首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Summary The clear zones seen around microtubules in transverse sections of nutritive tubes vary in size depending on whether a microtubule is bordered by ribosomes or by another microtubule. We consider that such a finding is not consistent with the current view, that the clear zone is maintained by microtubule-associated material. It can, however, be accounted for by an electrostatic repulsion between the surfaces of negatively charged microtubules and between microtubules and ribosomes which are also negatively charged. The experiments presented here, involving on the one hand the addition of cationic substances to microtubules and on the other the alteration in charge of the microtubules, support this hypothesis.  相似文献   

2.
A network of cytoplasmic microtubules in PE cells disassembles at 37 degrees C under 1000 atm pr. in 12 to 14 hours; under 2000 atm pr., the disassembly time is not more than 2 hours. The reconstitution process sets in 20 minutes after pressure dropping to proceed diffusely throughout the cytoplasm. Microtubules attached to the cell center reappear in 45 minutes. The dynamics of microtubular disassembly and reconstitution indicates a complete inactivation of the cell center as a microtubule-organizing center.  相似文献   

3.
Actin,microtubules and focal adhesion dynamics during cell migration   总被引:6,自引:0,他引:6  
Cell migration is a complex cellular behavior that results from the coordinated changes in the actin cytoskeleton and the controlled formation and dispersal of cell-substrate adhesion sites. While the actin cytoskeleton provides the driving force at the cell front, the microtubule network assumes a regulatory function in coordinating rear retraction. The polarity within migrating cells is further highlighted by the stationary behavior of focal adhesions in the front and their sliding in trailing ends. We discuss here the cross-talk of the actin cytoskeleton with the microtubule network and the potential mechanisms that control the differential behavior of focal adhesions sites during cell migration.  相似文献   

4.
The microtubule (MT) cytoskeleton underlies processes such as intracellular transport and cell division. Immunolabeling for posttranslational modifications of tubulin has revealed the presence of different MT subsets, which are believed to differ in stability and function. Whereas dynamic MTs can readily be studied using live-cell plus-end markers, the dynamics of stable MTs have remained obscure due to a lack of tools to directly visualize these MTs in living cells. Here, we present StableMARK (Stable Microtubule-Associated Rigor-Kinesin), a live-cell marker to visualize stable MTs with high spatiotemporal resolution. We demonstrate that a rigor mutant of Kinesin-1 selectively binds to stable MTs without affecting MT organization and organelle transport. These MTs are long-lived, undergo continuous remodeling, and often do not depolymerize upon laser-based severing. Using this marker, we could visualize the spatiotemporal regulation of MT stability before, during, and after cell division. Thus, this live-cell marker enables the exploration of different MT subsets and how they contribute to cellular organization and transport.  相似文献   

5.
Background aimsAnti-thymocyte globulin (ATG) is being used increasingly to prevent graft-versus-host disease (GvHD); however, its impact on immune reconstitution is relatively unknown. We (i) studied immune reconstitution after ATG-conditioned hematopoietic cell transplantation (HCT), (ii) determined the factors influencing the reconstitution, and (iii) compared it with non-ATG-conditioned HCT.MethodsImmune cell subset counts were determined at 1–24 months post-transplant in 125 HCT recipients who received ATG during conditioning. Subset counts were also determined in 46 non-ATG-conditioned patients (similarly treated).Results(i) Reconstitution after ATG-conditioned HCT was fast for innate immune cells, intermediate for B cells and CD8 T cells, and very slow for CD4 T cells and invariant natural killer T (iNKT) (iNKT) cells. (ii) Faster reconstitution after ATG-conditioned HCT was associated with a higher number of cells of the same subset transferred with the graft in the case of memory B cells, naive CD4 T cells, naive CD8 T cells, iNKT cells and myeloid dendritic cells; lower recipient age in the case of naive CD4 T cells and naive CD8 T cells; cytomegalovirus recipient seropositivity in the case of memory/effector T cells; an absence of GvHD in the case of naive B cells; lower ATG serum levels in the case of most T-cell subsets, including iNKT cells; and higher ATG levels in the case of NK cells and B cells. (iii) Compared with non-ATG-conditioned HCT, reconstitution after ATG-conditioned HCT was slower for CD4 T cells, and faster for NK cells and B cells.ConclusionsATG worsens the reconstitution of CD4 T cells but improves the reconstitution of NK and B cells.  相似文献   

