeutic agents for Alzheimer's disease. 相似文献
9.
This highlight article describes three Alzheimer's disease (AD) studies presented at the 5th General Meeting of the International Proteolysis Society that address enzymatic mechanisms for producing neurotoxic beta-amyloid (Abeta) peptides. One group described the poor kinetics of BACE 1 for cleaving the wild-type (WT) beta-secretase site of APP found in most AD patients. They showed that cathepsin D displays BACE 1-like specificity and cathepsin D is 280-fold more abundant in human brain than BACE 1. Nevertheless, as BACE 1 and cathepsin D show poor activity towards the WT beta-secretase site, they suggested continuing the search for additional beta-secretase(s). The second group reported cathepsin B as an alternative beta-secretase possessing excellent kinetic efficiency and specificity for the WT beta-secretase site. Significantly, inhibitors of cathepsin B improved memory, with reduced amyloid plaques and decreased Abeta(40/42) in brains of AD animal models expressing amyloid precursor protein containing the WT beta-secretase site. The third group addressed isoaspartate and pyroglutamate (pGlu) posttranslational modifications of Abeta. Results showed that cathepsin B, but not BACE 1, efficiently cleaves the WT beta-secretase isoaspartate site. Furthermore, cyclization of N-terminal Glu by glutaminyl cyclase generates highly amyloidogenic pGluAbeta(3-40/42). These presentations suggest cathepsin B and glutaminyl cyclase as potential new AD therapeutic targets. 相似文献
10.
Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease 总被引:3,自引:0,他引:3
Recent studies of postmortem brains from Alzheimer's disease (AD) patients and transgenic mouse models of AD suggest that oxidative damage, induced by amyloid beta (Abeta), is associated with mitochondria early in AD progression. Abeta and amyloid-precursor protein are known to localize to mitochondrial membranes, block the transport of nuclear-encoded mitochondrial proteins to mitochondria, interact with mitochondrial proteins, disrupt the electron-transport chain, increase reactive oxygen species production, cause mitochondrial damage and prevent neurons from functioning normally. Furthermore, accumulation of Abeta at synaptic terminals might contribute to synaptic damage and cognitive decline in patients with AD. Here, we describe recent studies regarding the roles of Abeta and mitochondrial function in AD progression and particularly in synaptic damage and cognitive decline. 相似文献
11.
Alzheimer's disease beta-amyloid peptide is increased in mice deficient in endothelin-converting enzyme 总被引:5,自引:0,他引:5
Eckman EA Watson M Marlow L Sambamurti K Eckman CB 《The Journal of biological chemistry》2003,278(4):2081-2084
The abnormal accumulation of beta-amyloid (Abeta) in the brain is an early and invariant feature in Alzheimer's disease (AD) and is believed to play a pivotal role in the etiology and pathogenesis of the disease. As such, a major focus of AD research has been the elucidation of the mechanisms responsible for the generation of Abeta. As with any peptide, however, the degree of Abeta accumulation is dependent not only on its production but also on its removal. In cell-based and in vitro models we have previously characterized endothelin-converting enzyme-1 (ECE-1) as an Abeta-degrading enzyme that appears to act intracellularly, thus limiting the amount of Abeta available for secretion. To determine the physiological significance of this activity, we analyzed Abeta levels in the brains of mice deficient for ECE-1 and a closely related enzyme, ECE-2. Significant increases in the levels of both Abeta40 and Abeta42 were found in the brains of these animals when compared with age-matched littermate controls. The increase in Abeta levels in the ECE-deficient mice provides the first direct evidence for a physiological role for both ECE-1 and ECE-2 in limiting Abeta accumulation in the brain and also provides further insight into the factors involved in Abeta clearance in vivo. 相似文献
12.
Chemokine (C-C motif) receptor 2 (CCR2)-signaling can mediate accumulation of microglia at sites affected by neuroinflammation. CCR2 and its main ligand CCL2 (MCP-1) might also be involved in the altered metabolism of beta-amyloid (Aβ) underlying Alzheimer''s disease (AD). We therefore measured the levels of CCL2 and three other CCR2 ligands, i.e. CCL11 (eotaxin), CCL13 (MCP-4) and CCL26 (eotaxin-3), in the cerebrospinal fluid (CSF) and plasma of 30 controls and 119 patients with mild cognitive impairment (MCI) at baseline. During clinical follow-up 52 MCI patients were clinically stable for five years, 47 developed AD (i.e. cases with prodromal AD at baseline) and 20 developed other dementias. Only CSF CCL26 was statistically significantly elevated in patients with prodromal AD when compared to controls (p = 0.002). However, in patients with prodromal AD, the CCL2 levels in CSF at baseline correlated with a faster cognitive decline during follow-up (r
s = 0.42, p = 0.004). Furthermore, prodromal AD patients in the highest tertile of CSF CCL2 exhibited a significantly faster cognitive decline (p<0.001) and developed AD dementia within a shorter time period (p<0.003) compared to those in the lowest tertile. Finally, in the entire MCI cohort, CSF CCL2 could be combined with CSF Tau, P-tau and Aβ42 to predict both future conversion to AD and the rate of cognitive decline. If these results are corroborated in future studies, CCL2 in CSF could be a candidate biomarker for prediction of future disease progression rate in prodromal AD. Moreover, CCR2-related signaling pathways might be new therapeutic targets for therapies aiming at slowing down the disease progression rate of AD. 相似文献
13.
