首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carnosine (beta-alanyl-L-histidine), homocarnosine (gamma-amino-butyryl-L-histidine) and anserine (beta-alanyl-1-methyl-L-histidine) have been proposed to act as anti-oxidants in vivo. The protective effects of carnosine and related compounds against the oxidative damage of human Cu,Zn-superoxide dismutase (SOD) by peroxyl radicals generated from 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) were studied. The oxidative damage to Cu,Zn-SOD by AAPH-derived radicals led to protein fragmentation, which is associated with the inactivation of enzyme. Carnosine, homocarnosine and anserine significantly inhibited the fragmentation and inactivation of Cu,Zn-SOD by AAPH. All three compounds also inhibited the release of copper ions from the enzyme and the formation of carbonyl compounds in AAPH-treated Cu,Zn-SOD. These compounds inhibited the fragmentation of other protein without copper ion. The results suggest that carnosine and related compounds act as the copper chelator and peroxyl radical scavenger to protect the protein fragmentation. Oxidation of amino acid residues in Cu,Zn-SOD induced by AAPH were significantly inhibited by carnosine and related compounds. It is proposed that carnosine and related dipeptides might be explored as potential therapeutic agents for pathologies that involve Cu,Zn-SOD modification mediated by peroxyl radicals.  相似文献   

2.
Kang JH 《BMB reports》2010,43(10):683-687
Previous studies have shown that one of the primary causes of increased iron content in the brain may be the release of excess iron from intracellular iron storage molecules such as ferritin. Free iron generates ROS that cause oxidative cell damage. Carnosine and related compounds such as endogenous histidine dipetides have antioxidant activities. We have investigated the protective effects of carnosine and homocarnosine against oxidative damage of DNA induced by reaction of ferritin with H(2)O(2). The results show that carnosine and homocarnosine prevented ferritin/H(2)O(2)-mediated DNA strand breakage. These compounds effectively inhibited ferritin/H(2)O(2)-mediated hydroxyl radical generation and decreased the mutagenicity of DNA induced by the ferritin÷H(2)O(2) reaction. Our results suggest that carnosine and related compounds might have antioxidant effects on DNA under pathophysiological conditions leading to degenerative damage such as neurodegenerative disorders.  相似文献   

3.
Oxidation of catecholamines may contribute to the pathogenesis of Parkinson's disease (PD). The effect of the oxidized products of catecholamines on the modification of Cu,Zn-superoxide dismutase (SOD) was investigated. When Cu,Zn-SOD was incubated with the oxidized 3,4-dihydroxyphenylalanine (DOPA) or dopamine, the protein was induced to be aggregated. The deoxyribose assay showed that hydroxyl radicals were generated during the oxidation of catecholamines in the presence of copper ion. Radical scavengers, azide, N-acetylcysteine, and catalase inhibited the oxidized catecholamine-mediated Cu,Zn-SOD aggregation. Therefore, the results indicate that free radicals may play a role in the aggregation of Cu,Zn-SOD. When Cu,Zn-SOD that had been exposed to catecholamines was subsequently analyzed by an amino acid analysis, the glycine and histidine residues were particularly sensitive. These results suggest that the modification of Cu,Zn-SOD by oxidized catecholamines might induce the perturbation of cellular antioxidant systems and led to a deleterious cell condition.  相似文献   

