首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to determine the effect of bacterial proteinases on activation of the protein C system, a negative regulator of blood coagulation, two arginine-specific cysteine proteinases (gingipains R) from Porphyromonas gingivalis, a causative bacterium of adult periodontitis, were examined. Each enzyme activated human protein C in a dose- and incubation time-dependent manner. Interestingly, the form of enzyme being composed of a non-covalent complex containing both catalytic and adhesion domains (RgpA) produced activated protein C 14-fold more efficiently than RgpB which contained the catalytic domain alone. The kcat/Km value of RgpA was 18-fold higher than that of RgpB and comparable to that of the thrombin-thrombomodulin complex, the physiological activator of protein C. RgpA catalyzed protein C activation was augmented 1.4-fold by phospholipids, ubiquitous cell membrane components. Furthermore, RgpA, but not RgpB, could activate protein C in plasma and this resulted in a decrease of the protein C concentration in plasma, which is often observed in patients with sepsis during the development of disseminated intravascular coagulation (DIC). These data indicate that RgpA is a more potent activator of protein C than RgpB and suggest that only the former enzyme can cause protein C activation in vivo. The present study further suggests that bacterial proteinases may possibly contribute to the consumption of plasma protein C which predisposes to DIC and/or promotes a thrombotic tendency towards DIC in sepsis.  相似文献   

2.
A range of marine phytoplankton was grown in closed systems in order to investigate the kinetics of dissolved inorganic carbon (DIC) use and the influence of the nitrogen source under conditions of constant pH. The kinetics of DIC use could be described by a rectangular hyperbolic curve, yielding estimations of KG(DIC) (the half saturation constant for carbon-specific growth, i.e. C mu) and mu max (the theoretical maximum C mu). All species attained a KG(DIC) within the range of 30-750 microM DIC. For most species, NH4+ use enabled growth with a lower KG(DIC) and/or, for two species, an increase in mu max. At DIC concentrations of > 1.6 mM, C mu was > 90% saturated for all species relative to the rate at the natural seawater DIC concentration of 2.0 mM. The results suggest that neither the rate nor the extent of primary productivity will be significantly limited by the DIC in the quasi-steady-state conditions associated with oligotrophic oceans. The method needs to be applied in the conditions associated with dynamic coastal (eutrophic) systems for clarification of a potential DIC rate limitation where cells may grow to higher densities and under variable pH and nitrogen supply.  相似文献   

3.
This study determined the natural abundance isotopic compositions (13C, 14C) of the primary carbon pools and microbial communities associated with modern freshwater microbialites located in Pavilion Lake, British Columbia, Canada. The Δ14C of dissolved inorganic carbon (DIC) was constant throughout the water column and consistent with a primarily atmospheric source. Observed depletions in DIC 14C values compared with atmospheric CO2 indicated effects due either to DIC residence time and/or inputs of 14C‐depleted groundwater. Mass balance comparisons of local and regional groundwater indicate that groundwater DIC could contribute a maximum of 9–13% of the DIC. 14C analysis of microbial phospholipid fatty acids from microbialite communities had Δ14C values comparable with lake water DIC, demonstrating that lake water DIC was their primary carbon source. Microbialite carbonate was also primarily derived from DIC. However, some depletion in microbialite carbonate 14C relative to lake water DIC occurred, due either to residence time or mixing with a 14C‐depleted carbon source. A detrital branch covered with microbialite growth was used to estimate a microbialite growth rate of 0.05 mm year?1 for the past 1000 years, faster than previous estimates for this system. These results demonstrate that the microbialites are actively growing and that the primary carbon source for both microbial communities and recent carbonate is DIC originating from the atmosphere. While these data cannot conclusively differentiate between abiotic and biotic formation mechanisms, the evidence for minor inputs of groundwater‐derived DIC is consistent with the previously hypothesized biological origin of the Pavilion Lake microbialites.  相似文献   