Pan W Solomon B Maness LM Kastin AJ 《Experimental biology and medicine (Maywood, N.J.)》2002,227(8):609-615
Amyloid-beta peptides (Abeta) play an important role in the pathophysiology of dementia of the Alzheimer's type and in amyloid angiopathy. Abeta outside the CNS could contribute to plaque formation in the brain where its entry would involve interactions with the blood-brain barrier (BBB). Effective antibodies to Abeta have been developed in an effort to vaccinate against Alzheimer's disease. These antibodies could interact with Abeta in the peripheral blood, block the passage of Abeta across the BBB, or prevent Abeta deposition within the CNS. To determine whether the blocking antibodies act at the BBB level, we examined the influx of radiolabeled Abeta (125I-Abeta(1-40)) into the brain after ex-vivo incubation with the antibodies. Antibody mAb3D6 (élan Company) reduced the blood-to-brain influx of Abeta after iv bolus injection. It also significantly decreased the accumulation of Abeta in brain parenchyma. To confirm the in-vivo study and examine the specificity of mAb3D6, in-situ brain perfusion in serum-free buffer was performed after incubation of 125I-Abeta(1-40) with another antibody mAbmc1 (DAKO Company). The presence of mAbmc1 also caused significant reduction of the influx of Abeta into the brain after perfusion. Therefore, effective antibodies to Abeta can reduce the influx of Abeta(1-40) into the brain. 相似文献
14.
15.
While the pathogenesis of the sporadic form of Alzheimer disease (late onset Alzheimer disease, LOAD) is not fully understood, it seems to be clear that a combination of genetic and environmental factors are involved and influence the course of the disease. Among these factors, elevated levels of oxidative stress have been recognized and individual differences in the capacity to deal with DNA damage caused by its effects have been the subject of numerous studies. This review summarizes the research on DNA repair proteins and genes in the context of LOAD pathogenesis and its possible prodromal stage, mild cognitive impairment (MCI). The current status of the research in this field is discussed with respect to methodological issues which might have compromised the outcome of some studies and future directions of investigation on this subject are depicted. 相似文献
16.
Drzezga A 《Methods (San Diego, Calif.)》2008,44(4):304-314
Functional imaging methods such as Positron Emission Tomography (PET) and functional Magnetic Resonance Imaging (fMRI) have contributed inestimably to the understanding of physiological cognitive processes in the brain in the recent decades. These techniques for the first time allowed the in vivo assessment of different features of brain function in the living human subject. It was therefore obvious to apply these methods to evaluate pathomechanisms of cognitive dysfunction in disorders such as Alzheimer's disease (AD) as well. One of the most dominant symptoms of AD is the impairment of memory. In this context, the term "memory" represents a simplification and summarizes a set of complex cognitive functions associated with encoding and retrieval of different types of information. A number of imaging studies assessed the functional changes of neuronal activity in the brain at rest and also during performance of cognitive work, with regard to specific characteristics of memory decline in AD. In the current article, basic principles of common functional imaging procedures will be explained and it will be discussed how they can be reasonably applied for the assessment of memory decline in AD. Furthermore, it will be illustrated how these imaging procedures have been employed to improve early and specific diagnosis of the disease, to understand specific pathomechanisms of memory dysfunction and associated compensatory mechanisms, and to draw reverse conclusions on physiological function of memory. 相似文献
17.
Alzheimer's disease (AD) represents the fourth leading cause of death in the U.S. and the leading cause of dementia in the elderly population. Until recently, there was little hope of finding a way to prevent the underlying brain pathology from progressing toward the inevitable conclusion of the disease. However, new immunotherapeutic approaches have been described that are based on vaccination with the beta-amyloid 1-42 peptide (Abeta). The encouraging efficacy and safety of Abeta immunization in reducing neuropathology in animal models of AD has opened up new therapeutic possibilities for patients. Immunization with Abeta is aimed at reducing the Abeta-associated pathology of AD. It is hypothesized that this approach will also reduce the cascade of downstream events leading to neuronal cell loss and, ultimately, dementia. The ensuing articles in this issue describe various aspects of the Abeta immunization strategy and their potential relevance to AD treatment. 相似文献
18.
