首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The essential oils of oregano and thyme are active against a number of food-borne pathogens, such as Escherichia coli O157:H7. Carvacrol is one of the major antibacterial components of these oils, and p-cymene is thought to be its precursor in the plant. The effects of carvacrol and p-cymene on protein synthesis in E. coli O157:H7 ATCC 43895 cells were investigated. Bacteria were grown overnight in Mueller-Hinton broth with a sublethal concentration of carvacrol or p-cymene, and their protein compositions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and confirmed by Western blotting. The presence of 1 mM carvacrol during overnight incubation caused E. coli O157:H7 to produce significant amounts of heat shock protein 60 (HSP60) (GroEL) (P < 0.05) and inhibited the synthesis of flagellin highly significantly (P < 0.001), causing cells to be aflagellate and therefore nonmotile. The amounts of HSP70 (DnaK) were not significantly affected. p-Cymene at 1 mM or 10 mM did not induce HSP60 or HSP70 in significant amounts and did not have a significant effect on flagellar synthesis. Neither carvacrol (0.3, 0.5, 0.8, or 1 mM) nor p-cymene (0.3, 0.5, or 0.8 mM) treatment of cells in the mid-exponential growth phase induced significant amounts of HSP60 or HSP70 within 3 h, although numerical increases of HSP60 were observed. Motility decreased with increasing concentrations of both compounds, but existing flagella were not shed. This study is the first to demonstrate that essential oil components induce HSP60 in bacteria and that overnight incubation with carvacrol prevents the development of flagella in E. coli O157:H7.  相似文献   

2.
Consumption of fresh and fresh-cut fruits and vegetables contaminated with Escherichia coli O157:H7 has resulted in hundreds of cases of illness and, in some instances, death. In this study, the influence of cell surface structures of E. coli O157:H7, such as flagella, curli fimbriae, lipopolysaccharides, or exopolysaccharides, on plant defense responses and on survival or colonization on the plant was investigated. The population of the E. coli O157:H7 ATCC 43895 wild-type strain was significantly lower on wild-type Arabidopsis plants than that of the 43895 flagellum-deficient mutant. The population of the E. coli O157:H7 43895 flagellum mutant was greater on both wild-type and npr1-1 mutant (nonexpressor of pathogenesis-related [PR] genes) plants and resulted in less PR gene induction, estimated based on a weak β-glucuronidase (GUS) signal, than did the 43895 wild-type strain. These results suggest that the flagella, among the other pathogen-associated molecular patterns (PAMPs), made a substantial contribution to the induction of plant defense response and contributed to the decreased numbers of the E. coli O157:H7 ATCC 43895 wild-type strain on the wild-type Arabidopsis plant. A curli-deficient E. coli O157:H7 86-24 strain survived better on wild-type Arabidopsis plants than the curli-producing wild-type 86-24 strain did. The curli-deficient E. coli O157:H7 86-24 strain exhibited a GUS signal at a level substantially lower than that of the curli-producing wild-type strain. Curli were recognized by plant defense systems, consequently affecting bacterial survival. The cell surface structures of E. coli O157:H7 have a significant impact on the induction of differential plant defense responses, thereby impacting persistence or survival of the pathogen on plants.  相似文献   

3.
Two murine monoclonal antibodies (MAbs) (2B7 and 46E9-9) reactive with the H7 flagellar antigen of Escherichia coli were produced and characterized. A total of 217 E. coli strains (48 O157:H7, 4 O157:NM, 23 O157:non-H7, 22 H7:non-O157, and 120 non-O157:nonH7), 17 Salmonella serovars, and 29 other gram-negative bacteria were used to evaluate the reactivities of the two MAbs by indirect enzyme-linked immunosorbent assay (ELISA). Both MAbs reacted strongly with all E. coli strains possessing the H7 antigen and with H23- and H24-positive E. coli strains. Indirect ELISA MAb specificity was confirmed by inhibition ELISA and by Western blotting (immunoblotting), using partially purified flagellins from E. coli O157:H7 and other E. coli strains. On a Western blot, MAb 46E9-9 was more reactive against H7 flagellin of E. coli O157:H7 than against H7 flagellin of E. coli O1:K1:H7. Competition ELISA suggested that MAbs 2B7 and 46E9-9 reacted with closely related H7 epitopes. When the ELISA reactivities of the MAbs and two commercially available polyclonal anti-H7 antisera were compared, both polyclonal antisera and MAbs reacted strongly with E. coli H7 bacteria. However, the polyclonal antisera cross-reacted strongly both with non-H7 E. coli and with many non-E. coli bacteria. The polyclonal antisera also reacted strongly with H23 and H24 E. coli isolates. The data suggest the need to define serotype-specific epitopes among H7, H23, and H24 E. coli flagella. The anti-H7 MAbs described in this report have the potential to serve as high-quality diagnostic reagents, used either alone or in combination with O157-specific MAbs, to identify or detect E. coli O157:H7 in food products or in human and veterinary clinical specimens.  相似文献   