4.
The induction of a dissolved inorganic carbon (DIC) accumulating mechanism in the two algal species Scenedesmus obliquus (WT) and Chlamydomonas reinhardtii (137 c+) was physiologically characterized by monitoring DIC uptake kinetics at a low and constant DIC concentration (120-140 micromolar), after transfer from high-DIC culturing conditions. A potentiometric titration method was used to measure and calculate algal DIC uptake. Full acclimation to low-DIC conditions was obtained within a period of 90 min, after which time the DIC uptake had been increased 7 to 10 times. Experiments were also conducted in the presence of inhibitors against DIC accumulation. The inhibitor of extracellular carbonic anhydrase (CA), acetazolamide (50 micromolar), inhibited the adaptation partly, while the inhibitor of both extra- and intracellular CA, ethoxyzolamide (50 micromolar) totally inhibited the acclimation. Cycloheximide (10 micrograms per milliliter), which inhibits protein synthesis on cytoplasmic ribosomes, and vanadate (180 micromolar), which inhibits the plasmamembrane bound ATPase, also inhibited the acclimation totally. These results taken together suggest that the algae are dependent on intracellular CA, plasmamembrane bound ATPase, and de novo protein synthesis for DIC accumulation. Also, these components are more important than extracellular CA for the overall function of the DIC-accumulating mechanism.  相似文献   

5.

Background

Disseminated intravascular coagulopathy (DIC) relates to the consumption of coagulation factors and platelets with bleeding and micro thrombosis events.

Aim

The aim of this study was to compare haemostasis parameters in critically ill patients with DIC versus patients without DIC, and in survivors versus non-survivors over time. Correlations between the DIC-score, the degree of organ failure and the haemostasis were assessed.

Method

Patients admitted to the intensive care unit with a condition known to be associated with DIC and with an expected length of stay of >3 days were included. Routine laboratory tests, prothrombin time, activated partial thromboplastin time, platelet count, fibrinogen concentration and D-dimer were measured. Coagulation and platelet function were assessed with two point-of-care devices; Multiplate and ROTEM. DIC scores were calculated according to the International Society on Thrombosis and Haemostasis and Japanese Association for Acute Medicine.

Results

Blood was sampled on days 0–1, 2–3 and 4–10 from 136 patients with mixed diagnoses during 290 sampling events. The point-of-care assays indicated a hypocoagulative response (decreased platelet aggregation and reduced clot strength) in patients with DIC and, over time, in non-survivors compared to survivors. Patients with DIC as well as non-survivors had decreased fibrinolysis as shown by ROTEM. DIC scores were higher in non-survivors than in survivors.

Conclusions

Patients with DIC displayed signs of a hypocoagulative response and impaired fibrinolysis, which was also evident over time in non-survivors. Patients with DIC had a higher mortality rate than non-DIC patients, and DIC scores were higher in non-survivors than in survivors.  相似文献   

6.
Nine non-immune patients with imported falciparum malaria were examined for signs of diffuse intravascular coagulation (DIC). Although all had thrombocytopenia initially and some later had a decline in plasma fibrinogen concentrations, DIC was never detected, even in severely affected patients with coma and kidney damage. None of the patients were given heparin and all recovered without residual symptoms. Heparin administration should probably be considered only when clear-cut DIC, which possibly never occurs in falciparum malaria, has been demonstrated.  相似文献   