6.
The self-assembly of calf brain tubulin, purified by the modified Weisenberg procedure, was examined in an adiabatic differential heat capacity microcalorimeter. Tubulin solutions at concentrations between 6 and 17 mg/mL were heated from 8 to 40 degrees C at heating rates between 0.1 and 1.0 deg/min in a pH 7.0 phosphate buffer containing 1 X 10(-3) M GTP, 1.6 X 10(-2) M MgCl2, and 3.4 M glycerol. The heat capacity change, deltaCp of the microtubule growth reaction was found to be -1600 +/- 500 cal/(deg mol) per 110 000 molecular weight tubulin dimer incorporated into microtubules, in agreement with the reported van't Hoff deltaCp value of -1500 cal/(deg mol) [Lee, J.C., & Timasheff, S.N. (1977) Biochemistry 16, 1754-1765]. The assembly reaction is characterized by a complex heat uptake pattern comprising both endothermic and exothermic processes.  相似文献   

7.
Spindle dynamics and arrangement of microtubules   总被引:2,自引:1,他引:1  
Changes in microtubule (MT) arrangement were studied in endosperm of Haemanthus katherinae. Individual cells were selected in the light microscope and sectioned perpendicular or parallel to the long axis of the spindle. The following data and conclusions were drawn: During anaphase kinetochore fibers (bundles of kinetochore MTs) always intermingle with non-kinetochore (continuous) fibers (bundles of non-kinetochore MTs). The latter often branch and some free ends are present. Often one non-kinetochore fiber is connected with more than one kinetochore fiber, explaining why chromosomes may lose their ability for independent movement. During anaphase kinetochore fibers move to the poles, the number of kinetochore MTs decreases by one-half and the MTs tend to become more splayed out. At the same time the number of MTs between trailing chromosome arms increases, probably representing segments of kinetochore MTs which break during anaphase. The number of non-kinetochore MTs in the equatorial region at anaphase is twice the number of non-kinetochore MTs in metaphase. The above data agree perfectly with those in polarized light and indicate that a simple sliding system does not exist in the spindle of Haemanthus.  相似文献   

8.
9.
Haploidentical hematopoietic stem cell transplantation from a mismatched family member is an alternative treatment for transplant candidates who lack a HLA-matched related or an appropriate unrelated donor. One of main obstacles to successful haploidentical transplantation is slow immune reconstitution which significantly increases the risk of opportunistic infections, graft-vs-host-disease and disease relapse. Immune reconstitution is conventionally estimated by phenotypic recovery of immune cells according to lineage and/or by in vitro evidence of cell function. The limitations of these approaches include the sensitivity and specificity of phenotype markers, the availability of antibodies, the instability of long-term cell culture and the laborious nature of cell-function assays. Investigators have sought alternative approaches that are more sensitive, specific and simple, and that allow high-throughput testing for use in clinical transplantation. In this mini-review, we briefly introduce the concept of "molecular monitoring of immune-reconstitution" and discuss recent progress in this field achieved by our laboratory and other groups. We also propose future directions for clinical research incorporating these novel concepts.  相似文献   

10.
Current understandings on cell motility and directionality rely heavily on accumulated investigations of the adhesion–actin cytoskeleton–actomyosin contractility cycles, while microtubules have been understudied in this context. Durotaxis, the ability of cells to migrate up gradients of substrate stiffness, plays a critical part in development and disease. Here, we identify the pivotal role of Golgi microtubules in durotactic migration of single cells. Using high‐throughput analysis of microtubule plus ends/focal adhesion interactions, we uncover that these non‐centrosomal microtubules actively impart leading edge focal adhesion (FA) dynamics. Furthermore, we designed a new system where islands of higher stiffness were patterned within RGD peptide coated polyacrylamide gels. We revealed that the positioning of the Golgi apparatus is responsive to external mechanical cues and that the Golgi–nucleus axis aligns with the stiffness gradient in durotaxis. Together, our work unveils the cytoskeletal underpinning for single cell durotaxis. We propose a model in which the Golgi–nucleus axis serves both as a compass and as a steering wheel for durotactic migration, dictating cell directionality through the interaction between non‐centrosomal microtubules and the FA dynamics.  相似文献   

11.
Comment on: Ganguly A, et al. Oncotarget 2011; 2:368-77.  相似文献   

12.
13.
The role of microtubules in guard cell function   总被引:11,自引:0,他引:11       下载免费PDF全文
Marcus AI  Moore RC  Cyr RJ 《Plant physiology》2001,125(1):387-395
Guard cells are able to sense a multitude of environmental signals and appropriately adjust the stomatal pore to regulate gas exchange in and out of the leaf. The role of the microtubule cytoskeleton during these stomatal movements has been debated. To help resolve this debate, in vivo stomatal aperture assays with different microtubule inhibitors were performed. We observed that guard cells expressing the microtubule-binding green fluorescent fusion protein (green fluorescent protein::microtubule binding domain) fail to open for all major environmental triggers of stomatal opening. Furthermore, guard cells treated with the anti-microtubule drugs, propyzamide, oryzalin, and trifluralin also failed to open under the same environmental conditions. The inhibitory conditions caused by green fluorescent protein::microtubule binding domain and these anti-microtubule drugs could be reversed using the proton pump activator, fusicoccin. Therefore, we conclude that microtubules are involved in an upstream event prior to the ionic fluxes leading to stomatal opening. In a mechanistic manner, evidence is presented to implicate a microtubule-associated protein in this putative microtubule-based signal transduction event.  相似文献   