4.
AIMS: The fate of Escherichia coli O157:H7 was investigated during the manufacture of Mozzarella cheese. METHODS AND RESULTS: The Mozzarella cheese was made from unpasteurized milk which was inoculated to contain ca 10(5) cfu ml(-1)E. coli O157:H7. Two different heating temperatures (70 and 80 degrees C), commonly used during curd stretching, were investigated to determine their effects on the viability of E. coli O157:H7 in Mozzarella cheese. Stretching at 80 degrees C for 5 min resulted in the loss of culturability of E. coli O157:H7 strains, whereas stretching at 70 degrees C reduced the number of culturable E. coli O157:H7 by a factor of 10. CONCLUSIONS: The results show that stretching curd at 80 degrees C for 5 min is effective in controlling E. coli O157:H7 during the production of Mozzarella cheese. Brining and storage at 4 degrees C for 12 h was less effective than the stretching. Significance and Impact of the Study: Mozzarella cheese should be free of E. coli O157:H7 only if temperatures higher than or equal to 80 degrees C are used during milk processing.  相似文献   

5.
Tryptone soya agar (TSA) and three selective media, BCM1M O157:H7(+) agar (BCM), modified eosin methylene blue agar (MEMB), and sorbitol MacConkey agar (SMAC) were evaluated for recovery of two strains of E. coli O157:H7 (salami and cider isolates) heated at 56, 58, and 60C for up to 60 min in tryptone soya broth (TSB). TSA and MEMB were equally effective at recovery of heat-stressed (56, 58, and 60C) E . coli O 157:H7 and superior to SMAC and BCM (P 0.05). When heated at 56 and 58C, recovery of E. coli O157:H7 on MEMB and TSA was not significantly different (P > 0.05); recovery was poorer on SMAC, followed by BCM (P 0.05). There was no significant difference in recovery of E. coli O157:H7 on BCM and SMAC when strains were heated at 60C (P > 0.05).  相似文献   

6.
The effect of high-pressure (HP) treatments combined with bacteriocins of lactic acid bacteria (LAB) produced in situ on the survival of Escherichia coli O157:H7 in cheese was investigated. Cheeses were manufactured from raw milk inoculated with E. coli O157:H7 at approximately 10(5) CFU/ml. Seven different bacteriocin-producing LAB were added at approximately 10(6) CFU/ml as adjuncts to the starter. Cheeses were pressurized on day 2 or 50 at 300 MPa for 10 min or 500 MPa for 5 min, at 10 degrees C in both cases. After 60 days, E. coli O157:H7 counts in cheeses manufactured without bacteriocin-producing LAB and not pressurized were 5.1 log CFU/g. A higher inactivation of E. coli O157:H7 was achieved in cheeses without bacteriocin-producing LAB when 300 MPa was applied on day 50 (3.8-log-unit reduction) than if applied on day 2 (1.3-log-unit reduction). Application of 500 MPa eliminated E. coli O157:H7 in 60-day-old cheeses. Cheeses made with bacteriocin-producing LAB and not pressurized showed a slight reduction of the pathogen. Pressurization at 300 MPa on day 2 and addition of lacticin 481-, nisin A-, bacteriocin TAB 57-, or enterocin AS-48-producing LAB were synergistic and reduced E. coli O157:H7 counts to levels below 2 log units in 60-day-old cheeses. Pressurization at 300 MPa on day 50 and addition of nisin A-, bacteriocin TAB 57-, enterocin I-, or enterocin AS-48-producing LAB completely inactivated E. coli O157:H7 in 60-day-old cheeses. The application of reduced pressures combined with bacteriocin-producing LAB is a feasible procedure to improve cheese safety.  相似文献   