7.
Matsuda Y  Colman B 《Plant physiology》1995,108(1):247-252
Changes in the physiological properties of the green alga Chlorella ellipsoidea (UTEX 20) were determined during adaptation from high CO2 to air. Cells of C. ellipsoidea, grown in high CO2, had an extremely low affinity for dissolved inorganic carbon (DIC). However, high-affinity DIC transport was induced rapidly after switching to air, which caused a massive decrease in the DIC concentration in the medium. Rates of O2 evolution without added carbonic anhydrase (CA) were compared with calculated rates of uncatalyzed CO2 formation in the medium as a measure of active HCO3-uptake. Cells were found to be able to use HCO3- after 5 h of adaptation and this capacity increased during the next 17 h. The stimulation of O2 evolution upon CA addition was used as a measurement of active CO2 transport: such stimulation occurred 2 h after transfer and increased during the next 5 h. Increases in O2 evolution rates were correlated closely with an increasing capacity to accumulate intracellular pools of acid-labile DIC and with decreases in K1/2(CO2) and CO2-compensation point of the cells. Treatment of cells with cycloheximide (5 [mu]g mL-1) during adaptation completely inhibited DIC transport induction, whereas treatment with chloramphenicol (400 [mu]g mL-1) had no effect, indicating the requirement for cytoplasmic protein synthesis in the induction. These results suggest that both CO2 and HCO3- transport are induced upon transfer of cells from high CO2 to air and that there is a temporal separation between the induction of the two systems.  相似文献   

8.
Matsuda Y  Colman B 《Plant physiology》1995,109(1):253-260
The critical species and concentrations of dissolved inorganic carbon (DIC) required for the induction of DIC transport during adaptation to low CO2 were determined for the green alga Chlorella ellipsoidea. The concentration of dissolved CO2 needed for the induction of both CO2 and HCO3- transport was independent of pH during adaptation, whereas the total DIC concentration required increased at alkaline pH. At pH 7.5, the minimum equilibrium DIC concentration at which high CO2 characteristics were maintained, i.e. transport was repressed, was 2100 [mu]M, whereas the maximum equilibrium DIC concentration below which DIC transport was fully induced (DICIND) was 500 [mu]M. Intracellular DIC concentration during adaptation to DICIND decreased temporarily after 2 h to 60% of the maximum level but recovered after 3 h of adaptation. After 3 h of adaptation to DICIND, cells exhibited maximum O2 evolution rate at DICIND. When cells partially adapted to DICIND were returned to high CO2, there was an immediate halt to the induction of transport and a gradual decrease in transport capacity over 23 h. The capacity for the induction of transport was unaffected by the absence of light. These results indicate that changes in the internal DIC pool during adaptation to low CO2 do not trigger the induction of DIC transport and that the induction is not light dependent. Induction of DIC transport in C. ellipsoidea appears to occur in response to the continuous exposure of cells to a critical CO2 concentration in the external medium.  相似文献   

9.
The growth of the marine flagellate Isochrysis galbana was followed in batch cultures at four concentrations of dissolved inorganic carbon (DIC), from C- and N-replete lag phase into C- and/or N-deplete stationary phase. Organic buffers were omitted from the growth medium, and culture pH was maintained at 8.30±0.05 by the addition of acid or alkali. The responses of the flagellate to N stress included an increase in the C:N ratio, and decreases in the ratios of glutamine (Gln):glutamate (Glu) and Chl a :C, and the cell Chl a quota. Conversely, the responses to C stress included a decrease in the C:N ratio, and increases in the ratios of Gln:Glu and Chl a :C, and the cell Chl a quota. The relationship between carbon-specific growth rate (C-μ), and the concentration of extracellular DIC, [DIC]ext, exhibited Michaelis–Menten type kinetics with a half saturation constant, K G(DIC), of 81 μM. Comparative studies of the diatom Phaeodactylum tricornutum showed similar results, although the value of K G(DIC) was lower at 30 μM.  相似文献   

10.
This study presents a stepwise concept to assess the in situ microbial mineralization of petroleum hydrocarbons (PHC) in aquifers. A new graphical method based on stable carbon isotope ratios (delta 13C) was developed to verify the origin of dissolved inorganic carbon (DIC). The concept and the isotope method were applied to an aquifer in Student, Switzerland, in which more than 34,000 liters of heating oil were accidentally released. Chemical analyses of ground water revealed that in this aquifer locally, anaerobic conditions prevailed, and that PHC mineralization was linked to the consumption of oxidants such as O2, NO3-, and SO4(2-) and the production of reduced species such as Fe2+, Mn2+, H2S and CH4. However, alkalinity and DIC balances showed a quantitative disagreement in the link between oxidant consumption and DIC production, indicating that chemical data alone may not be a reliable assessment tool. delta 13C ratios in DIC have been used before for bioremediation assessment, but results were reported to be negatively influenced by methanogenesis. Using the new graphical method to display delta 13C data, it was possible to identify anomalies found in methanogenic monitoring wells. It could be shown that 88% of the DIC produced in the contaminated aquifer originated from microbial PHC mineralization. Thus, the new graphical method to display delta 13C ratios appears to be a useful tool for the assessment of microbial hydrocarbon mineralization in a complex environment.  相似文献   