4.
Glycolaldehyde, an intermediate of the Maillard reaction, and fructose, which is mainly derived from the polyol pathway, rapidly inactivate human Cu,Zn-superoxide dismutase (SOD) at the physiological concentration. We employed this inactivation with these carbonyl compounds as a model glycation reaction to investigate whether carnosine and its related compounds could protect the enzyme from inactivation. Of eight derivatives examined, histidine, Gly-His, carnosine and Ala-His inhibited the inactivation of the enzyme by fructose (p<0.001), and Gly-His, Ala-His, anserine, carnosine, and homocarnosine exhibited a marked protective effect against the inactivation by glycolaldehyde (p<0.001). The carnosine-related compounds that showed this highly protective effect against the inactivation by glycolaldehyde had high reactivity with glycolaldehyde and high scavenging activity toward the hydroxyl radical as common properties. On the other hand, the carnosine-related compounds that had a protective effect against the inactivation by fructose showed significant hydroxyl radical-scavenging ability. These results indicate that carnosine and such related compounds as Gly-His and Ala-His are effective anti-glycating agents for human Cu,Zn-SOD and that the effectiveness is based not only on high reactivity with carbonyl compounds but also on hydroxyl radical scavenging activity.  相似文献   

5.
Methylglyoxal (MG) has been identified as an intermediate in non-enzymatic glycation, and increased levels have been reported in patients with diabetes. In this study, the effect of MG on the structure and function of human Cu,Zn-superoxide dismutase (SOD) was investigated. MG modifies Cu,Zn-SOD, as indicated by the formation of fluorescent products. When Cu, Zn-SOD was incubated with MG, covalent crosslinking of the protein increased progressively. MG-mediated modification of Cu,Zn-SOD led to loss of enzymatic activity and release of copper ions from the protein. Radical scavengers inhibited the crosslinking of Cu,Zn-SOD. When Cu,Zn-SOD that had been exposed to MG was analyzed, glycine, histidine, lysine, and valine residues were found to be particularly sensitive. It is suggested that oxidative damage to Cu,Zn-SOD by MG may perturb cellular antioxidant defense systems and damage cells. This effect may account, in part, for organ deterioration in diabetes.  相似文献   

6.
Site-specific and random fragmentation of human Cu,Zn-superoxide dismutase (Cu,Zn-SOD) was observed following the glycation reaction (the early stage of the Maillard reaction). The fragmentation proceeded in two steps. In the first step, Cu,Zn-SOD was cleaved at a peptide bond between Pro62 and His63, as judged by amino acid analysis and sequencing of fragment peptides, yielding a large (15 kDa) and a small (5 kDa) fragment. In the second step, random fragmentation occurred. The ESR spectrum of the glycated Cu,Zn-SOD suggested that reactive oxygen species was implicated in the both steps of fragmentation. The same fragmentations were seen upon exposure of the enzyme to an H2O2 bolus. Catalase completely blocked both steps of the fragmentation process, whereas EDTA blocked only the second step. Incubation with glucose resulted in a time-dependent release of Cu2+ from the Cu,Zn-SOD molecule. The released Cu2+ then likely participated in a Fenton's type of reaction to produce hydroxyl radical, which may cause the nonspecific fragmentation. Evidence that EDTA abolished only the second step of fragmentation induced by an H2O2 bolus supports this mechanism. This is the first report that a site-specific fragmentation of a protein is caused by reactive oxygen species formed by the Maillard reaction.  相似文献   

7.
The Cu,Zn-superoxide dismutase (SOD1) has been reported to exert an S-nitrosylated glutathione (GSNO) denitrosylase activity that was augmented by a familial amyotrophic lateral sclerosis (FALS)-associated mutation in this enzyme. This putative enzymatic activity as well as the spontaneous decomposition of GSNO has been reexamined. The spontaneous decomposition of GSNO exhibited several peculiarities, such as a lag phase followed by an accelerating rate plus a marked dependence on GSNO concentration, suggestive of autocatalysis, and a greater rate in polypropylene than in glass vessels. Dimedone caused a rapid increase in absorbance likely due to reaction with GSNO, followed by a slower increase possibly due to reaction with an intermediate such as glutathione sulfenic acid. SOD1 weakly increased the rate of decomposition of GSNO, but did so only when GSH was present; and FALS-associated mutant forms of SOD1 were not more active in this regard than was the wild type. Decomposed GSNO, when added to fresh GSNO, hastened its decomposition, in accord with autocatalysis, and when added to GSH, generated GSNO in accord with the presence of nitrite. A mechanism is proposed that is in accord with these observations.  相似文献   

