首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five days of suitable continuous light induced flowering in the majority ofChenopodium murale L. ecotype 197 plants as early as at the phase of the first pair of leaves. At the time of initiation of the 2nd to 4th pairs of leaves the capacity of plants to flower was reduced, the number of flowering plants being significantly lower under the same inductive light treatment. The capacity to flower increased again at the phase of the 5th and the 6th pairs of leaves. Inductive light treatment brought about a marked growth activation of organs present before induction, shoot apex elongation, precocious formation of new leaves and activation of axillary meristems. The course of these changes in plants of different age is demonstrated. The terminal flower developed during 5 short days following inductive light treatment. The paper shows similarities and differences between long-daymutale L. ecotype 197 and short-day C.rubrum L. ecotype 374 grown under practically uniform conditions.  相似文献   

2.
Inhibition of root growth was observed inChenopodium rubrum under photoperiodic conditions inducing flowering. That this inhibition is mediated by the cotyledons was shown directly by the effect of their excision, which changes the responsiveness of the roots to photoperiodic treatment. On the other hand, decapitation did not lead to such an effect. Some evidence is put forward suggesting that changes in IAA may be involved in these correlations. The existence of two different mechanisms of photoperiodic action in flowering and in root growth is proposed to explain these differences.  相似文献   

3.
Chenopodium rubrum L. ecotype 184 is a qualitative short-day plant with critical length of the night of eight hours that must be exceeded in order to flower: Five days after sowing, the plants were exposed to a various number of inductive cycles (14/10 h of däy/night cycle) to test the optimal photoperiodic conditions for flowering. In our experimental conditions the plants flowered with high percentage after more than four received inductive cycles, but there was no flowering below that. The plants grown on the herbicide Norflurazon (photobleached plants) showed different photoperiodic characteristics. There was negligible flowering of photobleached plants in the same experimental conditions as for the green ones.  相似文献   

4.
Chenopodium murale plants, induced to flower by 5 days of continuous light, produced 43% more ethylene than vegetative plants kept under short days (16 h darkness, 8 h light). The 1-aminocyclopropane-1-carboxylic acid (ACC)-induced ethylene production, using saturating ACC concentration (10 mol·m−3) was also 55% higher in induced plants. Their ACC and N-malonyl-ACC (MACC) levels were also higher, the former increasing by 56% in both shoots and roots, the latter by 288% and 108% in shoots and roots, respectively. Administration of labeled [2,3-14C]ACC produced a very similar relative content of ACC and MACC in both treatments. The only process influenced by flower induction was ACC conversion to ethylene. Induced plants converted 66% more ACC than the vegetative ones. The effects of photoperiod on ethylene formation and metabolism in a long-day plant (LDP)C. murale and a short-day plant (SDP)C. rubrum are compared. Ethylene formation seems to be under photoperiodic control in both species, but its role in flower induction remains obscure.  相似文献   

5.
Beginning with the second inductive cycle the rate of nucleic acid (NA) synthesis in cotyledons and apical buds ofChenopodium rubrum is higher at the end of the dark period or 4h following transfer of the plants to light in induced plants than in non-induced ones. This is due to an increase in all NA fractions. The greatest difference between NA synthesis in induced and non-induced plants was observed at the end of the second (or sometimes third) inductivecycle. In the subsequent cycles the difference decreased or disappeared eventually. During photoperiodic induction NA synthesis shows a diurnal rhythm with a peak at the end of the dark and at the beginning of the light period. Rhythmicity of NA synthesis is endogenous. The period length of the endogenous oscillation is about 18 h. Interruption of the dark period by light causea amplitude of the first oscillation to be reduced and delays the appearance of the second peak. NA synthesis did not show rhythmicity in plants grown in continuous light. The significance of the observed phenomena for photoperiodic induction is being discussed.  相似文献   

6.
7.
Flowering in the short day plantChenopodium rubrum was inhibited by 5-fluoro-deoxyuridine (FDU) at a concentration of 4×10?6 M and higher when applied during photoperiodic induction or immediately afterwards. This inhibition is always accompanied by a general reduction of growth (e.g. a decrease in the first leaf length). The mitotic activity within the shoot apex is completely blocked by FDU application during the photoperiodic treatment. The floral induction (evocationsensu Evans) was not cancelled in this situation as was revealed when reversing the FDU effect by thymidine application. One day after the end of the photoperiodic treatment (the plants were transferred to continuous light again) the FDU inhibition becomes irreparable. The results indicate that DNA synthesis and hence the mitotic activity are not obligatory prerequisites for photoperiodic floral induction inChenopodium. Low concentrations of FDU may promote flowering under suboptimal floral induction.  相似文献   