11.
BACKGROUND: Disseminated Intravascular Coagulation (DIC) complicates up to 7% of malignancies, the commonest solid organ association being adenocarcinoma. Transitional Cell Carcinoma (TCC) has rarely been associated with DIC. CASE PRESENTATION: A 74-year-old woman with TCC bladder and DIC was found to have a cardiac lesion suspicious for metastatic disease. The DIC improved with infusion of plasma and administration of Vitamin K, however the cardiac lesion was deemed inoperable and chemotherapy inappropriate; given the patients functional status. We postulate that direct activation of the coagulation cascade by the intraventricular metastasis probably triggered the coagulopathy in this patient. CONCLUSION: Cardiac metastases should be considered in cancer patients with otherwise unexplained DIC. This may influence treatment choices.  相似文献   

12.
The dicarboxylate carrier (DIC) is an integral membrane protein that catalyses a dicarboxylate-phosphate exchange across the inner mitochondrial membrane. We generated a yeast mutant lacking the gene for the DIC. The deletion mutant failed to grow on acetate or ethanol as sole carbon source but was viable on glucose, galactose, pyruvate, lactate and glycerol. The growth on ethanol or acetate was largely restored by the addition of low concentrations of aspartate, glutamate, fumarate, citrate, oxoglutarate, oxaloacetate and glucose, but not of succinate, leucine and lysine. The expression of the DIC gene in wild-type yeast was repressed in media containing ethanol or acetate with or without glycerol. These results indicate that the primary function of DIC is to transport cytoplasmic dicarboxylates into the mitochondrial matrix rather than to direct carbon flux to gluconeogenesis by exporting malate from the mitochondria. The delta DIC mutant may serve as a convenient host for overexpression of DIC and for the demonstration of its correct targeting and assembly.  相似文献   

13.
目的:建立稳定表达的PHluorin标记的线虫种系,为囊泡在线虫ALA神经元上分泌机制的研究提供模型。方法:采用了国际先进的线虫转基因技术,将构建的Pida-1IDA-1:PHluorin质粒通过显微注射到线虫的母代,通过筛选后得到稳定表达的种系。结果:通过DIC显微镜整体检测和全内反射荧光成像技术(Tirfm)细胞检测,蛋白表达的位置正确,通过高倍数体式显微镜确定稳定种系中阳性率高达99%。结论:建立了一个稳定表达的荧光标记线虫种系,为进一步在线虫上研究囊泡分泌提供了很好的模型。  相似文献   

14.
The minus-ended microtubule motor cytoplasmic dynein contains a number of low molecular weight light chains including the 14-kDa Tctex-1. The assembly of Tctex-1 in the dynein complex and its function are largely unknown. Using partially deuterated, (15)N,(13)C-labeled protein samples and transverse relaxation-optimized NMR spectroscopic techniques, the secondary structure and overall topology of Tctex-1 were determined based on the backbone nuclear Overhauser effect pattern and the chemical shift values of the protein. The data showed that Tctex-1 adopts a structure remarkably similar to that of the 8-kDa light chain of the motor complex (DLC8), although the two light chains share no amino acid sequence homology. We further demonstrated that Tctex-1 binds directly to the intermediate chain (DIC) of dynein. The Tctex-1 binding site on DIC was mapped to a 19-residue fragment immediately following the second alternative splicing site of DIC. Titration of Tctex-1 with a peptide derived from DIC, which contains a consensus sequence R/KR/KXXR/K found in various Tctex-1 target proteins, indicated that Tctex-1 binds to its targets in a manner similar to that of DLC8. The experimental results presented in this study suggest that Tctex-1 is likely to be a specific cargo adaptor for the dynein motor complex.  相似文献   