14.
According to the current view, the microtubule system in animal cells consists of two components: microtubules attached to the centrosome (these microtubules stretch radially towards the cell margin), and free microtubules randomly distributed in the cytoplasm without visible association with any microtubule-organizing centers. The ratio of the two sets of microtubules in the whole microtubule array is under discussion. Addressing this question, we have analysed the recovery of microtubules in cultured Vero nucleated cells and cytoplasts, with and without centrosomes in these. Cells were fixed at different time points, and individual microtubules were traced on serial optical sections. During a slow recovery after cold treatment (4 degrees C, for 4 h; recovery at 30 degrees C) polymerization of microtubules started mainly from the centrosome. At early stages of recovery the share of free microtubules made about 10% of all microtubules, and their total length increased slower than the lenght of centrosome-attached microtubules. During a rapid recovery after nocodazole treatment (10 microg/ml, 2 h; recovery in drug-free medium at 37 degrees C), the share of free microtubules was about 35%, but their total length increased slower than the length of centrosome-attached microtubules. In 6-8 min (rapid recovery) or 12-16 min (slow recovery), tips of centrosomal microtubules reached the cell margin, and their increased density made it impossible to recognize individual microtubules. However, under the same conditions in cytoplasts without centrosomes the normal number of microtubules recovered only in 60 min, which enabled us to suppose that the complete recovery of microtubule system in the whole cells may be also rather long. When the first centrosomal microtubules reached the cell margin, the optical density of microtubules started to decrease from the centrosome region towards the cell margin, according to the exponential curve. Later on, the optical density in the centrosome region and near the cell margin remained at the same level, but microtubule density increased in the middle part of the cell, and in 45-60 min the plot of the optical density vs the distance from the centrosome became linear, as in control cells. Since no significant curling of microtubules occurs near the cell margin, the density of microtubules in the endoplasm may increase due only to polymerization of free microtubules. We suppose that in cultured cells the microtubule network recovery proceeds in two stages. At the initial stage, a rapid growth of centrosomal microtubules takes place in addition to the turnover of free microtubules with unstable minus ends. At the second stage, when microtubule growth from the centrosome becomes limited by the cell margin, a gradual extension of free microtubules occurs in the internal cytoplasm.  相似文献   

15.
Guo H  Xu C  Liu C  Qu E  Yuan M  Li Z  Cheng B  Zhang D 《Biophysical journal》2006,90(6):2093-2098
The breakage of fluorescence-labeled microtubules under irradiation of excitation light is found in our experiments. Its mechanism is studied. The results indicate that free radicals are the main reason for the photosensitive breakage. Furthermore, the mechanical properties of the microtubules are probed with a dual-optical tweezers system. It is found that the fluorescence-labeled microtubules are much easier to extend compared with those without fluorescence. Such microtubules can be extended by 30%, and the force for breaking them up is only several piconewtons. In addition, we find that the breakup of the protofilaments is not simultaneous but step-by-step, which further confirms that the interaction between protofilaments is fairly weak.  相似文献   

16.
ABSTRACT

Cellular motility is a fundamental process essential for embryonic development, wound healing, immune responses, and tissues development. Cells are mostly moving by crawling on external, or inside, substrates which can differ in their surface composition, geometry, and dimensionality. Cells can adopt different migration phenotypes, e.g., bleb-based and protrusion-based, depending on myosin contractility, surface adhesion, and cell confinement. In the few past decades, research on cell motility has focused on uncovering the major molecular players and their order of events. Despite major progresses, our ability to infer on the collective behavior from the molecular properties remains a major challenge, especially because cell migration integrates numerous chemical and mechanical processes that are coupled via feedbacks that span over large range of time and length scales. For this reason, reconstituted model systems were developed. These systems allow for full control of the molecular constituents and various system parameters, thereby providing insight into their individual roles and functions. In this review we describe the various reconstituted model systems that were developed in the past decades. Because of the multiple steps involved in cell motility and the complexity of the overall process, most of the model systems focus on very specific aspects of the individual steps of cell motility. Here we describe the main advancement in cell motility reconstitution and discuss the main challenges toward the realization of a synthetic motile cell.  相似文献   

