首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carnosine (beta-alanyl-L-histidine), homocarnosine (gamma-amino-butyryl-L-histidine) and anserine (beta-alanyl-1-methyl-L-histidine) have been proposed to act as anti-oxidants in vivo. The protective effects of carnosine and related compounds against the oxidative damage of human Cu,Zn-superoxide dismutase (SOD) by peroxyl radicals generated from 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) were studied. The oxidative damage to Cu,Zn-SOD by AAPH-derived radicals led to protein fragmentation, which is associated with the inactivation of enzyme. Carnosine, homocarnosine and anserine significantly inhibited the fragmentation and inactivation of Cu,Zn-SOD by AAPH. All three compounds also inhibited the release of copper ions from the enzyme and the formation of carbonyl compounds in AAPH-treated Cu,Zn-SOD. These compounds inhibited the fragmentation of other protein without copper ion. The results suggest that carnosine and related compounds act as the copper chelator and peroxyl radical scavenger to protect the protein fragmentation. Oxidation of amino acid residues in Cu,Zn-SOD induced by AAPH were significantly inhibited by carnosine and related compounds. It is proposed that carnosine and related dipeptides might be explored as potential therapeutic agents for pathologies that involve Cu,Zn-SOD modification mediated by peroxyl radicals.  相似文献   

2.
Carnosine, homocarnosine, and anserine are present in high concentrations in the muscle and brain of many animals and humans. Previous studies showed that these compounds have an antioxidant function. We investigated the protective effects of carnosine and related compounds on the modification of human ceruloplasmin that is induced by H2O2. Carnosine, homocarnosine, and anserine significantly inhibited the fragmentation and inactivation of ceruloplasmin that is induced by H2O2. All three compounds also inhibited the release of copper ion from protein, and the formation of hydroxyl radicals in the ceruloplasmin/H2O2 system. These compounds inhibited the fragmentation of human serum albumin that is induced by the copper-catalyzed oxidation system, as well as by the iron-catalyzed oxidation system. These results suggest that carnosine, homocarnosine, and anserine might protect ceruloplasmin against H2O2-mediated oxidative damage through a combination of copper chelation and free radical scavenging.  相似文献   

3.
Neurofilament-L (NF-L) is a major element of the neuronal cytoskeleton and is essential for neuronal survival. Moreover, abnormalities in NF-L result in neurodegenerative disorders. Carnosine and the related endogeneous histidine dipeptides prevent protein modifications such as oxidation and glycation. In the present study, we investigated whether histidine dipeptides, carnosine, homocarnosine, or anserine protect NF-L against oxidative modification during reaction between cytochrome c and H(2)O(2). Carnosine, homocarnosine and anserine all prevented cytochrome c/H(2)O(2)-mediated NF-L aggregation. In addition, these compounds also effectively inhibited the formation of dityrosine, and this inhibition was found to be associated with the reduced formations of oxidatively modified proteins. Our results suggest that carnosine and histidine dipeptides have antioxidant effects on brain proteins under pathophysiological conditions leading to degenerative damage, such as, those caused by neurodegenerative disorders.  相似文献   

4.
Ceruloplasmin (CP) is the major plasma antioxidant and copper transport protein. In a previous study, we showed that the aggregation of human ceruloplasmin was induced by peroxyl radicals. We investigated the effects of antioxidant dipeptides carnosine, homocarnosine and anserine on peroxyl radical-mediated ceruloplasmin modification. Carnosine, homocarnosine and anserine significantly inhibited the aggregation of CP induced by peroxyl radicals. When CP was incubated with peroxyl radicals in the presence of three compounds, ferroxidase activity, as measured by the activity staining method, was protected. All three compounds also inhibited the formation of dityrosine in peroxyl radicals-treated CP. The results suggest that carnosine and related compounds act as peroxyl radical scavenger to protect the protein modification. It is proposed that carnosine and related peptides might be explored as potential therapeutic agents for pathologies that involve CP modification mediated by peroxyl radicals generated in the lipid peroxidation.  相似文献   