7.
8.
It had been suggested that the flagella of enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) might contribute to host colonization. In this study, we set out to investigate the adhesive properties of H7 and H6 flagella. We studied the abilities of EHEC EDL933 (O157:H7) and EPEC E2348/69 (O127:H6) flagella to bind to bovine mucus, host proteins such as mucins, and extracellular matrix proteins. Through several approaches, we found that H6 and H7 flagella and their flagellin monomers bind to mucins I and II and to freshly isolated bovine mucus. A genetic approach showed that EHEC and EPEC fliC deletion mutants were significantly less adherent to bovine intestinal tissue than the parental wild-type strains. In addition, we found that EPEC bacteria and H6 flagella, but not EHEC, bound largely, in a dose-dependent manner, to collagen and to a lesser extent to laminin and fibronectin. We also report that EHEC O157:H7 strains agglutinate rabbit red blood cells via their flagella, a heretofore unknown phenotype in this pathogroup. Collectively, our data demonstrate that the H6 and H7 flagella possess adhesive properties, particularly the ability to bind mucins, that may contribute to colonization of mucosal surfaces.  相似文献   

9.
In this paper, we describe a novel method for detecting Escherichia coli (E. coli) O157:H7 by using a quartz crystal microbalance (QCM) immunosensor based on beacon immunomagnetic nanoparticles (BIMPs), streptavidin-gold, and growth solution. E. coli O157-BIMPs were magnetic nanoparticles loaded with polyclonal anti-E. coli O157:H7 antibody (target antibody, T-Ab) and biotin-IgG (beacon antibody, B-Ab) at an optimized ratio of 1:60 (T-Ab:B-Ab). E. coli O157:H7 was captured and separated by E. coli O157-BIMPs in a sample, and the streptavidin-gold was subsequently conjugated to E. coli O157-BIMPs by using a biotin-avidin system. Finally, the gold particles on E. coli O157-BIMPs were enlarged in growth solution, and the compounds containing E. coli O157:H7, E. coli O157-BIMPs, and enlarged gold particles were collected using a magnetic plate. The QCM immunosensor was fabricated with protein A from Staphylococcus aureus and monoclonal anti-E. coli O157:H7 antibody. The compounds decreased the immunosensor's resonant frequency. E. coli O157-BIMPs and enlarged gold particles were used as "mass enhancers" to amplify the frequency change. The frequency shift was correlated to the bacterial concentration. The detection limit was 23 CFU/ml in phosphate-buffered saline and 53 CFU/ml in milk. This method could successfully detect E. coli O157:H7 with high specificity and stability. The entire procedure for the detection of E. coli O157:H7 took only 4 h.  相似文献   

10.
AIMS: To quantify the slime polysaccharide, composed of colanic acid (CA), produced by enterohaemorrhagic and Shiga toxin-producing Escherichia coli (EHEC and STEC) and to determine the influence of culture conditions on CA production in E. coli O157:H7. METHODS AND RESULTS: The study examined the amounts of CA produced by EHEC and STEC, and evaluated the production of CA in E. coli O157:H7 as influenced by medium pH and incubation temperatures. The results indicated that the amounts of CA produced by EHEC and STEC vary to a great extent and CA production in E. coli O157:H7 is influenced by the tested culture conditions. CONCLUSIONS: The abilities of EHEC and STEC to produce CA differ. Medium pH and incubation temperature are among the important factors affecting CA production in E. coli O157:H7. SIGNIFICANCE AND IMPACT OF THE STUDY: Slime polysaccharide can affect the abilities of E. coli O157:H7 cells to combat environmental stress. This study contributes to a better understanding of the physiological factors influencing slime polysaccharide production in EHEC and STEC.  相似文献   

11.
Outbreaks of Escherichia coli O157:H7 disease associated with animal exhibits have been reported with increasing frequency. Transmission can occur through contact with contaminated haircoats, bedding, farm structures, or water. We investigated the distribution and survival of E. coli O157:H7 in the immediate environments of individually housed, experimentally inoculated cattle by systematically culturing feed, bedding, water, haircoat, and feed bunk walls for E. coli O157:H7 for 3 months. Cedar chip bedding was the most frequently culture-positive environmental sample tested (27/96 or 28.15%). Among these, 12 (44.0%) of positive bedding samples were collected when the penned animal was fecal culture negative. Survival of E. coli O157:H7 in experimentally inoculated cedar chip bedding and in grass hay feed was determined at different temperatures. Survival was longest in feed at room temperature (60 days), but bacterial counts decreased over time. The possibility that urine plays a role in the environmental survival of E. coli O157:H7 was investigated. Cedar chip bedding moistened with sterile water or bovine urine was inoculated with E. coli O157:H7. Bedding moistened with urine supported growth of E. coli O157:H7, whereas inoculated bedding moistened with only water yielded decreasing numbers of bacteria over time. The findings that environmental samples were frequently positive for E. coli O157:H7 at times when animals were culture negative and that urine provided a substrate for E. coli O157:H7 growth have implications for understanding the on-farm ecology of this pathogen and for the safety of ruminant animal exhibits, particularly petting zoos and farms where children may enter animal pens.  相似文献   

