首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Campylobacter jejuni is prevalent in poultry, but the effect of combined refrigerated and frozen storage on its survival, conditions relevant to poultry processing and storage, has not been evaluated. Therefore, the effects of refrigeration at 4°C, freezing at −20°C, and a combination of refrigeration and freezing on the survival of C. jejuni in ground chicken and on chicken skin were examined. Samples were enumerated using tryptic soy agar containing sheep's blood and modified cefoperazone charcoal deoxycholate agar. Refrigerated storage alone for 3 to 7 days produced a reduction in cell counts of 0.34 to 0.81 log10 CFU/g in ground chicken and a reduction in cell counts of 0.31 to 0.63 log10 CFU/g on chicken skin. Declines were comparable for each sample type using either plating medium. Frozen storage, alone and with prerefrigeration, produced a reduction in cell counts of 0.56 to 1.57 log10 CFU/g in ground chicken and a reduction in cell counts of 1.38 to 3.39 log10 CFU/g on chicken skin over a 2-week period. The recovery of C. jejuni following freezing was similar on both plating media. The survival following frozen storage was greater in ground chicken than on chicken skin with or without prerefrigeration. Cell counts after freezing were lower on chicken skin samples that had been prerefrigerated for 7 days than in those that had been prerefrigerated for 0, 1, or 3 days. This was not observed for ground chicken samples, possibly due to their composition. C. jejuni survived storage at 4 and −20°C with either sample type. This study indicates that, individually or in combination, refrigeration and freezing are not a substitute for safe handling and proper cooking of poultry.  相似文献   

2.
The aim of this study was to determine the survival of Campylobacter jejuni in chicken meat samples at frozen temperatures and given length of incubation and to determine the impact of aerobic bacteria on the survival of C. jejuni. The chicken meat samples were inoculated with C. jejuni NCTC 11351 suspensions and stored in bags at temperatures of -20°C and -70°C. The mean value of C. jejuni from meat samples decreased from 7.52 log10 CFU/g after 30 minutes of incubation at ambient temperature, to 3.87 log10 CFU/g on the eighth week of incubation at -20°C, and to 3.78 log10 CFU/g at incubation at -70°C after the same incubation period. Both freezing temperatures, -20°C and -70°C, decreased the number of campylobacters. The presence of aerobic mesophilic bacteria did not influence the survival of C. jejuni in chicken meet samples. Keeping poultry meat at freezing temperatures is important for the reduction of C. jejuni, which has a strong influence on the prevention of occurrence of campylobacteriosis in humans.  相似文献   

3.
Campylobacter jejuni and Campylobacter-specific bacteriophage were enumerated from broiler chicken ceca selected from 90 United Kingdom flocks (n = 205). C. jejuni counts in the presence of bacteriophage (mean log(10) 5.1 CFU/g) were associated with a significant (P < 0.001) reduction compared to samples with Campylobacter alone (mean log(10) 6.9 CFU/g).  相似文献   