5.
Kang JH 《BMB reports》2010,43(10):683-687
Previous studies have shown that one of the primary causes of increased iron content in the brain may be the release of excess iron from intracellular iron storage molecules such as ferritin. Free iron generates ROS that cause oxidative cell damage. Carnosine and related compounds such as endogenous histidine dipetides have antioxidant activities. We have investigated the protective effects of carnosine and homocarnosine against oxidative damage of DNA induced by reaction of ferritin with H(2)O(2). The results show that carnosine and homocarnosine prevented ferritin/H(2)O(2)-mediated DNA strand breakage. These compounds effectively inhibited ferritin/H(2)O(2)-mediated hydroxyl radical generation and decreased the mutagenicity of DNA induced by the ferritin÷H(2)O(2) reaction. Our results suggest that carnosine and related compounds might have antioxidant effects on DNA under pathophysiological conditions leading to degenerative damage such as neurodegenerative disorders.  相似文献   

6.
1. Carnosine, anserine, and homocarnosine are endogenous dipeptides concentrated in brain and muscle whose biological functions remain in doubt.2. We have tested the hypothesis that these compounds function as endogenous protective substances against molecular and cellular damage from free radicals, using two isolated enzyme systems and two models of ischemic brain injury. Carnosine and homocarnosine are both effective in activating brain Na, K-ATPase measured under optimal conditions and in reducing the loss of its activity caused by incubation with hydrogen peroxide.3. In contrast, all three endogenous dipeptides cause a reduction in the activity of brain tyrosine hydroxylase, an enzyme activated by free radicals. In hippocampal brain slices subjected to ischemia, carnosine increased the time to loss of excitability.4. In in vivo experiments on rats under experimental hypobaric hypoxia, carnosine increased the time to loss of ability to stand and breath and decreased the time to recovery.5. These actions are explicable by effects of carnosine and related compounds which neutralize free radicals, particularly hydroxyl radicals. In all experiments the effective concentration of carnosine was comparable to or lower than those found in brain. These observations provide further support for the conclusion that protection against free radical damage is a major role of carnosine, anserine, and homocarnosine.  相似文献   

7.
Carnosine, homocarnosine and anserine have been proposed to act as antioxidants in vivo. Our studies show that all three compounds are good scavengers of the hydroxyl radical (.OH) but that none of them can react with superoxide radical, hydrogen peroxide or hypochlorous acid at biologically significant rates. None of them can bind iron ions in ways that interfere with 'site-specific' iron-dependent radical damage to the sugar deoxyribose, nor can they restrict the availability of Cu2+ to phenanthroline. Homocarnosine has no effect on iron ion-dependent lipid peroxidation; carnosine and anserine have weak inhibitory effects when used at high concentrations in some (but not all) assay systems. However, the ability of these compounds to interfere with a commonly used version of the thiobarbituric acid (TBA) test may have led to an overestimate of their ability to inhibit lipid peroxidation in some previous studies. By contrast, histidine stimulated iron ion-dependent lipid peroxidation. It is concluded that, because of the high concentrations present in vivo, carnosine and anserine could conceivably act as physiological antioxidants by scavenging .OH, but that they do not have a broad spectrum of antioxidant activity, and their ability to inhibit lipid peroxidation is not well established. It may be that they have a function other than antioxidant protection (e.g. buffering), but that they are safer to accumulate than histidine, which has a marked pro-oxidant action upon iron ion-dependent lipid peroxidation. The inability of homocarnosine to react with HOCl, interfere with the TBA test or affect lipid peroxidation systems in the same way as carnosine is surprising in view of the apparent structural similarity between these two molecules.  相似文献   

8.
Glycolaldehyde, an intermediate of the Maillard reaction, and fructose, which is mainly derived from the polyol pathway, rapidly inactivate human Cu,Zn-superoxide dismutase (SOD) at the physiological concentration. We employed this inactivation with these carbonyl compounds as a model glycation reaction to investigate whether carnosine and its related compounds could protect the enzyme from inactivation. Of eight derivatives examined, histidine, Gly-His, carnosine and Ala-His inhibited the inactivation of the enzyme by fructose (p<0.001), and Gly-His, Ala-His, anserine, carnosine, and homocarnosine exhibited a marked protective effect against the inactivation by glycolaldehyde (p<0.001). The carnosine-related compounds that showed this highly protective effect against the inactivation by glycolaldehyde had high reactivity with glycolaldehyde and high scavenging activity toward the hydroxyl radical as common properties. On the other hand, the carnosine-related compounds that had a protective effect against the inactivation by fructose showed significant hydroxyl radical-scavenging ability. These results indicate that carnosine and such related compounds as Gly-His and Ala-His are effective anti-glycating agents for human Cu,Zn-SOD and that the effectiveness is based not only on high reactivity with carbonyl compounds but also on hydroxyl radical scavenging activity.  相似文献   