15.
Screening of the Arabidopsis thaliana genome revealed three potential homologues of mammalian and yeast mitochondrial DICs (dicarboxylate carriers) designated as DIC1, DIC2 and DIC3, each belonging to the mitochondrial carrier protein family. DIC1 and DIC2 are broadly expressed at comparable levels in all the tissues investigated. DIC1-DIC3 have been reported previously as uncoupling proteins, but direct transport assays with recombinant and reconstituted DIC proteins clearly demonstrate that their substrate specificity is unique to plants, showing the combined characteristics of the DIC and oxaloacetate carrier in yeast. Indeed, the Arabidopsis DICs transported a wide range of dicarboxylic acids including malate, oxaloacetate and succinate as well as phosphate, sulfate and thiosulfate at high rates, whereas 2-oxoglutarate was revealed to be a very poor substrate. The role of these plant mitochondrial DICs is discussed with respect to other known mitochondrial carrier family members including uncoupling proteins. It is proposed that plant DICs constitute the membrane component of several metabolic processes including the malate-oxaloacetate shuttle, the most important redox connection between the mitochondria and the cytosol.  相似文献   

16.
The time-course of induction of CO(2) and HCO(3)- transport has been investigated during the acclimation of high CO(2)-grown Chlorella kessleri cells to dissolved inorganic carbon (DIC)-limited conditions. The rate of photosynthesis of the cells in excess of the uncatalysed supply rate of CO(2) from HCO(3)- was taken as an indicator of HCO(3)- transport, while a stimulation of photosynthesis on the addition of bovine carbonic anhydrase was used as an indicator of CO(2) transport. The maximum rate of photosynthesis (Pmax) was similar for high CO(2)-grown and low CO(2)-grown cells, but the apparent whole cell affinity for DIC and CO(2) of high CO(2)-grown cells was found to be about 30-fold greater than in air-grown cells, which indicates a lower affinity for DIC and CO(2). It was found that HCO(3)- and CO(2) transport were induced in 5.5 h in cells acclimating to air in the light and in the presence and absence of 21% O(2), which indicates that a change in the CO(2)/O(2) ratio in the acclimating medium does not trigger induction of DIC transport. No active DIC transport was detected in high CO(2)-grown cells maintained on high CO(2) for 5.5 h in the presence of 5 mM aminooxyacetate, an aminotransferase inhibitor. These results indicate no involvement of photorespiration in triggering induction. Active DIC transport induction was inhibited in cells treated with 5 microgram ml(-1) cycloheximide, but was unaffected by chloramphenicol treatment, indicating that the induction process requires de novo cytoplasmic protein synthesis. The total DIC concentration eliciting the induction and repression of CO(2) and HCO(3)- transport was higher at pH 7.5 than at pH 6.6. The concentrations of external CO(2) required for the induction and repression of DIC transport were 0 and 120 microM, respectively, and was independent of the pH of the acclimation medium. Prolonged exposure to a critical external CO(2) concentration elicits the induction of DIC transport in C. kessleri.  相似文献   