4.
5.
Recognition of Campylobacter fetus subsp. jejuni (referred to hereafter as C. jejuni) as an important human pathogen and its isolation from meat products indicate the need for knowledge of its survival characteristics in meats. Thermal death times (D-values) for a single strain and a five-strain composite were determined in 1% peptone and autoclaved ground chicken meat at temperatures ranging from 49 to 57 degrees C. Survival was determined for these strains in chicken meat at 4, 23, 37, and 43 degrees C. Survival was also determined on raw chicken drumsticks stored at 4 degrees C in either an ambient or a CO2 atmosphere. D-values were greater in chicken meat than in peptone in all cases. D-values in peptone for strain H-840 at 49, 51, 53, 55, and 57 degrees C were 15.2, 4.90, 1.71, 0,64, and 0.25 min, respectively. The corresponding D-values in ground chicken meat were 20.5, 8.77, 4.85, 2.12, and 0.79 min, respectively. Similar results were obtained with a composite of five strains. When sterile ground chicken meat was inoculated with approximately 10(6) to 10(7) C. jejuni cells per g and stored at 37 degrees C in an ambient atmosphere, a 1-to 2-log count increase occurred during the first 4 days, followed by a gradual decline of about 1 log during the remainder of the 17-day storage period. No growth was observed among similarly inoculated samples that were stored at 4, 23, and 43 degrees C but counts declined by about 1 to 2 logs at 4 degrees C (17 day), by 2.5 to 5 logs at 23 degrees C (17 days), and to undetectable levels at 43 degrees C (between 10 and 16 days). Survival on raw chicken drumsticks stored at 4 degrees C in CO2 and in an ambient atmosphere declined by about 1.5 and 2.0 logs, respectively, during 21 days of storage. The effect of temperature on the survival of C. jejuni in chicken meat was similar to that reported in other natural and laboratory milieus. Ordinary cooking procedures that destroy salmonellae would be expected to destroy C. jejuni.  相似文献   

6.
Campylobacter jejuni is often prevalent in turkey and poultry, but the effects of storage temperatures and storage periods and the interruption of the cooling chain on its survival have not been evaluated so far. In this study, 700 samples of turkey meat were artificially contaminated by inoculating their surface with 10(3) CFU of C. jejuni per sample, wrapped in airtight cellophane bags, and stored under different chilling and freezing conditions for various storage periods; this was followed by analysis of the cultures. Subsequent to incubation at 25 degrees C for 48 h, C. jejuni was reisolated in only 7% of the samples. When the samples were stored under refrigerator conditions at 4 degrees C, the organism was reisolated in 42% of the samples after 1 week, and in 28% of the samples after 2 weeks. The recovery rates in the samples that had been stored frozen at -20 degrees C without interruption of the cooling chain were 68% after 2 weeks and 24% after 4 weeks. Different storage conditions were simulated in order to examine the impact of an interruption of the cooling chain on the survival of Campylobacter.  相似文献   

7.
Campylobacter jejuni is a major cause of diarrheal disease and food-borne gastroenteritis. The main reservoir of C. jejuni in poultry is the cecum, with an estimated content of 6 to 8 log10 CFU/g. If a flock is infected with C. jejuni, the majority of the birds in that flock will harbor the bacterium. Diagnostics at the flock level could thus be an important control point. The aim of the work presented here was to develop a complete quantitative PCR-based detection assay for C. jejuni obtained directly from cecal contents and fecal samples. We applied an approach in which the same paramagnetic beads were used both for cell isolation and for DNA purification. This integrated approach enabled both fully automated and quantitative sample preparation and a DNA extraction method. We developed a complete quantitative diagnostic assay through the combination of the sample preparation approach and real-time 5'-nuclease PCR. The assay was evaluated both by spiking the samples with C. jejuni and through the detection of C. jejuni in naturally colonized chickens. Detection limits between 2 and 25 CFU per PCR and a quantitative range of >4 log10 were obtained for spiked fecal and cecal samples. Thirty-one different poultry flocks were screened for naturally colonized chickens. A total of 262 (204 fecal and 58 cecal) samples were analyzed. Nineteen of the flocks were Campylobacter positive, whereas 12 were negative. Two of the flocks contained Campylobacter species other than C. jejuni. There was a large difference in the C. jejuni content, ranging from 4 to 8 log10 CFU/g of fecal or cecal material, for the different flocks tested. Some issues that have not yet promoted much attention are the prequantitative differences in the ability of C. jejuni to colonize poultry and the importance of these differences for causing human disease through food contamination. Understanding the colonization kinetics in poultry is therefore of great importance for controlling human infections by this bacterium.  相似文献   