9.
Kim NH  Jeong MS  Choi SY  Hoon Kang J 《Biochimie》2004,86(8):553-559
Neurofilament-L (NF-L) is a major element of neuronal cytoskeletons and known to be important for their survival in vivo. Since oxidative stress might play a critical role in the pathogenesis of neurodegenerative diseases, we investigated the role of Cu,Zn-superoxide dismutase (SOD) in the modification of NF-L. When disassembled NF-L was incubated with Cu,Zn-SOD and H2O2, the aggregation of protein was proportional to the concentration of hydrogen peroxide. Cu,Zn-SOD/H2O2-mediated modification of NF-L was significantly inhibited by radical scavenger, spin trap agents and copper chelators. Dityrosine crosslink formation was obtained in Cu,Zn-SOD/H2O2-mediated NF-L aggregates. Antioxidant molecules, carnosine and anserine significantly inhibited the aggregation of NF-L and the formation of dityrosine. This study suggests that copper-mediated NF-L modification may be closely related to oxidative reactions which play a critical role in neurodegenerative diseases.  相似文献   

10.
应用脱氧核糖降解法研究了离体条件下Cu,Zn-SOD与H2O2反应产生·OH,并对其机理进行了探讨。H2O2可使Cu,Zn-SOD失活,在失活过程中有·OH产生,甲酸钠和苯甲酸钠均能不同程度地保护Cu,Zn-SOD和降低H2O2与Cu,Zn-SOD反应中·OH的产额;热失活SOD也可和H2O2反应生成·OH,且效能高于活性Cu,Zn-SOD;用螫合剂脱去Cu,Zn-SOD的金属辅基后,脱辅基的SOD蛋白不能和H2O2反应产生·OH;Cu2+和H2O2反应产生·OH的效率很高,而Zn2+产生·OH的效率很低。实验结果提示Cu,Zn-SOD与H2O2反应产生的·OH可能是SOD活性中心的Cu2+与H2O2发生Fenton反应的结果.  相似文献   

11.
1. The ability of carnosine and carnosine-related compounds (CRCs) to interact with several free oxygen radicals is analyzed.2. Carnosine, the CRCs (imidazole, histidine, anserine), and ergothioneine were found to be equally efficient in singlet oxygen quenching. During generation of hydroxyl radicals from hydrogen peroxide in the Fenton reaction, carnosine was found to be more effective than the CRCs tested.3. By measuring the chemiluminescence produced by carnosine and CRCs in rabbit leukocytes in the presence of luminol or lucigenin, we conclude that carnosine and other CRCs play a stimulating role in superoxide oxygen production while suppressing the myeloperoxidase system.4. ADP-induced aggregation of human platelets is slightly stimulated by carnosine but is inhibited by acetylanserine.5. The following rank order of efficiency of CRCs was demonstrated while measuring the oxidation of human serum lipoproteins: acetylcarnosine < acetylanserine < homocarnosine = ophidine < carnosine < anserine.6. The results obtained demonstrate that metabolic transformation of carnosine into CRCs in tissues may play an important role in regulating the native antioxidant status of the organism.  相似文献   

12.
Carnosine and its derivatives in the concentrations corresponding to their level in excitable tissues have been shown to protect DNA from oxidative damages. Their efficiency (5 mM) was of the following order: ophidine > carnosine ≈ anserine > homocarnosine > N-acetylcarnosine. β-Alanine and gamma-aminobutyric acid (GABA) did not have any capability for protection. The revealed effect can be one of the causes of oxidative stability of the brain and muscle tissue in vertebrate animals.  相似文献   

13.
Kim KS  Choi SY  Kwon HY  Won MH  Kang TC  Kang JH 《Biochimie》2002,84(7):625-631
Alpha-synuclein is a key component of Lewy bodies in the brain of patients with Parkinson's disease (PD) and recent studies suggest that oxidative stress reactions might contribute to abnormal aggregation of this molecule. Since hydrogen peroxide-mediated ceruloplasmin (CP) modification can induce the formation of free radicals and release of copper ions, we investigated the role of CP in the aggregation of alpha-synuclein. When alpha-synuclein was incubated with both CP and H(2)O(2), alpha-synuclein concomitantly was induced to be aggregated. Thioflavin-S staining of alpha-synuclein aggregates showed that they displayed characteristic fibrillar structures. Hydroxyl radical scavengers and spin-trapping agent such as 5,5'-dimethyl 1-pyrolline N-oxide and tert-butyl-alpha-phenylnitrone significantly inhibited the aggregation of alpha-synuclein. Copper chelator, penicillamine also inhibited the CP/H(2)O(2) system-induced alpha-synuclein aggregation. This indicates that the aggregation of alpha-synuclein can be mediated by the CP/H(2)O(2) system via the generation of hydroxyl radical. The CP/H(2)O(2) system-induced alpha-synuclein aggregation resulted in the generation of protein carbonyl derivatives. Antioxidant molecules, carnosine, homocarnosine and anserine significantly inhibited the CP/H(2)O(2) system-induced aggregation of alpha-synuclein. These results suggest that the CP/H(2)O(2) system may be related to abnormal aggregation of alpha-synuclein which may be involved in the pathogenesis of PD and related disorders.  相似文献   

