首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dürr H  Salomon M  Rüdiger W 《Biochemistry》2005,44(8):3050-3055
Phototropins are a family of plant photoreceptors mediating blue light responses such as phototropism, leaf expansion, chloroplast relocation, and stomatal opening. Characteristic for phototropins are two LOV domains which, when expressed in heterologous systems, each carry a single flavin mononucleotide (FMN) chromophore. Here we describe removal of FMN from the LOV2 domain of Avena sativa using a hydrophobic matrix and successful incorporation of flavin adenine dinucleotide (FAD), riboflavin, and 5'-malonyl-riboflavin into the resulting apoprotein; 5-deaza-FMN was not incorporated under the applied conditions. The chromoproteins reconstituted with the various flavins showed absorption spectra and photocycle almost identical to those of the native LOV2 domain and that reconstituted with FMN except for the kinetics: LOV2-riboflavin and LOV2-5'-malonyl-riboflavin showed more rapid regeneration in the dark. LOV2-FAD can be hydrolyzed to LOV2-FMN with phosphodiesterase, indicating that the adenosine part extrudes from the protein. Together with the data from the X-ray structure (Crosson, S., and Moffat, K. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 2995-3000), the results allow us to decide which of the chromophore-protein interactions are essential for the reconstitution process.  相似文献   

2.
Phototropins (phot1 and phot2), the plant blue-light receptors for phototropism, chloroplast movement, and stomatal opening, are flavoproteins that contain two approximately 12 kDa FMN-binding domains, LOV1 and LOV2, at their N-terminus, and a serine/threonine protein kinase domain at their C-terminus. The light-activated LOV2 domain forms a metastable intermediate which has been shown to be a protein-chromophore cysteinyl adduct (Cys39) at C(4a) of FMN. This species thermally relaxes back to the ground state in the dark. We measured the light-minus-dark FTIR difference spectra for the LOV2 domain of oat phot1. These spectra show the disappearance of bands at 1580, 1550, and 1350 cm(-1) that originate from, or are strongly coupled to, the N5=C(4a) stretching vibrations, consistent with the perturbations expected upon C(4a) adduct formation. Assignment of these negative difference FTIR bands to native chromophore vibrations is based on the alignment with resonance Raman bands of FMN. Prominent positive bands include a doublet at 1516 and 1536 cm(-1) and one at 1375 and 1298 cm(-1). Normal-mode vibrational-frequency calculations for both lumiflavin and lumiflavin with a sulfur attached at the C(4a) position agree with many of the positive and negative bands observed in the difference spectra. Both calculated and experimental difference FTIR spectra for deuterium isotope substitutions at exchangeable positions in the flavin chromophore are consistent with the assignment of the above positive bands to vibrational modes involving both the newly formed tetrahedral geometry of C(4a) and the N5-H bond in the long-lived LOV2(S)(390) cysteinyl species.  相似文献   

3.
Phototropins (phot1 and phot2) are blue light receptor kinases that control a range of photoresponses that serve to optimize the photosynthetic efficiency of plants. Light sensing by the phototropins is mediated by a repeated motif at the N-terminal region of the protein known as the LOV domain. Bacterially expressed LOV domains bind flavin mononucleotide noncovalently and are photochemically active in solution. Irradiation of the LOV domain results in the formation of a flavin-cysteinyl adduct (LOV390) which thermally relaxes back to the ground state in the dark, effectively completing a photocycle that serves as a molecular switch to control receptor kinase activity. We have employed a random mutagenesis approach to identify further amino acid residues involved in LOV-domain photochemistry. Escherichia coli colonies expressing a mutagenized population of LOV2 derived from Avena sativa (oat) phot1 were screened for variants that showed altered photochemical reactivity in response to blue light excitation. One variant showed slower rates of LOV390 formation but exhibited adduct decay times 1 order of magnitude faster than wild type. A single Ile --> Val substitution was responsible for the effects observed, which removes a single methyl group found in van der Waals contact with the cysteine sulfur involved in adduct formation. A kinetic acceleration trend was observed for adduct decay by decreasing the size of the isoleucine side chain. Our findings therefore indicate that the steric nature of this amino acid side chain contributes to stabilization of the C-S cysteinyl adduct.  相似文献   