8.
Survival of Campylobacter jejuni inoculated into ground beef.   总被引:3,自引:2,他引:1       下载免费PDF全文
Ground beef was inoculated with mixed cultures of Campylobacter jejuni, and the samples were subjected to various cooking and cold-storage temperatures. When samples were heated in an oven at either 190 or 218 degrees C, approximately 10(7) cells of C. jejuni per g were inactivated (less than 30 cells per g) in less than 10 min after the ground beef reached an internal temperature of 70 degrees C. When the samples were held at -15 degrees C over 14 days of storage, the numbers of C. jejuni declined by 3 log10. When inoculated samples were stored with an equal amount of Cary-Blair diluent at 4 degrees C, no changes in viability were observed over 14 days of storage. Twenty-five times as much C. jejuni was recovered from inoculated ground beef when either 10% glycerol or 10% dimethyl sulfoxide was added to an equal amount of ground beef before freezing as was recovered from peptone-diluted ground beef. Twice as much inoculated C. jejuni was recovered from ground beef plus Cary-Blair diluent as was recovered from ground beef plus peptone diluent.  相似文献   

9.
Campylobacter jejuni in fresh chilled chicken meat is known to be a major risk factor for human gastrointestinal disease. In the present study, the survival under chilled conditions of different C. jejuni strains exposed to different gas mixtures usually used for gas packaging of food was examined. Bolton broth and fresh, skinless chicken fillets were inoculated with six and four strains, respectively, and exposed to the gas mixtures 70/30% O(2)/CO(2), 70/30% N(2)/CO(2), and 100% N(2) (the latter only investigated in broth) at refrigeration temperature (4-5 degrees C). In broth culture, the strains survived significantly longer when exposed to 100% N(2) and 70/30% N(2)/CO(2) than in the oxygen-containing gas mixture, 70/30% O(2)/CO(2) (P<0.0001). For the two anaerobic gas mixtures, the reductions only reached 0.3-0.8 log(10) CFU mL(-1) within the same period. In the presence of oxygen, the numbers of C. jejuni were reduced by a minimum of 4.6 log(10) CFU mL(-1) over 21 days. When inoculated onto chicken fillets, the C. jejuni strains also died significantly faster in the oxygen-containing gas mixture, 70/30% O(2)/CO(2) (P<0.0001), reaching reductions of 2.0-2.6 log(10) CFU g(-1) after 8 days. In the gas mixture without oxygen (70/30% N(2)/CO(2)), no reductions were observed.  相似文献   

10.
AIMS: To investigate the survival of two animal isolates of Campylobacter jejuni on beef trimmings during freezing and frozen storage. METHODS AND RESULTS: Meat packs inoculated with 10(3) or 10(6) cfu g(-1) of either strain of C. jejuni were frozen to -18 degrees C, and sampled at regular intervals over 112 d storage to determine Campylobacter numbers and sublethal injury. For both strains and inoculation levels the numbers of Campylobacter decreased in the first 7 d of storage by ca. 0.6-2.2 log cfu g(-1) and then remaining constant over the remainder of the storage trial, with neither isolate exhibiting sublethal injury. CONCLUSIONS: Despite an initially significant decrease in number, these pathogens were able to survive standard freezing conditions in meat, but did not exhibit sublethal injury. SIGNIFICANCE AND IMPACT OF THE STUDY: Strict hygiene and/or the implementation of decontamination technologies are recommended as a means to assure the safety of meat with respect to this pathogen.  相似文献   

11.
Survival of 5 strains of Campylobacter jejuni/coli in ground beef liver stored at 4° C and at –20° C was studied. After 6 days of storage at 4° C the beef liver was spoiled, which was indicated by APG log 7.25 and lactobacilli count log 7.0. During this storage Campylobacter counts decreased only slightly. After 12 weeks of storage at –20° C Campylobacter counts decreased by 2–3 logs in frozen ground beef liver. Survival of 4 strains of C. jejuni/coli on frozen broiler carcasses was also studied. Two inoculation levels, 103–104/g and 104–105/g were used. On frozen broiler carcasses Campylobacter counts decreased by 0.5–2.0 logs during 12 weeks at –20° C.  相似文献   