14.
《Free radical research》2013,47(1):179-185
Carnosine, anserine and homocarnosine are natural compounds which are present in high concentrations (2–20 mM) in skeletal muscles and brain of many vertebrates. We have demonstrated in a previous work that these compounds can act as antioxidants, a result of their ability to scavenge peroxyl radicals, singlet oxygen and hydroxyl radicals. Carnosine and its analogues have been shown to be efficient chelating agents for copper and other transition metals. Since human skeletal muscle contains one-third of the total copper in the body (20–47 mmol/kg) and the concentration of carnosine in this tissue is relatively high, the complex of carnosine:copper may be of biological importance. We have studied the ability of the coppenarnosine (and other carnosine derivatives) complexes to act as superoxide dismutasc. The results indicate that the complex of copper:carnosine can dismute superoxide radicals released by neutrophils treated with PMA in an analogous mechanism to other amino acids and copper complexes. Copper:anserine failed to dismute superoxide radicals and coppwhomocarnosine complex was efficient when the cells were treated with PMA or with histone-opsonized streptococci and cytochalasine B. The possible role of these compounds to act as physiological antioxidants that possess superoxide dismutase activity is discussed.  相似文献   

15.
The alpha-synuclein is a major component of Lewy bodies that are found in the brains of patients with Parkinson's disease (PD). Also, two point mutations in this protein, A53T and A30P, are associated with rare familial forms of the disease. We investigated whether there are differences in the Cu,Zn-SOD and hydrogen peroxide system mediated-protein modification between the wild-type and mutant alpha-synucleins. When alpha-synuclein was incubated with both Cu,Zn-SOD and H2O2, then the amount of A53T mutant oligomerization increased relative to that of the wild-type protein. This process was inhibited by radical scavenger, spin-trapping agent, and copper chelator. These results suggest that the oligomerization of alpha-synuclein is mediated by the generation of the hydroxyl radical through the metal-catalyzed reaction. The dityrosine formation of the A53T mutant protein was enhanced relative to that of the wild-type protein. Antioxidant molecules, carnosine, and anserine effectively inhibited the wild-type and mutant proteins' oligomerization. Therefore, these compounds may be explored as potential therapeutic agents for PD patients. The present experiments, in part, may provide an explanation for the association between PD and the alpha-synuclein mutant.  相似文献   

16.
To elaborate the catalytic activity of Cu2+ of Cu,Zn-superoxide dismutase (SOD) in the generation of hydroxyl radical (.OH) from H2O2, we investigated the mechanism of inactivation of alpha 1-protease inhibitor (alpha 1-PI), mediated by H2O2 and Cu,Zn-SOD. When alpha 1-PI was incubated with 500 units/ml Cu,Zn-SOD and 1.0 mM H2O2, 60% of anti-elastase activity of alpha 1-PI was lost within 90 min. ESR spin trapping using 5,5-dimethyl-1-pyrroline N-oxide showed that free .OH was indeed generated in the reaction of Cu,Zn-SOD/H2O2; this was substantiated by the almost complete eradication of .OH by either ethanol or dimethyl sulfoxide accompanied by the generation of carbon-centered radicals. .OH production and alpha 1-PI inactivation in the H2O2/SOD system became apparent at 30 min or later. Dimethyl sulfoxide and 5,5-dimethyl-1-pyrroline N-oxide protected inactivation of alpha 1-PI significantly in this system, indicating that alpha 1-PI inactivation was mediated by .OH. SOD activity decreased rapidly during the reaction with H2O2 for the initial 30 min. Time-dependent changes in the ESR signal of SOD showed the destruction of ligands for Cu2+ in SOD by H2O2 within this initial period. Thus we conclude that inactivation of alpha 1-PI is mediated in the H2O2/Cu,Zn-SOD system via the generation of .OH by free Cu2+ released from oxidatively damaged SOD.  相似文献   