4.
Conformational changes of Arabidopsis phot1-LOV2 with the linker (phot1-LOV2-linker) were investigated from the viewpoint of the changes in molecular volume and molecular diffusion coefficient (D) by time-resolved transient grating (TG) and transient lens (TrL) methods. Although the absorption spectrum change completes within a few microseconds, the D-value detected by the TG method decreased drastically with a time constant of 1.0 ms from 9.2(+/-0.4)x10(-11) m(2)/s to 5.0(+/-0.3)x10(-11) m(2)/s. This time-dependent D was interpreted in terms of the unfolding of alpha-helices in the linker region. The change of the alpha-helices was confirmed by observing the recovery of the circular dichroism intensity. The TrL signal showed that the molecular volume decreases with two time constants; 300 micros and 1.0 ms. The former time constant is close to the previously observed photo-dissociation reaction rate of the phot1-LOV2 (without the linker) dimer, and the latter one agrees well with the rate of the D-change. Considering a similar time constant of the dissociation reaction of the LOV2 dimer, we interpreted these kinetics in terms of the dissociation step of the linker region from the LOV2 domain (T(390)(pre) state). After this step, the protein volume and D are decreased significantly with the lifetime of 1.0 ms. The D decrease indicates the increase of the intermolecular interaction between the protein and water molecules. On the basis of these observations, a two-step mechanism of the linker unfolding is proposed.  相似文献   

5.
Phototropins (phot1 and phot2) are blue light-activated serine/threonine protein kinases that elicit a variety of photoresponses in plants. Light sensing by the phototropins is mediated by two flavin mononucleotide (FMN)-binding domains, designated LOV1 and LOV2, located in the N-terminal region of the protein. Exposure to light results in the formation of a covalent adduct between the FMN chromophore and a conserved cysteine residue within the LOV domain. LOV2 photoexcitation is essential for phot1 function in Arabidopsis and is necessary to activate phot1 kinase activity through light-induced structural changes within a conserved alpha-helix situated C-terminal to LOV2. Here we have used site-directed mutagenesis to identify further amino acid residues that are important for phot1 activation by light. Mutagenesis of bacterially expressed LOV2 and full-length phot1 expressed in insect cells indicates that perturbation of the conserved salt bridge on the surface of LOV2 does not play a role in receptor activation. However, mutation of a conserved glutamine residue (Gln(575)) within LOV2, reported previously to be required to propagate structural changes at the LOV2 surface, attenuates light-induced autophosphorylation of phot1 expressed in insect cells without compromising FMN binding. These findings, in combination with double mutant analyses, indicate that Gln(575) plays an important role in coupling light-driven cysteinyl adduct formation from within LOV2 to structural changes at the LOV2 surface that lead to activation of the C-terminal kinase domain.  相似文献   

6.
Okajima K  Matsuoka D  Tokutomi S 《FEBS letters》2011,585(21):3391-3395
Phototropin is a blue light receptor in plants and is thought to be a light-regulated protein kinase. Previously, we defined the role of the photoreceptive domains, LOV1 and 2, in the light activation of the kinase in Arabidopsis phototropin2 (phot2). In this study, photoregulation of the kinase in phototropin1 (phot1) was studied using LOV2-linker-kinase polypeptide. We designed a new substrate consisting of the N-terminal part of the phot1 with autophosphorylation sites. The LOV2-linker-kinase had the same spectroscopic properties as those of the LOV2 core and phosphorylated the substrate in a light-dependent manner. Amino acid substitution experiments proved that the phosphorylation comes from the activation of the kinase via photoreaction of LOV2.  相似文献   