8.
Agrostemma githago is a long-day rosette plant in which transfer from short days (SD) to long days (LD) results in rapid stem elongation, following a lag phase of 7–8 d. Application of gibberellin A20 (GA20) stimulated stem elongation in plants under SD, while 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride (AMO-1618, an inhibitor of GA biosynthesis) inhibited stem elongation in plants exposed to LD. This inhibition of stem elongation by AMO-1618 was overcome by simultaneous application of GA20, indicating that GAs play a role in the photoperiodic control of stem elongation in this species. Endogenous GA-like substances were analyzed using reverse-phase high-performance liquid chromatography and the d-5 corn (Zea mays L.) assay. Three zones with GA-like activity were detected and designated, in order of decreasing polarity, as A, B, and C. A transient, 10-fold increase in the activity of zone B occurred after 8–10 LD, coincident with the transition from lag phase to the phase of rapid stem elongation. After 16 LD the activity in this zone had returned to a level similar to that under SD, even though the plants were elongating rapidly by this time. However, when AMO-1618 was applied to plants after 11 LD, there was a rapid reduction in the rate of stem elongation, indicating that continued GA biosynthesis was necessary following the transient increase in activity of zone B, if stem elongation was to continue under LD. It was concluded that control of stem elongation in A. githago involves more than a simple qualitative or quantitative change in the levels of endogenous GAs, and that photoperiodic induction alters both the sensitivity to GAs and the rate of turnover of endogenous GAs.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride - GA(s) gibberellin(s) - LD long day(s) - LDP long-day plant(s) - SD short day(s)  相似文献   

9.
Plants of Lolium temulentum L. strain Ceres were grown in 8-h short day (SD) for 45 d before being exposed either to a single long day (LD) or to a single 8-h SD given during an extended dark period. For LD induction, the critical photoperiod was between 12 and 14 h, and more than 16 h were needed for a maximal flowering response. During exposure to a single 24-h LD, the translocation of the floral stimulus began between the fourteenth and the sixteenth hours after the start of the light period, and was completed by the twenty-fourth hour. Full flowering was also induced by one 8-h SD beginning 4 or 28 h after the start of a 40-h dark period, i.e. by shifting 12 h forward or beyond the usual SD. The effectiveness of a so-called ‘displaced short day’ (DSD) was not affected by light quality and light intensity. With a mixture of incandescent and fluorescent lights at a total photosynthetic photon flux density of 400 μmol m−2 s−1, a 4-h light exposure beginning 4 h after the start of a 40-h dark period was sufficient to induce 100% flowering. The flower-inducing effect of a single 8-h DSD was also assessed during a 64-h dark period. Results revealed two maxima at a 20-h interval. This fluctuation in light sensitivity suggests that a circadian rhythm is involved in the control of flowering of L. temulentum.  相似文献   

10.
Flowering in the short-day speciesChenopodium rubrum L. was stimulated by treatment with abscisic acid (ABA) in concentrations from 1×10?3 M to 1×10?7 M only in plants partly induced by two dark periods. We assume that ABA weakens the inhibitory effect of continuous light (similarly as do some other substancese.g nucleic acid inhibitors) and thus enables the expression of the evoked floral state. ABA was ineffective in promoting flowering in photoperiodically non-induced plants.  相似文献   

11.
Under the conditions applied in our laboratory 4 1/2 days old plants ofChenopodium rubrum require 2–3 photoperiodic cycles for maximal flowering response, whereas 2 1/2 days old plants are able to flower after having obtained a single inductive cycle. The period length of the free-running rhythm of flowering observed in 2 1/2 days old plants after a single transfer from light to darkness is 30h and the first peak of flowering occurs at about hour 12 in darkness. When a cycle consisting of 16h darkness and 8h light or of 8h darkness and 8h light precedes the long dark period the rhythm is rephased. Rephasing is greater when the light commenced to act on the positive slope of the first peak of the free running rhythm than when it impinged on the negative slope. With an 8h interruption of darkness by light rhythm phase is controlled by the light-on, as well as by the light-off signal. Feeding 0.4 M glucose during the long period of darkness enhanced the amplitude of the flowering response and, moreover, substituted for one photoperiodic cycle.  相似文献   