17.
We investigated the roles of microfilaments and microtubules in the localization and tyrosine phosphorylation of paxillin, a focal adhesion-associated signaling molecule, in bovine aortic endothelial cells (BAECs). Paxillin tyrosine phosphorylation is inhibited by cytochalasin D (CD), but slightly increased by colchicine and paclitaxol (taxol). CD also caused an overall disassembly of paxillin-containing focal adhesions (paxillin-FAs) and translocation of paxillin to the cytoplasm and perinuclear region with a diffuse distribution. Meanwhile, colchicine and taxol caused a disassembly of paxillin-FAs from cell periphery and lamellipodia, and their assembly in cell center. These results indicate that actin filaments are important in paxillin assembly in the FAs of the whole ECs and that microtubules are critical in paxillin assembly in cell periphery and lamellipodia; thus the microfilaments and microtubules play differential roles in the dynamics of paxillin assembly/disassembly. Our findings also suggest that tyrosine phosphorylation is an important element in paxillin dynamics at FAs.  相似文献   

18.
A subcellular fraction containing fragments of endogenous microtubules stabilized in 50% glycerol was separated by diferential centrifugation of rat brain homogenates. The pellets were suspended in glycerol-deficient media, and microtubule depolymerization was monitored by measuring the decrease of sedimentable tubulin. Concomitantly, the number and size of microtubules in the suspensions were followed via electron microscopy. Depolymerization was accompanied by a proportional decrease in the number of microtubules, whereas the average size did not change significantly. After approximately 20 min, a subpopulation of microtubules became stable and did not suffer further depolymerization. These results indicate that upon dilution some microtubules completely depolymerize, whereas others remain stable in the glycerol-deficient medium. The degree of depolymerization depended on both the volume of the resuspension media and on the final glycerol concentration. The results suggest that the depolymerization of the remaining microtubules is prevented by stabilizing factors released from depolymerizing microtubules. Tubulin dimers are not one of these factors, since depolymerization was not altered by the addition of colchicine or by changing the concentration of free tubulin in the medium.  相似文献   

19.
Microtubules have been in the focus of biophysical research for several decades. However, the confusing and mutually contradictory results regarding their elasticity and fluctuations have cast doubt on their present understanding. In this paper, we present the empirical evidence for the existence of discrete guanosine diphosphate (GDP)–tubulin fluctuations between a curved and a straight configuration at room temperature as well as for conformational tubulin cooperativity. Guided by a number of experimental findings, we build the case for a novel microtubule model, with the principal result that microtubules can spontaneously form micron-sized cooperative helical states with unique elastic and dynamic features. The polymorphic dynamics of the microtubule lattice resulting from the tubulin bistability quantitatively explains several experimental puzzles, including anomalous scaling of dynamic fluctuations of grafted microtubules, their apparent length–stiffness relation, and their remarkable curved–helical appearance in general. We point out that the multistability and cooperative switching of tubulin dimers could participate in important cellular processes, and could in particular lead to efficient mechanochemical signaling along single microtubules.  相似文献   

20.
In living cells microtubules (MTs) continuously grow and shorten. This feature of MTs was discovered in vitro and named dynamic instability. Comparison of dynamic instability of MTs in vitro and in vivo shows a number of differences. MTs in vivo rapidly grow (up to 20 microns/min), duration of their shortening is small (on average 15-20 s), and pauses are prominent. In different animal cells MTs grow from the centrosome and form a radial array. In such cells growth of MTs is persistent, i.e. undergo without interruptions until plus end of a MT reaches cell margin. Analysis of literature and original data shows that interconvertion between phases of growth, shortening and pause is asymmetric: growth often converts into pause, while shortening always converts into growth without pause. We suggest dynamic instability described near the cell margin in numerous publications results not only from intrinsic properties of MTs, but also because of the external obstacles for their growth. MT behavior in the cells with radial array of long MTs could be treated as dynamic instability with boundary conditions. One boundary is the centrosome responsible for rapid initiation of MT growth. Another boundary is cell margin limiting MT elongation. MT growth occurs with constant mean velocity, and potential duration of growth phase might exceed cell radius. MT shortening is usually smaller than MT length however velocity of shortening increases with time. Random episodes of rapid shortening are sufficient for the exchange of MTs in 10-20 min in the cells not more than 40-50 microns in diameter. Experimental data show that similar rate of exchange of MTs is in the large cells. This is achieved employing another mechanism, namely release of MTs and depolymerization from the minus end. In the minus end pathway time required for the exchange of MTs does not depend on cell radius and is determined primarily by the frequency of releases. Thus a small number of free MTs with metastable minus ends significantly reduce time required for the renovation of the radial MT array. Summarizing all experimental data we suggest the life cycle scheme for the MT in a cell. MT is initiated at the centrosome and grows rapidly until it reaches cell margin. At the margin the plus end oscillates, and finally MT depolimerizes. MT "death" comes from a random catastrophe (shortening from the plus end) in small cells or from release and depolymerization of the minus end in large cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号