7.
Photochemical reaction of a plant blue-light photoreceptor, Arabidopsis phototropin 1-LOV (light-oxygen-voltage sensing) domain 2, was studied with a view to the diffusion coefficients (D) using the pulsed-laser-induced transient grating method. Although the reaction dynamics completes at a rate of several microseconds as long as it is monitored by the absorption change, the diffusion coefficient was found to be time-dependent in a time range of submilliseconds to seconds. The observed signal can be analyzed by the two-state model, which includes the D-value decrease from D of the reactant (9.8 +/- 0.4) x 10(-11) m2/s to D of the product (8.0 +/- 0.4) x 10(-11) m2/s. The D-value of the reactant implies that the dominant form in the ground state of phototropin 1 LOV2 is the monomeric form in a concentration range of 50-200 microM. According to the Stokes-Einstein relationship, the D-change can be explained by a volume increase of 1.8 times. Furthermore, the rate of the D-change was roughly proportional to the concentration of the sample. These two observations indicate that the LOV2 domain transiently forms a dimer upon photoexcitation. When the sample concentration is increased (>180 microM), a new signal component appears within a few milliseconds. This signal represents a D increase from 8.0 x 10(-11) m2/s to 9.8 x 10(-11) m2/s with a time constant of 300 micros. The completely opposite D-change from that observed in a lower concentration, as well as the concentration dependence, implies that a dimer is formed in the ground state in a higher concentration range, even though the fraction of the dimer is still minor in this range. This dimer is photodissociated, with a time constant of 300 micros. This research clearly shows that the time-resolved diffusion measurement is a very powerful tool for detecting spectrally silent association/dissociation processes during chemical reactions. The photoreaction of the LOV2 domain is discussed.  相似文献   

8.
The phototropins are a family of membrane-associated flavoproteins that function as the primary blue light receptors regulating phototropism, chloroplast movements, stomatal opening, and leaf expansion in plants. Phot1, a member of this family, contains two FMN-binding domains, LOV1 and LOV2, within the N-terminal region and a C-terminal serine-threonine protein kinase domain. Light irradiation of oat phot1 LOV2 produces a cysteinyl adduct (Cys-39) at the flavin C(4a) position, which decays thermally back to the dark state. We measured pH and isotope effects on the photocycle. Between pH 3.7 and 9.5, adduct formation showed minimal pH dependence, and adduct decay showed only slight pH dependence, indicating that the pK values of mechanistically relevant groups are outside this range. LOV2 showed a nearly 5-fold slowing of adduct formation in D(2)O relative to H(2)O, indicating that the rate-limiting step involves proton transfer(s). Light-induced changes in the far UV CD spectrum of LOV2 revealed putative protein structural perturbations. The light minus dark CD difference spectrum resembles an inverted alpha-helix spectrum, suggesting that alpha-helicity is reversibly lost upon light irradiation. Decay kinetics for CD spectral changes in the far UV region occur at the same rate as those in the visible region, indicating synchronous relaxation of protein and chromophore structures.  相似文献   

9.
Phototropin, a blue-light receptor protein of plants, triggers phototropic responses, chloroplast relocation, and opening of stomata to maximize the efficiency of photosynthesis. Phototropin is composed of two light-oxygen-voltage sensing domains (LOV1 and LOV2) that absorb blue light and a serine/theroine kinase domain responsible for light-dependent autophosphorylation leading to cellular signaling cascades. Although the light-activated LOV2 domain is primarily responsible for subsequent activation of the kinase domain, it is unclear how conformational changes in the former transmit to the latter. To understand this molecular mechanism in Arabidopsis phototropin 2, we performed small-angle X-ray scattering analysis on a fragment composed of the LOV2 and kinase domains, which contained an Asp720Asn mutation that led to an absence of ATP binding activity. The scattering data were collected up to a resolution of 25 ?. The apparent molecular weight of the fragment estimated from scattering intensities demonstrated that the fragment existed in a monomeric form in solution. The fragment exhibited photoreversible changes in the scattering profiles, and the radii of gyration under dark and blue-light irradiation conditions were 32.4 and 34.8 ?, respectively. In the dark, the molecular shape restored from the scattering profile appeared as an elongated shape of 110 ? in length and 45 ? in width. The homology modeled LOV2 and kinase domains could be fitted to the molecular shape and appeared to make slight contact. However, under blue-light irradiation, a more extended molecular shape was observed. The changes in the molecular shape and radius of gyration were interpreted as a light-dependent positional shift of the LOV2 domain of approximately 13 ? from the kinase domain. Because the region connecting the LOV2 and kinase domains was categorized as a naturally unfolded polypeptide, we propose that the light-activated LOV2 domain triggers conformational changes in the linker region to separate the LOV2 and kinase domains.  相似文献   