12.
The low chlorophyll content of cotyledons of Pharbitis nil grown for 24 h in far-red light (FR) or at 18° C in white light from fluorescent lamps (WL) allows spectrophotometric measurement of phytochrome in these tissues. The (A) measurements utilize measuring beams at 730/802 nm and an actinic irradiation in excess of 90 s. The constancy of the relationship between phytochrome content and sample thickness confirms that, under these conditions of measurement, a true maximum phytochrome signal was obtained. These techniques have been used to follow changes in the form and amount of phytochrome during an inductive dark period for flowering. Following exposure to 24h WL at 18° C with a terminal 10 min red (R), Pfr was lost rapidly in darkness and approached zero in less than 1 h; during this period there was no change in the total phytochrome signal. Following exposure to 24 h FR with a terminal 10 min R, Pfr approached zero in 3 h, and the total phytochrome signal decreased by about half. The relevance of these changes to photoperiodic time measurement is discussed.Abbreviations BCJ irradiation from photographic ruby-red lamps - FR far-red light - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - P total phytochrome content - R red light - WL white light from fluorescent lamps  相似文献   

13.
For dark-grown seedlings of Pharbitis nil capacity to flower in response to a single inductive dark period was established by 24 h white, far-red (FR) or ruby-red (BCJ) light and by a skeleton photoperiod of 10 min red (R)-24 h dark-10 min R. FR alone was ineffective without a brief terminal (R) irradiation, confirming that the form of phytochrome immediately prior to darkness is a crucial factor for flowering in Pharbitis. The magnitude of the flowering response was significantly greater after 24 h FR or white light (WL) (at 18° C and 27° C) than after two brief skeleton R irradiations, but the increased flowering response was not attributable to photosynthetic CO2 uptake because this could not be detected in seedlings exposed to 24 h WL at 18° C. Photophosphorylation could have contributed to the increased flowering response as photosystem I fluorescence was detectable in plants exposed to FR, BCJ, or WL, but there were large differences between flowering response and photosystem I capacity as indicated by fluorescence. We conclude that phytochrome plays a major role in photoresponses regulating flowering. There was no simple correlation between developmental changes, such as cotyledon expansion and chlorophyll formation during the 24-h irradiation period, and the capacity to flower in response to a following inductive dark period. Changes in plastid ultrastructure were considerable in light from fluorescent lamps and there was complete breakdown of the prolamellar body with or without lamellar stacking at 27 or 18° C, respectively, but plastid reorganization was minimal in FR-irradiated seedlings.Abbreviations BCJ irradiation from photographic ruby-red lamps - FR far-red light - Pfr far-red-absorbing from of phytochrome - P total phytochrome content - R red light - WL white light from fluorescent lamps  相似文献   

14.
Vegetative plants of the long-day grass Lolium temulentum L.Ceres were exposed to threshold long days or light breaks. Protracteddarkness given just afterwards clearly promoted flowering andwas weakly inductive on its own. The promotive effect of darknesswas restricted to floral induction since further apical developmentwas weak. Key words: Lolium temulentum, flowering, photoperiodism, darkness  相似文献   

15.
Chenopodium rubrum plants, induced to flower by three cycles of 12 h darkness and 12 h light, produced 42% less ethylene than vegetative plants kept under continuous light. Plants that had each dark cycle broken by 2 h light in the middle did not flower and produced almost as much ethylene as the vegetative plants. Shoots and roots of plants of all three experimental treatments had a similar content of 1-aminocyclopropane-1-carboxylic acid (ACC), the mean amounting to about 2 nmol · g–1 dry weight. Also the content of N-malonyl-ACC (MACC) was similar in shoots of all three treatments. MACC content in roots was shown to be much higher, especially in the treatments with three dark periods (about 85 nmol · g–1 dry weight). When labeled [2,3-14C] ACC was administered, the relative contents of ACC and MACC were very similar among all three treatments. The only process influenced by flower induction was ACC conversion to ethylene. Induced plants converted 36% less ACC than the vegetative ones. Plants subjected to night-break converted almost as much ACC to ethylene as vegetative plants. It is concluded that flower induction in the short-day plantChenopodium rubrum decreases ethylene production by decreasing their capability of converting ACC to ethylene.  相似文献   

16.
Electrophysiological processes were investigated in the reception organ of photoperiodism, cotyledons and first leaves, in a model short-day plantChenopodium rubrum L. (selection 374) within the dark inductive cycle for flowering. Membrane potential (Em) was measured in cotyledon and first leaf mesophyll of intact plants. The Em time-course was fairly similar during inductive dark or postinductive light period or in non-inductive continuous light and had a character of irregular oscillations. The most distinct oscillations were found during the postinductive light period. Changes in light régime at the beginning (light off) and the end of inductive dark period (light on) triggered marked transient Em changes having a character of damped oscillations. Cortical root cells in intact plants did not react to switching light and darkness. Changes in Em in reception organs during the inductive cycle could not be correlated with the formation and transport of floral stimulus or with reaching the induced state. Thus, the electrophysiological nature of floral stimulus has not been confirmed.  相似文献   