17.
F D Marshall 《Life sciences》1973,13(2):135-140
Rat brain levels of histidine, carnosine, and homocarnosine were determined after intraperitoneal injection of chlorpromazine (CPZ), sodium pentobarbital (PB), or reserpine (RSP). At the same time, rat muscle levels of histidine, carnosine, and anserine were determined. RSP, CPZ, and PB significantly lowered brain homocarnosine levels and RSP raised histidine levels. RSP, CPZ, and PB significantly lowered levels of muscle carnosine and anserine. PB and CPZ also lowered levels of muscle histidine.  相似文献   

18.
A microchip electrophoresis (MCE) method with chemiluminescence (CL) detection was developed for the determination of carnosine-related peptides, including carnosine, homocarnosine, and anserine, in biological samples. A simple integrated MCE-CL system was built to perform the assays. The highly sensitive CL detection was achieved by means of the CL reaction between hydrogen peroxide and N-(4-aminobutyl)-N-ethylisoluminol-tagged peptides in the presence of adenine as a CL enhancer and Co2+ as a catalyst. Experimental conditions for analyte labeling, MCE separation, and CL detection were studied. MCE separation of the above-mentioned three peptides took less than 120 s. Detection limits (signal/noise ratio [S/N] = 3) of 3.0 × 10−8, 2.8 × 10−8, and 3.4 × 10−8 M were obtained for carnosine, anserine, and homocarnosine, respectively. The current MCE-CL method was applied for the determination of carnosine, anserine, and homocarnosine in human cerebrospinal fluid (CSF) and canine plasma. Homocarnosine was detected at the micromolar (μM) level in the CSF samples analyzed, whereas the levels of carnosine and anserine in these samples were below the detection limit of the assay. Interestingly, both carnosine and anserine were detected in the canine plasma samples, whereas homocarnosine was not.  相似文献   

19.
Site-specific and random fragmentation of human Cu,Zn-superoxide dismutase (Cu,Zn-SOD) was observed following the glycation reaction (the early stage of the Maillard reaction). The fragmentation proceeded in two steps. In the first step, Cu,Zn-SOD was cleaved at a peptide bond between Pro62 and His63, as judged by amino acid analysis and sequencing of fragment peptides, yielding a large (15 kDa) and a small (5 kDa) fragment. In the second step, random fragmentation occurred. The ESR spectrum of the glycated Cu,Zn-SOD suggested that reactive oxygen species was implicated in the both steps of fragmentation. The same fragmentations were seen upon exposure of the enzyme to an H2O2 bolus. Catalase completely blocked both steps of the fragmentation process, whereas EDTA blocked only the second step. Incubation with glucose resulted in a time-dependent release of Cu2+ from the Cu,Zn-SOD molecule. The released Cu2+ then likely participated in a Fenton's type of reaction to produce hydroxyl radical, which may cause the nonspecific fragmentation. Evidence that EDTA abolished only the second step of fragmentation induced by an H2O2 bolus supports this mechanism. This is the first report that a site-specific fragmentation of a protein is caused by reactive oxygen species formed by the Maillard reaction.  相似文献   

20.
Kang JH 《BMB reports》2012,45(2):114-119
Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline) is a compound derived from dopamine metabolism and is capable of causing dopaminergic neurodegeneration. Oxidative modification of neurofilament proteins has been implicated in the pathogenesis of neurodegenerative disorders. In this study, oxidative modification of neurofilament-L (NF-L) by salsolinol and the inhibitory effects of histidyl dipeptides on NF-L modification were investigated. When NF-L was incubated with 0.5 mM salsolinol, the aggregation of protein was increased in a time-dependent manner. We also found that the generation of hydroxyl radicals (?OH) was linear with respect to the concentrations of salsolinol as a function of incubation time. NF-L exposure to salsolinol produced losses of glutamate, lysine and proline residues. These results suggest that the aggregation of NF-L by salsolinol may be due to oxidative damage resulting from free radicals. Carnosine, histidyl dipeptide, is involved in many cellular defense processes, including free radical detoxification. Carnosine, and anserine were shown to significantly prevent salsolinol- mediated NF-L aggregation. Both compounds also inhibited the generation of ?OH induced by salsolinol. The results indicated that carnosine and related compounds may prevent salsolinol-mediated NF-L modification via free radical scavenging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号