12.
Four of five strains of Campylobacter jejuni survived in chicken meat stored at -18 degrees C for 12 months. Direct plating of samples was superior to the most probable number technique for enumerating C. jejuni. Enrichment culture using the Doyle & Roman enrichment method resulted in the highest rates of detection. Packaging under an atmosphere of CO2 did not substantially influence survival.  相似文献   

13.
Inactivation of Escherichia coli O157:H7 and Salmonella typhimurium was evaluated on inoculated chicken by aqueous chlorine dioxide (ClO2) treatment. Chicken samples were inoculated with 6-7 log CFU/g of Escherichia coli O157:H7 and Salmonella typhimurium, respectively. The chicken samples were then treated with 0, 50, and 100 ppm of ClO2 solution and stored at 4 +/- 1 degrees C. Aqueous ClO2 treatment decreased the populations of the pathogenic bacteria on the chicken breast and drumstick. In particular, 100 ppm ClO2 treatment on the chicken breast and drumstick reduced Escherichia coli O157:H7 and Salmonella typhimurium by 1.00-1.27 and 1.37-1.44 log CFU/g, respectively. Aqueous ClO2 treatment on the growth of the bacteria was continuously in effect during storage, resulting in the decrease of the populations of Escherichia coli O157:H7 and Salmonella typhimurium. These results suggest that aqueous ClO2 treatment should be useful in improving the microbial safety of chicken during storage.  相似文献   

14.
Objective:  To determine the effect of refrigeration time and temperature on Salmonella cell numbers on inoculated chicken carcasses and their transfer to a plastic cutting board.
Methods and Results:  The survival of Salmonella on chicken skin and the transfer to a plastic cutting board when exposed to different refrigeration temperatures (2, 6 or 8°C) for 9 days were the two main issues on which this work focused. Two scenarios were carried out to ascertain these effects: carcasses treated with a decontaminating acetic acid solution and untreated carcasses. All of the contaminated carcasses remained contaminated after 9 days of refrigeration. However, on untreated samples, while Salmonella numbers increased almost 1·5 log at 8°C, the pathogen numbers decreased about 1 log at 2 and 6°C. On acid-treated samples, cell numbers slightly decreased at all of the temperatures studied. Temperature did not affect salmonellae transfer to the cutting board, but time did. Acid decontamination increased cell numbers transferred to the cutting board compared with untreated samples.
Conclusion:  Proper refrigeration at low temperatures did not allow Salmonella numbers to rise, regardless of which carcasses had been, or had not been, acid treated. Despite the fact that the rate of transfer was not affected by temperature, the acid treatment detached Salmonella cells from the chicken skin and, therefore, the probability of greater cross-contamination should be studied further.
Significance and Impact of the Study:  The results of this study may provide better information about the refrigeration conditions for fresh chicken storage and also determine if these, along with acetic acid decontamination of broiler chicken, would affect the pathogen transfer to a cutting board.  相似文献   

15.
Spray drying of skim milk was evaluated as a means of preserving Lactobacillus paracasei NFBC 338 and Lactobacillus salivarius UCC 118, which are human-derived strains with probiotic potential. Our initial experiments revealed that NFBC 338 is considerably more heat resistant in 20% (wt/vol) skim milk than UCC 118 is; the comparable decimal reduction times were 11.1 and 1.1 min, respectively, at 59 degrees C. An air outlet temperature of 80 to 85 degrees C was optimal for spray drying; these conditions resulted in powders with moisture contents of 4.1 to 4.2% and viable counts of 3.2 x 10(9) CFU/g for NFBC 338 and 5.2 x 10(7) CFU/g for UCC 118. Thus, L. paracasei NFBC 338 survived better than L. salivarius UCC 118 during spray drying; similar results were obtained when we used confocal scanning laser microscopy and LIVE/DEAD BacLight viability staining. In addition, confocal scanning laser microscopy revealed that the probiotic lactobacilli were located primarily in the powder particles. Although both spray-dried cultures appeared to be stressed, as shown by increased sensitivity to NaCl, bacteriocin production by UCC 118 was not affected by the process, nor was the activity of the bacteriocin peptide. The level of survival of NFBC 338 remained constant at approximately 1 x 10(9) CFU/g during 2 months of powder storage at 4 degrees C, while a decline in the level of survival of approximately 1 log (from 7.2 x 10(7) to 9.5 x 10(6) CFU/g) was observed for UCC 118 stored under the same conditions. However, survival of both Lactobacillus strains during powder storage was inversely related to the storage temperature. Our data demonstrate that spray drying may be a cost-effective way to produce large quantities of some probiotic cultures.  相似文献   