8.
The dipeptides carnosine, homocarnosine and anserine are differentially distributed among the retinas of several vertebrate species. Retinas of birds are rich in anserine while those of frogs have primarily carnosine. Several mammalian species contain only very low levels of homocarnosine. The biological function of these dipeptides is unknown but their presence and synthesis in retina may confound studies of uptake, metabolism and cellular localization of their component amino acids β-alanine, gamma-aminobutyric acid and histidine.  相似文献   

9.
Histidine-containing dipeptides (HCDs) are a family of non-protein, nitrogen-containing compounds with multiple physiological roles and are mainly present in excitable tissues of vertebrates. The distribution of HCDs in various animal species has been the subject of study for nearly 100 years. The aim of this research was to determine the content of the HCDs in the aquatic species collected from the Zhoushan fishing ground of the East China Sea. Using LC-MS/MS technology, the occurrence of carnosine, anserine, and homocarnosine in skeletal muscle of 38 aquatic species (26 teleosts, 6 molluscs, and 6 crustaceans) and chicken breast was investigated. Of the 38 aquatic species examined, 24 species (23 teleosts and 1 mollusc) contained considerable amounts (>5 ng/g wet tissue) of HCDs, and anserine was the major component of HCDs in their skeletal muscles. Only 5 teleosts contained homocarnosine. Most invertebrates, with the exception of the sepia Uroteuthis chinensis, did not contain HCDs. The present findings greatly expand the HCD distribution data and provide insight into understanding the roles of HCDs in different animals and a nutritional assessment for marine aquatic species.  相似文献   

10.
The mechanism for copper loading of the antioxidant enzyme copper, zinc superoxide dismutase (SOD1) by its partner metallochaperone protein is not well understood. Here we show the human copper chaperone for Cu,Zn-SOD1 (hCCS) activates either human or yeast enzymes in vitro by direct protein to protein transfer of the copper cofactor. Interestingly, when denatured with organic solvents, the apo-form of human SOD1 cannot be reactivated by added copper ion alone, suggesting an additional function of hCCS such as facilitation of an active folded state of the enzyme. While hCCS can bind several copper ions, metal binding studies in the presence of excess copper scavengers that mimic the intracellular chelation capacity indicate a limiting stoichiometry of one copper and one zinc per hCCS monomer. This protein is active and unlike the yeast protein, is a homodimer regardless of copper occupancy. Matrix-assisted laser desorption ionization-mass spectrometry and metal binding studies suggest that Cu(I) is bound by residues from the first and third domains and no bound copper is detected for the second domain of hCCS in either the full-length or truncated forms of the protein. Copper-induced conformational changes in the essential C-terminal peptide of hCCS are consistent with a "pivot, insert, and release" mechanism that is similar to one proposed for the well characterized metal handling enzyme, mercuric ion reductase.  相似文献   

11.
The reconstitution of Cu,Zn-superoxide dismutase from the copper-free protein by the Cu(I).GSH complex was monitored by: (a) EPR and optical spectroscopy upon reoxidation of the enzyme-bound copper; (b) NMR spectroscopy following the broadening of the resonances of the Cu(I).GSH complex after addition of Cu-free,Zn-superoxide dismutase; and (c) NMR spectroscopy of the Cu-free,Co(II) enzyme following the appearance of the isotropically shifted resonances of the Cu(I), Co enzyme, Cu(I).GSH was found to be a very stable complex in the presence of oxygen and a more efficient copper donor to the copper-free enzyme than other low molecular weight Cu(II) complexes. In particular, 100% reconstitution was obtained with stoichiometric copper at any GSH:copper ratio between 2 and 500. Evidence was obtained for the occurrence of a Cu(I).GSH.protein intermediate in the reconstitution process. In view of the inability of copper-thionein to reconstitute Cu,Zn-superoxide dismutase and of the detection of copper.GSH complexes in copper-over-loaded hepatoma cells (Freedman, J.H., Ciriolo, M.R., and Peisach, J. (1989) J. Biol. Chem. 264, 5598-5605), Cu(I).GSH is proposed as a likely candidate for copper donation to Cu-free,Zn-superoxide dismutase in vivo.  相似文献   