10.
UV and blue light signal transduction in Arabidopsis   总被引:8,自引:0,他引:8  
  相似文献   

11.
Phototropin is a membrane-bound UV-A/blue light photoreceptor of plants responsible for phototropism, chloroplast migration and stomatal opening. Characteristic are two LOV domains, each binding one flavin mononucleotide, in the N-terminal half and having a serine/threonine kinase domain in the C-terminal half of the molecule. We purified the N-terminal half of oat phototropin 1, containing LOV1 and LOV2 domains, as a soluble fusion protein with the calmodulin binding peptide (CBP) by expression in Escherichia coli. Gel chromatography showed that it was dimeric in solution. While the fusion protein CBP-LOV2 was exclusively monomeric in solution, the fusion protein CBP-LOV1 occurred as monomer and dimer. The proportion of dimer increased on prolonged incubation. We conclude that native phototropin is a dimer and that the LOV1 domain is probably responsible for dimerization.  相似文献   

12.
The phototropins constitute an important class of plant photoreceptor kinases that control a range of physiological responses, including phototropism, light-directed chloroplast movement, and light-induced stomatal opening. The LOV2 domain of phototropin binds a molecule of flavin mononucleotide (FMN) and undergoes a photocycle involving light-driven covalent adduct formation between a conserved cysteine residue and the C(4a) atom of FMN. This product state promotes C-terminal kinase activation and downstream signal transduction. Here, we report the primary photophysics and photochemistry of LOV2 domains of phototropin 1 of Avena sativa (oat) and of the phy3 photoreceptor of Adiantum capillus-veneris (maidenhair fern). In agreement with earlier reports [Swartz, T. E., et al. (2001) J. Biol. Chem. 276, 36493-36500], we find that the FMN triplet state is the reactive species from which the photoreaction occurs. We demonstrate that the triplet state is the primary photoproduct in the LOV2 photocycle, generated at 60% efficiency. No spectroscopically distinguishable intermediates precede the FMN triplet on the femtosecond to nanosecond time scale, indicating that it is formed directly via intersystem crossing (ISC) from the singlet state. Our results indicate that the majority of the FMN triplets in the LOV2 domain exist in the protonated form. We propose a reaction mechanism that involves excited-state proton transfer, on the nanosecond time scale or faster, from the sulfhydryl group of the conserved cysteine to the N5 atom of FMN. This event promotes adduct formation by increasing the electrophilicity of C(4a) and subsequent nucleophilic attack by the cysteine's thiolate anion. Comparison to free FMN in solution shows that the protein environment of LOV2 increases the ISC rate of FMN by a factor of 2.4, thus improving the yield of the cysteinyl-flavin adduct and the efficiency of phototropin-mediated signaling processes.  相似文献   

13.
The plant blue light receptor, phot1, a member of the phototropin family, is a plasma membrane-associated flavoprotein that contains two ( approximately 110 amino acids) flavin-binding domains, LOV1 and LOV2, within its N terminus and a typical serine-threonine protein kinase domain at its C terminus. The LOV (light, oxygen, and voltage) domains belong to the PAS domain superfamily of sensor proteins. In response to blue light, phototropins undergo autophosphorylation. E. coli-expressed LOV domains bind riboflavin-5'-monophosphate, are photochemically active, and have major absorption peaks at 360 and 450 nm, with the 450 nm peak having vibronic structure at 425 and 475 nm. These spectral features correspond to the action spectrum for phototropism in higher plants. Blue light excitation of the LOV2 domain generates, in less than 30 ns, a transient approximately 660 nm-absorbing species that spectroscopically resembles a flavin triplet state. This putative triplet state subsequently decays with a 4-micros time constant into a 390 nm-absorbing metastable form. The LOV2 domain (450 nm) recovers spontaneously with half-times of approximately 50 s. It has been shown that the metastable species is likely a flavin-cysteine (Cys(39) thiol) adduct at the flavin C(4a) position. A LOV2C39A mutant generates the early photoproduct but not the adduct. Titrations of LOV2 using chromophore fluorescence as an indicator suggest that Cys(39) exists as a thiolate.  相似文献   