16.
The adhesion of Campylobacter jejuni to chicken skin, along with the associated morphological changes under aerobic conditions at 4, 25, and 37 degrees C and microaerobic (O2 5%, CO2 10%, N2 85%) conditions, were investigated using confocal laser scanning microscopy (CLSM), flow cytometry, and plate counting. The morphological change of C. jejuni from a spiral shape to a coccoid form or VBNC form (viable but nonculturable form) progressed rapidly under aerobic conditions at 25, 37, and 4 degrees C. As regards adhesion, the C. jejuni cells were mostly located in the crevices and feather follicles of the chicken skin, where the cells in the feather follicles floated freely in the entrapped water, even after the skin was rinsed quite thoroughly. CLSM also revealed the penetration of some spiral-shaped C. jejuni cells into the chicken skin. Even after changing their shape at various temperatures, coccoid-form C. jejuni cells were still found in the crevices and feather follicles of the chicken skin.  相似文献   

17.
Freeze-dried cultures of Campylobacter jejuni are used in the food and microbiological industry for reference materials and culture collections. However, C. jejuni is very susceptible to damage during freeze-drying and subsequent storage and it would be useful to have longer-lasting cultures. The survival of C. jejuni during freeze-drying and subsequent storage was investigated with the aim of optimising survival. C. jejuni was freeze-dried using cultures of different age (24-120 h), various lyoprotectants (10% phytone peptone, proteose peptone, peptonized milk, trehalose, soytone and sorbitol), various storage (air, nitrogen and vacuum) and re-hydration (media, temperature and time) conditions. One-day-old cultures had significantly greater survival after freeze-drying than older cultures. The addition of trehalose to inositol broth as a lyoprotectant resulted in almost 2 log(10) increase in survival after 2 months storage at 4 degrees C. Storage in a vacuum atmosphere and re-hydration in inositol broth at 37 degrees C increased recovery by 1-2 log(10) survival compared to re-hydration in maximal recovery diluent (MRD) after storage at 4 degrees C. Survival during storage was optimal when a one-day-old culture was freeze-dried in inositol broth plus 10% (w/v) trehalose, stored under vacuum at 4 degrees C and re-hydrated at the same incubation temperature (37 degrees C) in inositol broth for 30 min. The results demonstrate that the survival of freeze-dried cells of C. jejuni during storage can be significantly increased by optimising the culture age, the lyoprotectant, and the storage and re-hydration conditions. The logarithmic rate of loss of viability (K) followed very well an inverse dependence on the absolute temperature, i.e., the Arrhenius rate law. Extrapolation of the results to a more typical storage temperature (4 degrees C) predicted a very low K value of 1.5 x 10(-3). These results will be useful to the development of improved reference materials and samples held in culture collections.  相似文献   