12.
Kinetic evidence is reported for the role of the peroxymonocarbonate, HOOCO(2)(-), as an oxidant for reduced Cu,Zn-superoxide dismutase-Cu(I) (SOD1) during the peroxidase activity of the enzyme. The formation of this reactive oxygen species results from the equilibrium between hydrogen peroxide and bicarbonate. Recently, peroxymonocarbonate has been proposed to be a key substrate for reduced SOD1 and has been shown to oxidize SOD1-Cu(I) to SOD1-Cu(II) much faster than H(2)O(2). We have reinvestigated the kinetics of the reaction between SOD1-Cu(I) and HOOCO(2)(-) by using conventional stopped-flow spectrophotometry and obtained a second-order rate constant of k=1600±100M(-1)s(-1) for SOD1-Cu(I) oxidation by HOOCO(2)(-). Our results demonstrate that peroxymonocarbonate oxidizes SOD1-Cu(I) to SOD1-Cu(II) and is in turn reduced to the carbonate anion radical. It is proposed that the dissociation of His61 from the active site Cu(I) in SOD-Cu(I) contributes to this chemistry by facilitating the binding of larger anions, such as peroxymonocarbonate.  相似文献   

13.
Cu,Zn-superoxide dismutase (Cu,Zn-SOD) is a ubiquitous enzyme with an essential role in antioxidant defense. To better understand structural factors at the origin of the highly efficient superoxide dismutation mechanism, we analyzed the consequence of copper reduction on the electronic properties of the backbone and individual amino acids by using electrochemistry coupled to Fourier transform infrared spectroscopy. Comparison of data recorded with bovine erythrocyte and recombinant chloroplastic Cu,Zn-SOD from Lycopersicon esculentum, expressed as a functional tetramer in Escherichia coli and (14)N- or fully (15)N-labeled, demonstrated that the infrared changes were dominated by reorganizations of peptide bonds and histidine copper ligands. Two main infrared modes of histidine side chain, markers of metal coordination, were identified by using Cu- and Zn-methylimidazole models: the nu(C(4)C(5))at 1605-1594 cm(-1) or approximately 1586 cm(-1) for Ntau or Npi coordination, and the nu(C(5)Ntau) at approximately 1113-1088 cm(-1). These modes, also identified in Cu,Zn-SOD by using (15)N labeling, showed that the electronic properties of the histidine Ntau ligands of copper are mostly affected upon copper reduction. A striking conclusion of this work is that peptide groups from loops and beta-sheet largely participate in charge redistribution upon copper reduction, and in contrast, electronic properties of polar and charged amino acids of the superoxide access channel remain unaffected. This is notably shown for the strictly conserved Arg-143 by site-directed mutagenesis on chloroplastic Cu,Zn-SOD. Charge compensation by the peptide backbone and preserved electronic properties of the superoxide access channel and docking site upon copper reduction may be the determinant factors for the high reaction kinetics of superoxide with both reduced and oxidized Cu,Zn-SOD.  相似文献   