Beta-amyloid pathology, the main hallmark of Alzheimer's disease (AD), has been linked to its conformational status and aggregation. We recently showed that site-directed monoclonal antibodies (mAbs) towards the N-terminal region of the human beta-amyloid peptide bind to preformed beta-amyloid fibrils (Abeta), leading to disaggregation and inhibition of their neurotoxic effect. Here we report the development of a novel immunization procedure to raise effective anti-aggregating amyloid beta-protein (AbetaP) antibodies, using as antigen filamentous phages displaying the only EFRH peptide found to be the epitope of these antibodies. Due to the high antigenicity of the phage no adjuvant is required to obtain high affinity anti-aggregating IgG antibodies in animals model, that exhibit identity to human AbetaP. Such antibodies are able to sequester peripheral AbetaP, thus avoiding passage through the blood brain barrier (BBB) and, as recently shown in a transgenic mouse model, to cross the BBB and dissolve already formed beta-amyloid plaques. To our knowledge, this is the first attempt to use as a vaccine a self-anti-aggregating epitope displayed on a phage, and this may pave the way to treat abnormal accumulation-peptide diseases, such as Alzheimer's disease or other amyloidogenic diseases. 相似文献
19.
Opazo C Luza S Villemagne VL Volitakis I Rowe C Barnham KJ Strozyk D Masters CL Cherny RA Bush AI 《Aging cell》2006,5(1):69-79
Neocortical beta-amyloid (Abeta) aggregates in Alzheimer's disease (AD) are enriched in transition metals that mediate assembly. Clioquinol (CQ) targets metal interaction with Abeta and inhibits amyloid pathology in transgenic mice. Here, we investigated the binding properties of radioiodinated CQ ([(125)I]CQ) to different in vitro and in vivo Alzheimer models. We observed saturable binding of [(125)I]CQ to synthetic Abeta precipitated by Zn(2+) (K(d)=0.45 and 1.40 nm for Abeta(1-42) and Abeta(1-40), respectively), which was fully displaced by free Zn(2+), Cu(2+), the chelator DTPA (diethylene triamine pentaacetic acid) and partially by Congo red. Sucrose density gradient of post-mortem AD brain indicated that [(125)I]CQ concentrated in a fraction enriched for both Abeta and Zn, which was modulated by exogenous addition of Zn(2+) or DTPA. APP transgenic (Tg2576) mice injected with [(125)I]CQ exhibited higher brain retention of tracer compared to non-Tg mice. Autoradiography of brain sections of these animals confirmed selective [(125)I]CQ enrichment in the neocortex. Histologically, both thioflavine-S (ThS)-positive and negative structures were labeled by [(125)I]CQ. A pilot SPECT study of [(123)I]CQ showed limited uptake of the tracer into the brain, which did however, appear to be more rapid in AD patients compared to age-matched controls. These data support metallated Abeta species as the neuropharmacological target of CQ and indicate that this drug class may have potential as in vivo imaging agents for Alzheimer neuropathology. 相似文献
20.
Involvement of glutaredoxin-1 and thioredoxin-1 in beta-amyloid toxicity and Alzheimer's disease 总被引:3,自引:0,他引:3
Akterin S Cowburn RF Miranda-Vizuete A Jiménez A Bogdanovic N Winblad B Cedazo-Minguez A 《Cell death and differentiation》2006,13(9):1454-1465
Strong evidence indicates oxidative stress in the pathogenesis of Alzheimer's disease (AD). Amyloid beta (Abeta) has been implicated in both oxidative stress mechanisms and in neuronal apoptosis. Glutaredoxin-1 (GRX1) and thioredoxin-1 (TRX1) are antioxidants that can inhibit apoptosis signal-regulating kinase (ASK1). We examined levels of GRX1 and TRX1 in AD brain as well as their effects on Abeta neurotoxicity. We show an increase in GRX1 and a decrease in neuronal TRX1 in AD brains. Using SH-SY5Y cells, we demonstrate that Abeta causes an oxidation of both GRX1 and TRX1, and nuclear export of Daxx, a protein downstream of ASK1. Abeta toxicity was inhibited by insulin-like growth factor-I (IGF-I) and by overexpressing GRX1 or TRX1. Thus, Abeta neurotoxicity might be mediated by oxidation of GRX1 or TRX1 and subsequent activation of the ASK1 cascade. Deregulation of GRX1 and TRX1 antioxidant systems could be important events in AD pathogenesis. 相似文献