18.
AIM: To investigate how many Campylobacter bacteria are present on the surface and inside chicken breast fillets, with a focus on generating data distributions which can be used in risk assessments for this pathogen-commodity combination. METHODS AND RESULTS: We analysed 100 fresh retail chicken breast fillets (skinless and deboned) by means of a rinse sample for surface and 55 fillets for internal pathogen contamination using 10 g meat and a most probable number technique. Prevalence was 87% on the surface and 20% in the deep tissue. The mean number of Campylobacter on the surface of the fillets was 1903 CFU, with a median of 537 CFU and a maximum of 38,905 CFU. Campylobacter counts inside the tissue were <1 CFU g(-1) meat (mean = 0.24 CFU, median = 0.15 CFU, maximum = 0.74 CFU). In addition, we investigated the influence of the type of package on the occurrence of the pathogen. Data provide an indication of less favourable conditions for survival of the pathogen on chicken meat packed under a modified atmosphere of carbon dioxide in nitrogen, in comparison with ambient air or vacuumed packages. CONCLUSIONS: Given the high numbers of the pathogen on the chicken meat surface in comparison with low levels of internal contamination, it can be concluded that cross-contamination during the preparation of contaminated chicken is a more important pathway for consumers' exposure to Campylobacter than the consumption of undercooked meat. Significance AND IMPACT OF THE STUDY: The detailed quantitative data on the occurrence of C. jejuni and C. coli on the surface and inside chicken meat presented here can be useful for future probabilistic exposure assessments.  相似文献   

19.
Pieces of fresh beef were inoculated with three strains of Campylobacter jejuni. The meat was then allocated to three treatments: (a) vacuum packaged, (b) packaged in an atmosphere of 20% CO2 + 80% N2, and (c) packaged into sterile Petri dishes in anaerobic cultivation boxes, which were filled with a gas mixture of 5% O2 + 10% CO2 + 85% N2. The packaging material in the first two treatments was PA 80/PE 100-PE 100/PA 80/PE 100. The survival of Campylobacter cells was followed at 37 degrees C, 20 degrees C and 4 degrees C for 48 h, 4 days and 25 days, respectively. At 37 degrees C the counts of two Campylobacter strains increased in each package treatment for 48 h. At 20 degrees C and at 4 degrees C the counts of the same two strains decreased by 1 to 2 log units and 0.5 to 1 log unit, respectively, during storage. The survival of the two strains was about the same in all package treatments. The third strain was the most sensitive of the strains studied. At 37 degrees C its numbers increased only in the optimal gas atmosphere; at 20 degrees C the strain was not detectable after 24 to 48 h storage and at 4 degrees C after 4 days storage. The aerobic plate counts were determined for all samples at the same time as Campylobacter counts. The high indigenous bacterial numbers of the meat samples did not appear to have a great effect on the survival or growth of campylobacters.  相似文献   

20.
A study was undertaken to compare several enrichment and direct isolation media for their suitability to detect and enumerate five strains of Campylobacter jejuni in refrigerated (5 degrees C) chicken meat. The influence of CO2 on survival at 5 degrees C was also investigated. Selective enrichment media evaluated included Preston broth (PB), selective semisolid brucella medium (SSBM), Campylobacter enrichment broth (CEB), VTP brucella-FBP broth (VTP), Rosef and Kapperud Campylobacter enrichment broth (RKCEB), and Doyle and Roman enrichment broth (DREB). Direct isolation agars included Campy brucella agar (CBAP), blood-free Campylobacter medium (BFCM) and modified Butzler agar (MBA). Comminuted chicken meat was inoculated with C. jejuni, sealed under atmospheric gas or CO2, and stored at 5 degrees C for up to 21 days. Viable population was determined by the most-probable-number technique (PB, SSBM, CEB, VTP, and RKCEB, followed by plating on CBAP, BFCM, and MBA), enrichment on DREB, followed by plating on CBAP, BFCM, and MBA, and direct isolation on CBAP, BFCM, and MBA. Without exception, direct plating of samples was superior to the most-probable-number technique for enumerating C. jejuni; MBA was inferior to CBAP and BFCM, and DREB performed at least as well as other enrichment media evaluated. Carbon dioxide afforded protection against death of three of the five strains of C. jejuni tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号