17.
The study deals with the effect of indol-3-ylacetic acid (IAA) on endogenous rhythm of flowering inChenopodium rubrum L. ecotype 374. Phase setting of the rhythm and length of its period were not affected, its amplitude decreased or changed insignificantly depending on the time and the site of IAA application. The intervals of significant inhibitory effect of IAA applied to apical buds terminated later than after IAA application to photoreceptive organs. The inhibitory effect did not correlate with the level of IAA uptake. Results obtained support the hypothesis that both photoreceptive organs and apical buds are the sites of inhibitory effect of applied IAA.  相似文献   

18.
Electrophysiological processes were investigated in reception organs of photoperiodism in a model short-day plant,Chenopodium rubrum L. (selection 374), within the inductive cycle for flowering. Transorgan (surface) electric potential (Etr) was measured as a potential difference between the first leaf surface and the roots of an intact plant, and between the surface of an excised leaf and the petiole base. The time-course of Etr in intact plants showed irregular, or partially regular, oscillations within both phases of the inductive cycle and under continuous light. The highest amplitudes were during the postinductive light period. Etr in excised leaves behaved practically in the same way as in intact plants. The Etr oscillations were localized in leaves. In general, no electrophysiological changes were found in the reception organs within the inductive cycle which could be correlated with the formation and transport of floral stimulus, or with the attainment of an induced state. The results indirectly support the idea that the floral stimulus is chemical in nature.  相似文献   

19.
Cytokinins in photoperiodic induction of flowering in Chenopodium species   总被引:1,自引:0,他引:1  
Changes in cytokinin (zeatin – Z, zeatin riboside – ZR, isopentenyladenine – iP, isopentenyladenosine – iPA) levels were determined under light regimes inductive and non-inductive for flowering in leaves, stems, roots and apical parts of short-day Chenopodium rubrum and long-day Chenopodium murale. In leaves. stems and roots of both plant species the level of cytokinins (in C. rubrum of Z and ZR, in C. murale of Z. ZR, iP and iPA) decreased by about 50% during the dark period and increased again during the subsequent light period, No significant changes in cytokinin levels were observed in continuous light. In apical parts of C. rubrum cytokinin level (Z, ZR, iP) was dramatically increased (by 400–500%) at the end of the dark period and decreased to about the original value during the following light period, while no changes were observed in continuous light. In apical parts of C. murale the level of cytokinins doubled during floral induction consisting of 10 days of continuous light. A red (R) break (15 min at the 6th h of darkness), which prevents flowering in C. rubrum , has no significant effect on cytokinin levels in leaves at the end of darkness. Cytokinin levels increased 1 h after R and decreased again rapidly. On the other hand, the increase of cytokinin level in the apical parts of C. rubrum was largely prevented by the R break. These effects of R on cytokinin levels were not reverted by far-red (FR), while the effect on flowering was reverted. It may be concluded that there is no correlation between changes in cytokinin levels in leaves. Stems and roots and photoperiodic flower induction, as both species, representing different photoperiodic types, showed similar changes under the same light regime. The increase of cytokinin levels in apical parts of both photoperiodic species during floral induction suggests a role (increased cell division and branching) for cytokinins in apex evocation.  相似文献   

20.
The obligate long-day plant Nicotiana sylvestris with a nominal critical day length of 12 h was used to dissect the roles of two major phytochromes (phyA1 and phyB1) in the photoperiodic control of flowering using transgenic plants under-expressing PHYA1 (SUA2), over-expressing PHYB1 (SOB36), or cosuppressing the PHYB1 gene (SCB35). When tungsten filament lamps were used to extend an 8 h main photoperiod, SCB35 and SOB36 flowered earlier and later, respectively, than wild-type plants, while flowering was greatly delayed in SUA2. These results are consistent with those obtained with other long-day plants in that phyB has a negative role in the control of flowering, while phyA is required for sensing day-length extensions. However, evidence was obtained for a positive role for PHYB1 in the control of flowering. Firstly, transgenic plants under-expressing both PHYA1 and PHYB1 exhibited extreme insensitivity to day-length extensions. Secondly, flowering in SCB35 was completely repressed under 8 h extensions with far-red-deficient light from fluorescent lamps. This indicates that the dual requirement for both far-red and red for maximum floral induction is mediated by an interaction between phyA1 and phyB1. In addition, a diurnal periodicity to the sensitivity of both negative and positive light signals was observed. This is consistent with existing models in which photoperiodic time measurement is not based on the actual measurement of the duration of either the light or dark period, but rather the coincidence of endogenous rhythms of sensitivity - both positive and negative - and the presence of light cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号