14.
Human Cu,Zn-superoxide dismutase (hSOD1) has 4 cysteines per subunit. Cys57 and Cys148 are involved in an intrasubunit disulfide bond, while Cys6 and Cys111 are free. Cys6 is buried within the protein while Cys111 is on the surface, near the dimer interface. We examined by liquid chromatography-mass spectrometry the commercially purchased hSOD1 isolated from erythrocytes as well as hSOD1s isolated from human erythrocytes, brain, and hSOD1 expressed in Sf9, yeast, and E. coli. Our goal was to ascertain whether the Cys111 modification occurred naturally in vivo. Only the Sigma erythrocyte hSOD1 appeared to contain a trisulfide crosslink between the Cys111 residues. Thus it failed to react with N-ethylmaleimide, showed absorbtion at 325 nm that was eliminated by 2-mercaptoethanol, and had a mass 30 units more than expected for the native dimer. We examined the possibility that different purification methods might cause this modification in erythrocyte hSOD1. None of the procedures examined for hSOD1 purification produced such a trisulfide. In disagreement with Liu et al. [Biochemistry, 2000, 39, 8125-8132], complete derivitization of both Cys111s of hSOD1 from Sf9 cells with N-ethylmaleimide, 4-vinylpyridine, and by 5,5′-dithiobis(2-nitrobenzoic acid) were readily achieved; indicating that steric hindrance was not a problem.  相似文献   

15.
Developmental regulation of rat lung Cu,Zn-superoxide dismutase.   总被引:2,自引:0,他引:2       下载免费PDF全文
In the present investigation we found that lung Cu,Zn-superoxide dismutase (SOD) activity (units/mg of DNA) increases steadily in the rat from birth to adulthood. The specific activity (units/micrograms of enzyme) of Cu,Zn-SOD was unchanged from birth to adulthood, excluding enzyme activation as a mechanism responsible for the increase in enzyme activity. Lung synthesis of Cu,Zn-SOD peaked at 1 day before birth and decreased thereafter to adult values. Calculations, based on rates of Cu,Zn-SOD synthesis and the tissue content of the enzyme, indicated that lung Cu,Zn-SOD activity increased during development owing to the rate of enzyme synthesis exceeding its rate of degradation by 5-10%. These calculations were supported by measurements of enzyme degradation in the neonatal (half-life, t1/2, = 12 h) and adult lung (t1/2 = greater than 100 h); the difference in half-life did not reflect the rates of overall protein degradation in the lung, since these rates were not different in lungs from neonatal and adult rats. We did not detect differences in the Mr or pI of Cu,Zn-SOD during development, but the susceptibility of the enzyme to inactivation by heat or copper chelation decreased with increasing age of the rats. We conclude that the progressive increase in activity of Cu,Zn-SOD is due to a rate of synthesis that exceeds degradation of the enzyme. The data also suggest that increased stabilization of enzyme conformation accounts for the greater half-life of the enzyme in lungs of adult compared with neonatal rats.  相似文献   

16.
Alpha-synuclein is a major component of the abnormal protein aggregation in Lewy bodies of Parkinson's disease (PD) and senile plaques of Alzheimer's disease (AD). Previous studies have shown that the aggregation of alpha-synuclein was induced by copper (II) and H(2)O(2) system. Since copper ions could be released from oxidatively damaged Cu,Zn-superoxide dismutase (SOD), we investigated the role of Cu,Zn-SOD in the aggregation of alpha-synuclein. When alpha-synuclein was incubated with both Cu,Zn-SOD and H(2)O(2), alpha-synuclein was induced to be aggregated. This process was inhibited by radical scavengers and spin trapping agents such as 5,5'-dimethyl 1-pyrolline N-oxide and tert-butyl-alpha-phenylnitrone. Copper chelators, diethyldithiocarbamate and penicillamine, also inhibited the Cu,Zn-SOD/H(2)O(2) system-induced alpha-synuclein aggregation. These results suggest that the aggregation of alpha-synuclein is mediated by the Cu,Zn-SOD/H(2)O(2) system via the generation of hydroxyl radical by the free radical-generating function of the enzyme. The Cu,Zn-SOD/H(2)O(2)-induced alpha-synuclein aggregates displayed strong thioflavin-S reactivity, reminiscent of amyloid. These results suggest that the Cu,Zn-SOD/H(2)O(2) system might be related to abnormal aggregation of alpha-synuclein, which may be involved in the pathogenesis of PD and related disorders.  相似文献   