12.
Our group has previously reported a sandwich-based strip immunoassay for rapid detection of Escherichia coli O157:H7 [Anal. Chem. 75 (2003) 4330]. In the present study, a microcapillary flow injection liposome immunoanalysis (mFILIA) system was developed for the detection of heat-killed E. coli O157:H7. A fused-silica microcapillary with anti-E. coli O157:H7 antibodies chemically immobilized on the internal surface via protein A served as an immunoreactor/immunoseparator for the mFILIA system. Liposomes tagged with anti-E. coli O157:H7 and encapsulating a fluorescent dye were used as the detectable label. In the presence of E. coli O157:H7, sandwich complexes were formed between the immobilized antibodies in the column, the sample of E. coli O157:H7 and the antibody-tagged sulforhodamine-dye-loaded liposomes. Signals generated by lysing the bound liposomes with 30 mM n-octyl-beta-D-glucopyranoside were measured by a fluorometer. The detected signal was directly proportional to the amount of E. coli O157:H7 in the test sample. The mFILIA system successfully detected as low as 360 cells/mL (equivalent to 53 heat-killed bacteria in the 150 microL of the sample solution injected). MeOH (30%) was used for the regeneration of antibody binding sites in the capillary after each measurement, which allowed the immunoreactor/immunoseparator to be used for at least 50 repeated assays. The calibration curve for heat-killed E. coli O157:H7 has a working range of 6 x 10(3)-6 x 10(7)cells, and the total assay time was less than 45 min. A coefficient of variation for triplicate measurements was < or =8.9%, which indicates an acceptable level of reproducibility for this newly developed method.  相似文献   

13.
AIM: To estimate the distribution and prevalence of both Escherichia coli O157 and O157:H7-infecting bacteriophages within a 50,000 head commercial beef feedlot. METHODS AND RESULTS: Escherichia coli O157 was detected in approximately 27% of the individual samples, distributed across seven of the 10 pens screened. In a simple initial screen to detect O157:H7-infecting phages, none were detected in any pen or individual sample. In contrast, after a series of enrichment procedures O157:H7-infecting phages were detected in every pen and in the majority of the samples from most pens; virulent bacteriophages active against E. coli O157:H7 were detected post-enrichment from 39/60 (65%) of the feedlot samples, and 58/60 (approximately 97%) contained phage that infected E. coli B or O157:H7. CONCLUSIONS: The data we present here indicates that we may be grossly underestimating the prevalence of O157:H7-infecting phages in livestock if we simply screen samples and that enrichment screening is required to truly determine the presence of phages in these ecosystems. SIGNIFICANCE AND IMPACT OF THE STUDY: Our data suggest that O157:H7-infecting phages may play a role in the ecology and transient colonization of cattle by E. coli O157:H7. Further, this and previous data suggest that before starting in vivo pathogen eradication studies using phage or any other regime, test animals should be enrichment screened for phage to avoid erroneous results.  相似文献   

14.
Aims:  To quantify the variability of the Shiga toxin 2 (Stx2) production by a panel of stx2 -positive Escherichia coli O157:H7/H7- isolates from healthy cattle before and after induction with enrofloxacin.
Methods and Results:  ProSpecT® ELISA was used to quantify the Stx2 production by stx2 -positive E. coli O157:H7/H7- isolates in native conditions (basal level) or after induction with enrofloxacin. Whereas only 15·2% of the E. coli O157:H7/H7- strains studied displayed significant amounts of detectable Stx2 without induction, most of them were shown to be inducible, and at various levels, in presence of subinhibitory concentrations of enrofloxacin.
Conclusions:  We demonstrated the capability of a highly elevated proportion of stx2 -positive, but constitutively Stx2 -negative, E. coli O157:H7/H7- isolates from healthy cattle to produce significant levels of Shiga toxin Stx2 in presence of subtherapeutic concentrations of enrofloxacin, an antibiotic of the fluoroquinolones family only licensed for veterinary use.
Significance and Impact of the Study:  This study documents the risk that bovine-associated Shiga toxin producing E. coli isolates may become more frequently pathogenic to humans as a side-effect of the increasing use of veterinary fluoroquinolones in the oral treatment of food animals like cattle or poultry.  相似文献   