14.
Gametophytes of the fern Adiantum capillus-veneris L. were mutagenized by heavy ion beam irradiation and screened for mutants lacking chloroplast avoidance movement under high intensity blue light. Mutants recovered include several with small deletions in the AcPHOT2 gene. The avoidance movement response in these mutants could be restored by transient expression of non-mutant AcPHOT2 cDNA, indicating that the chloroplast avoidance movement in this fern is mediated by the Acphot2 protein. Further functional analyses of the Acphot2 protein were performed using this transient assay for chloroplast avoidance movement. The results obtained suggest that the LOV2, but not the LOV1, domain of Acphot2 is essential for avoidance movement, and that several residues in the C-terminus of the kinase domain contribute to the avoidance response. The rate of dark reversion of the photo-activated LOV2 domain, which was calculated photometrically, was too fast to account for the lifetime of phot2 signal estimated from physiological responses. However, the rate of dark reversion of the combined domains of LOV1 and LOV2 did correspond to the lifetime of the signal, suggesting that LOV1 might have some function in this response, although it is not essential for playing a role as a photoreceptor.  相似文献   

15.
The amounts of two growth inhibitors in diffusates from illuminatedhalves of phototropically stimulated oat (Avena sativa L.)coleoptile tips were larger than those from shaded halves. The less polarinhibitor was isolated from diffusates from oat coleoptile tips illuminatedwithblue light, and identified as uridine from 1H NMR spectrum. Thedistribution of endogenous uridine in diffusates from the illuminated andshadedsides of coleoptile tips unilaterally exposed to blue light for 3, causing a first positive phototropic curvature, and fromdark-control tips, was determined using a physicochemical assay. The uridineconcentration was significantly higher in the diffusates from the illuminatedside than in those from the shaded side and the dark-control. Uridine inhibitedthe growth of etiolated oat coleoptile tips at concentrations of 30 and above. These results suggest that uridine plays a role inthe phototropism of oat coleoptiles.  相似文献   

16.
17.
Nakasako M  Iwata T  Matsuoka D  Tokutomi S 《Biochemistry》2004,43(47):14881-14890
Phototropin is a blue-light receptor of plants and comprises two light-receptive domains, LOV1 and LOV2, Ser/Thr kinase domain and one linker region connecting the LOV2 and the kinase domains. The LOV2 domain is thought to regulate predominantly the light-dependent autophosphorylation of the kinase domain, leading to cellular signaling cascades. In this study, we constructed recombinant LOV1, LOV2, and LOV2-linker polypeptides from phototropin 1 and phototropin 2 of Arabidopsis thaliana and studied their quaternary structures and light-dependent conformational changes by small-angle X-ray scattering. The molecular weights of the polypeptides determined from scattering intensities demonstrated the dimeric associations of LOV1 polypeptides of both isoforms. In contrast, while LOV2 and LOV2-linker polypeptides of phototropin 1 were homodimers, corresponding polypeptides of phototropin 2 existed as monomeric forms. Under blue-light irradiation, the LOV2-linker polypeptide of phototropin 1 displayed small but definite changes of the scattering profile. Through simulation of low-resolution molecular structures, the changes were likely explained as structural changes of the linker region and/or a movement of the region relative to the LOV2 domain. Light-induced profile changes were not observed in the Cys(512)Ala mutated LOV2-linker polypeptide of phototropin 1 losing the phototransformation capability. Thus, it was indicated that the photoreaction in the LOV2 domain probably caused the structural changes in the LOV2-linker polypeptide of phototropin 1. On the basis of the results, the interdomain interactions in phototropin are discussed.  相似文献   

18.
Light-induced activation of the LOV2-Jα domain of the photoreceptor phototropin from oat is believed to involve the detachment of the Jα helix from the central β-sheet and its subsequent unfolding. The dynamics of these conformational changes were monitored by time-resolved emission spectroscopy with 100 ns time resolution. Three transitions were detected during the LOV2-Jα photocycle with time constants of 3.4 μs, 500 μs, and 4.3 ms. The fastest transition is due to the decay of the flavin phosphorescence in the transition of the triplet LOV(L)(660) state to the singlet LOV(S)(390) signaling state. The 500 μs and 4.3 ms transitions are due to changes in tryptophan fluorescence and may be associated with the dissociation and unfolding of the Jα helix, respectively. They are absent in the transient absorption signal of the flavin chromophore. The tryptophan fluorescence signal monitors structural changes outside the chromophore binding pocket and indicates that there are at least three LOV(S)(390) intermediates. Since the 500 μs and 4.3 ms components are absent in a construct without the Jα helix and in the mutant W557S, the fluorescence signal is mainly due to tryptophan 557. The kinetics of the main 500 μs component is strongly temperature dependent with activation energy of 18.2 kcal/mol suggesting its association with a major structural change. In the structurally related PAS domain protein PYP the N-terminal cap dissociates from the central β-sheet and unfolds upon signaling state formation with a similar time constant of ~1 ms. Using transient fluorescence we obtained a nearly identical activation energy of 18.5 kcal/mol for this transition.  相似文献   