17.
Human Cu,Zn-superoxide dismutase (hSOD1) has 4 cysteines per subunit. Cys57 and Cys148 are involved in an intrasubunit disulfide bond, while Cys6 and Cys111 are free. Cys6 is buried within the protein while Cys111 is on the surface, near the dimer interface. We examined by liquid chromatography-mass spectrometry the commercially purchased hSOD1 isolated from erythrocytes as well as hSOD1s isolated from human erythrocytes, brain, and hSOD1 expressed in Sf9, yeast, and E. coli. Our goal was to ascertain whether the Cys111 modification occurred naturally in vivo. Only the Sigma erythrocyte hSOD1 appeared to contain a trisulfide crosslink between the Cys111 residues. Thus it failed to react with N-ethylmaleimide, showed absorbtion at 325 nm that was eliminated by 2-mercaptoethanol, and had a mass 30 units more than expected for the native dimer. We examined the possibility that different purification methods might cause this modification in erythrocyte hSOD1. None of the procedures examined for hSOD1 purification produced such a trisulfide. In disagreement with Liu et al. [Biochemistry, 2000, 39, 8125-8132], complete derivitization of both Cys111s of hSOD1 from Sf9 cells with N-ethylmaleimide, 4-vinylpyridine, and by 5,5′-dithiobis(2-nitrobenzoic acid) were readily achieved; indicating that steric hindrance was not a problem.  相似文献   

18.
Kim NH  Jeong MS  Choi SY  Hoon Kang J 《Biochimie》2004,86(8):553-559
Neurofilament-L (NF-L) is a major element of neuronal cytoskeletons and known to be important for their survival in vivo. Since oxidative stress might play a critical role in the pathogenesis of neurodegenerative diseases, we investigated the role of Cu,Zn-superoxide dismutase (SOD) in the modification of NF-L. When disassembled NF-L was incubated with Cu,Zn-SOD and H2O2, the aggregation of protein was proportional to the concentration of hydrogen peroxide. Cu,Zn-SOD/H2O2-mediated modification of NF-L was significantly inhibited by radical scavenger, spin trap agents and copper chelators. Dityrosine crosslink formation was obtained in Cu,Zn-SOD/H2O2-mediated NF-L aggregates. Antioxidant molecules, carnosine and anserine significantly inhibited the aggregation of NF-L and the formation of dityrosine. This study suggests that copper-mediated NF-L modification may be closely related to oxidative reactions which play a critical role in neurodegenerative diseases.  相似文献   

19.
Cu,Zn-superoxide dismutase (SOD) can catalyze hydroxyl radical generation using H2O2 as a substrate. Lipid peroxidation induced by the Cu,Zn-SOD and H2O2 system was investigated. When linoleic acids micelles or phosphatidylcholine liposomes were incubated with Cu,Zn-SOD and H2O2, lipid peroxidation was gradually increased in a time-dependent manner. The extent of lipid peroxidation was proportional to Cu,Zn-SOD and H2O2 concentrations. Hydroxyl radical scavengers and copper chelator inhibited lipid peroxidation induced by the Cu,Zn-SOD and H2O2 system. These results suggest that lipid peroxidation is mediated by the Cu,Zn-SOD and H2O2 system via the generation of hydroxyl radicals by a combination of the peroxidative reaction of Cu,Zn-SOD and the Fenton-like reaction of free copper released from oxidatively damaged SOD.  相似文献   

20.
To improve its stability and lipophilicity, Cu,Zn-superoxide dismutase (SOD) was chemically modified with linoleic and α-linolenic acids using two different methods. Higher retained enzymatic activity has been observed compared with SOD modified by macromolecular substances. Enhanced heat stability, acid and alkali resistance, and anti-pepsin/trypsin ability of the modified SOD were observed compared with those of the natural enzyme, the apparent oil-water partition coefficient being especially increased. The results characterize SOD modified with polyunsaturated fatty acids as a promising pharmacological tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号