15.
Primers, specific for a unique base substitution in uidA of Escherichia coli O157:H7, were coupled with oligonucleotides for the shiga-like toxin I (SLT-I) and SLT-II genes in a multiplex PCR assay. A minimum of 10(2) CFU per PCR (10 microliters) was necessary to amplify E. coli O157:H7-specific bands by multiplex PCR. Food particles as well as various unknown metabolic by-products of bacteria inhibited the PCR, but a simple two-step filtration procedure eliminated this inhibition. To reliably generate PCR products, an E. coli inoculum of 10(3) CFU g of food slurry-1 in a nonspecific medium was required with 6 h of enrichment at 37 degrees C. However, when the food homogenate was incubated overnight, E. coli O157:H7 at an initial inoculum of even 1 CFU g-1 was detected.  相似文献   

16.
AIMS: To assess the potential of essential oils and structurally related synthetic food additives in reducing bacterial pathogens in swine intestinal tract. METHODS AND RESULTS: The antimicrobial activity of essential oils/compounds was measured by determining the inhibition of bacterial growth. Among 66 essential oils/compounds that exhibited > or =80% inhibition towards Salmonellatyphimurium DT104 and Escherichia coli O157:H7, nine were further studied. Most of the oils/compounds demonstrated high efficacy against S. typhimurium DT104, E. coli O157:H7, and E. coli with K88 pili with little inhibition towards lactobacilli and bifidobacteria. They were also tolerant to the low pH. When mixed with pig cecal digesta, these oils/compounds retained their efficacy against E. coli O157:H7. In addition, they significantly inhibited E. coli and coliform bacteria in the digesta, but had little effect on the total number of lactobacilli and anaerobic bacteria. CONCLUSIONS: Some essential oils/compounds demonstrated good potential, including efficacy, tolerance to low pH, and selectivity towards bacterial pathogens, in reducing human and animal bacterial pathogens in swine intestinal tract. SIGNIFICANCE AND IMPACT OF THE STUDY: This study has identified candidates of essential oils/compounds for in vivo studies to develop antibiotic substitutes for the reduction of human and animal bacterial pathogens in swine intestinal tract.  相似文献   

17.
Enterohaemorrhagic Escherichia coli O157 : H7 is a bacterial pathogen that can cause haemorrhagic colitis and haemolytic uremic syndrome. In the primary reservoir host, cattle, the terminal rectum is the principal site of E. coli O157 colonization. In this study, bovine terminal rectal primary epithelial cells were used to examine the role of H7 flagella in epithelial adherence. Binding of a fliCH7 mutant O157 strain to rectal epithelium was significantly reduced as was binding of the flagellated wild-type strain following incubation with H7-specific antibodies. Complementation of fliCH7 mutant O157 strain with fliCH7 restored the adherence to wild-type levels; however, complementation with fliCH6 did not restore it. High-resolution ultrastructural and imunofluorescence studies demonstrated the presence of abundant flagella forming physical contact points with the rectal epithelium. Binding to terminal rectal epithelium was specific to H7 by comparison with other flagellin types tested. In-cell Western assays confirmed temporal expression of flagella during O157 interaction with epithelium, early expression was suppressed during the later stages of microcolony and attaching and effacing lesion formation. H7 flagella are expressed in vivo by individual bacteria in contact with rectal mucosa. Our data demonstrate that the H7 flagellum acts as an adhesin to bovine intestinal epithelium and its involvement in this crucial initiating step for colonization indicates that H7 flagella could be an important target in intervention strategies.  相似文献   