19.
Iwata T  Yamamoto A  Tokutomi S  Kandori H 《Biochemistry》2007,46(23):7016-7021
Phototropin is a blue-light sensor protein in plants, and LOV domain binds a flavin mononucleotide (FMN) as a chromophore. A photointermediate state, S390, is formed by light-induced adduct formation between FMN and an S-H group of nearby cysteine, which triggers protein structural changes for kinase activation in phototropin. We previously studied the low-temperature Fourier transform infrared (FTIR) spectra between the S390 and unphotolyzed states for a LOV2 domain of a phototropin from Adiantum (neo1-LOV2), and found that the protein structures of the S390 intermediate are highly temperature dependent (Iwata, T., Nozaki, D., Tokutomi, S., Kagawa, T., Wada, M., and Kandori, H. (2003) Biochemistry 42, 8183-8191). At physiological temperature, amide-I vibration at 1640-1620 cm-1 is significantly changed, implying structural alteration of beta-sheet region. Such changes are largely suppressed at low temperatures, though S390 is formed. This observation suggested the presence of progressive protein structural changes in the unique active state (S390). Here we report that the hydration dependence of the amide-I vibrational bands in neo1-LOV2 is similar to the temperature dependence. As hydration of the sample is lowered, amide-I vibration at 1640-1620 cm-1 is significantly reduced. Instead, amide-I vibration at 1694 cm-1 newly emerged at low hydration as well as at low temperature, which shows a weakened hydrogen bond in the loop region. Spectral coincidence between low hydrations and temperatures strongly suggested that protein structural changes are similarly restricted under such conditions. It is likely that protein fluctuations are prerequisite for formation of the active state of neo1-LOV2.  相似文献   

20.
Phototropins (phot1 and phot2) are plant blue-light receptors that mediate phototropism, chloroplast movement, stomatal opening, rapid inhibition of growth of etiolated seedlings, and leaf expansion in Arabidopsis (Arabidopsis thaliana). Their N-terminal region contains two light, oxygen, or voltage (LOV) domains, which bind flavin mononucleotide and form a covalent adduct between a conserved cysteine and the flavin mononucleotide chromophore upon photoexcitation. The C-terminal region contains a serine/threonine kinase domain that catalyzes blue-light-activated autophosphorylation. Here, we have transformed the phot1 phot2 (phot1-5 phot2-1) double mutant with PHOT expression constructs driven by the cauliflower mosaic virus 35S promoter. These constructs encode either wild-type phototropin or phototropin with one or both LOV-domain cysteines mutated to block their photochemistry. We selected multiple lines in each of the eight resulting categories of transformants for further physiological analyses. Specifically, we investigated whether LOV1 and LOV2 serve the same or different functions for phototropism and leaf expansion. Our results show that the LOV2 domain of phot1 plays a major role in phototropism and leaf expansion, as does the LOV2 domain of phot2. No complementation of phototropism or leaf expansion was observed for the LOV1 domain of phot1. However, phot2 LOV1 was unexpectedly found to complement phototropism to a considerable level. Similarly, transformants carrying a PHOT transgene with both LOV domains inactivated developed strong curvatures toward high fluence rate blue light. However, we found that the phot2-1 mutant is leaky and produces a small level of full-length phot2 protein. In vitro experiments indicate that cross phosphorylation can occur between functional phot2 and inactivated phot1 molecules. Such a mechanism may occur in vivo and therefore account for the functional activities observed in the PHOT transgenics with both lov domains inactivated. The implications of this mechanism with respect to phototropin function are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号