18.
Experimental Escherichia coli O157:H7 carriage in calves.   总被引:5,自引:0,他引:5       下载免费PDF全文
Nine weaned calves (6 to 8 weeks of age) were given 10(10) CFU of a five-strain mixture of enterohemorrhagic Escherichia coli O157:H7 by oral-gastric intubation. After an initial brief period of pyrexia in three calves and transient mild diarrhea in five calves, calves were clinically normal throughout the 13- to 27-day study. The population of E. coli O157:H7 in the faces decreased dramatically in all calves during the first 2 weeks after inoculation. Thereafter, small populations of E. coli O157:H7 persisted in all calves, where they were detected intermittently in the feces and rumen contents. While withholding food increased fecal shedding of E. coli O157:H7 by 1 to 2 log10/g in three of four calves previously shedding small populations of E. coli O157:H7, the effect of fasting on fecal shedding of E. coli O157:H7 was variable in calves shedding larger populations. At necropsy, E. coli O157:H7 was not isolated from sites outside the alimentary tract. E. coli O157:H7 was isolated from the forestomach or colon of all calves at necropsy. Greater numbers of E. coli O157:H7 were present in the gastrointestinal contents than in the corresponding mucosal sections, and there was no histologic or immunohistochemical evidence of E. coli O157:H7 adhering to the mucosa. In conclusion, under these experimental conditions, E. coli O157:H7 is not pathogenic in weaned calves, and while it does not appear to colonize mucosal surfaces for extended periods, E. coli O157:H7 persists in the contents of the rumen and colon as a source for fecal shedding.  相似文献   

19.
Twenty-five and three strains of Escherichia coli O157:H7 were identified from 25 tenderloin beef and three chicken meat burger samples, respectively. The bacteria were recovered using the immunomagnetic separation procedure followed by selective plating on sorbitol MacConkey agar and were identified as E. coli serotype O157:H7 with three primer pairs that amplified fragments of the SLT-I, SLT-II and H7 genes in PCR assays. Susceptibility testing to 14 antibiotics showed that all were resistant to two or more antibiotics tested. Although all 28 strains contained plasmid, there was very little variation in the plasmid sizes observed. The most common plasmid of 60 MDa was detected in all strains. We used DNA fingerprinting by randomly amplified polymorphic DNA (RAPD) and pulsed-field gel electrophoresis (PFGE) to compare the 28 E. coli O157:H7 strains. At a similarity level of 90%, the results of PFGE after restriction with XbaI separated the E. coli O157:H7 strains into 28 single isolates, whereas RAPD using a single 10-mer oligonucleotides separated the E. coli O157:H7 strains into two clusters and 22 single isolates. These typing methods should aid in the epidemiological clarification of the E. coli O157:H7 in the study area.  相似文献   

20.
An immunochromatographic-based assay (Quixtrade mark E. coli O157 Sprout Assay) and a polymerase chain reaction (PCR)-based assay (TaqMan E. coli O157:H7 Kit) were used to detect Escherichia coli O157:H7 strain 380-94 in spent irrigation water from alfalfa sprouts grown from artificially contaminated seeds. Ten, 25, 60, or 100 seeds contaminated by immersion for 15 min in a suspension of E. coli O157:H7 at concentrations of 10(6) or 10(8) cfu/ml were mixed with 20 g of non-inoculated seeds in plastic trays for sprouting. The seeds were sprayed with tap water for 15 s every hour and spent irrigation water was collected at intervals and tested. E. coli O157:H7 was detected in non-enriched water by both the TaqMan PCR (30 of 30 samples) and the immunoassay (9 of 24 samples) in water collected 30 h from the start of the sprouting process. However, enrichment of the spent irrigation water in brain heart infusion (BHI) broth at 37 degrees C for 20 h permitted detection of E. coli O157:H7 in water collected 8 h from the start of sprouting using both methods, even in trays containing as few as 10 inoculated seeds. The TaqMan PCR assay was more sensitive (more positive samples were observed earlier in the sprouting process) than the immunoassay; however, the immunoassay was easier to perform and was more rapid. At 72 h after the start of the sprouting process, the sprouts were heated at 100 degrees C for 30 s to determine the effectiveness of blanching for inactivation of E. coli O157:H7. All of the 32 samples tested with the TaqMan assay and 16 of 32 samples tested with the Quixtrade mark assay gave positive results for E. coli O157:H7 after enrichment of the blanched sprouts at 37 degrees C for 24 h. In addition, the organism was detected on Rainbow Agar O157 in 9 of 32 samples after 24 h of enrichment of the blanched sprouts. In conclusion, E. coli O157:H7 was detected in spent irrigation water collected from sprouts grown from artificially contaminated seeds by both the TaqMan and Quixtrade mark assays. The data also revealed that blanching may not be effective to completely inactivate all the E. coli O157:H7 that may be present in sprouts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号