17.
Abstract: Cholesterol ester hydrolase activities previously have been identified in brain and linked to the production of myelin, which has very low levels of esterified cholesterol. We have studied two cholesterol ester hydrolase activities (termed the pH 6.0 and pH 7.2 activities) in cultures derived from 19- to 21-day-old dissociated fetal rat brains and in developing rat brain. In vivo the levels of both the pH 6.0 and pH 7.2 activities began to increase by about 10 postnatal days, reached maximal levels at 20 days (20 and 1.5 nmol/h/mg protein, respectively), and thereafter remained nearly constant (pH 6.0) or decreased somewhat before becoming constant (pH 7.2). In contrast, in the cultures the pH 6.0 cholesterol ester hydrolase activity was low until 21 days in culture (DIC; 20 nmol/h/mg protein), increased to a peak activity at 31 DIC (60 nmol/h/mg protein), remained high for 24 days, and finally decreased (18 nmol/h/mg protein at 63 DIC); the pH 7.2 cholesterol ester hydrolase activity was very low until 20 DIC, increased to a peak activity at 31 days (3 nmol/h/mg protein), and thereafter decreased to a lower level (2 nmol/h/mg protein) that was maintained for about 24 days before decreasing (0.7 nmol/h/mg protein at 63 DIC). Therefore, (a) the time courses of appearance of both cholesterol ester hydrolase activities were delayed by 10–14 days relative to that seen in vivo, and (b) the specific activities observed in the cultures were transiently two- to three-fold higher than in rat brain, but then declined to levels characteristic of whole brain homogenates. Subcellular fractionation of the cultures demonstrated that the pH 7.2 cholesterol ester hydrolase activity, along with myelin basic protein and 2′,3′-cyclic nucleotide-3′-phosphohydrolase activity, was enriched in a membrane fraction collected at an interface between 0.32 M and 0.9 M sucrose; the pH 6.0 cholesterol ester hydrolase activity, in contrast, was enriched in the microsomal fraction.  相似文献   

18.
Fibronectin (FN) is a glycoprotein whose plasma concentrations are reduced in many pathological conditions. In patients with hemoblastosis plasma FN was correlated with some clinical and biological parameters (stage of the disease, hepatosplenomegaly, infections and DIC), in order to assess its value as a tumor marker. The results suggest a poor relationship between FN levels and the course of the disease. However, the behaviour of the protein in relation with treatment was dynamic.  相似文献   

19.
Tropical small mountainous rivers deliver a poorly quantified, but potentially significant, amount of carbon to the world’s oceans. However, few historical records of land–ocean carbon transfer exist for any region on Earth. Corals have the potential to provide such records, because they draw on dissolved inorganic carbon (DIC) for calcification. In temperate systems, the stable- (δ13C) and radiocarbon (Δ14C) isotopes of coastal DIC are influenced by the δ13C and Δ14C of the DIC transported from adjacent rivers. A similar pattern should exist in tropical coastal DIC and hence coral skeletons. Here, δ13C and Δ14C measurements were made in a 56-year-old Montastraea faveolata coral growing ~1 km from the mouth of the Rio Fajardo in eastern Puerto Rico. Additionally, the δ13C and Δ14C values of the DIC of the Rio Fajardo and its adjacent coastal waters were measured during two wet and dry seasons. Three major findings were observed: (1) synchronous depletions of both δ13C and Δ14C in the coral skeleton are annually coherent with the timing of peak river discharge, (2) riverine DIC was always more depleted in δ13C and Δ14C than seawater DIC, and (3) the correlation of δ13C and Δ14C was the same in both coral skeleton and the DIC of the river and coastal waters. These results indicate that coral skeletal δ13C and Δ14C are recording the delivery of riverine DIC to the coastal ocean. Thus, coral records could be used to develop proxies of historical land–ocean carbon flux for many tropical regions. Such information could be invaluable for understanding the role of tropical land–ocean carbon flux in the context of land-use change and global climate change.  相似文献   

20.
1. Both the pelagic and benthic net dissolved inorganic carbon (DIC) productions were measured in situ on four occasions from June to September 2004, in the unproductive Lake Diktar-Erik in subarctic Sweden. The stable isotopic signal ( δ 13C) of respired organic material was estimated from hypolimnion water data and data from a laboratory incubation using epilimnion water.
2. Both pelagic and benthic habitats were net heterotrophic during the study period, with a total net DIC production of 416 mg C m−2 day−1, of which the pelagic habitat contributed approximately 85%. The net DIC production decreased with depth both in the pelagic water and in the sediments, and most of the net DIC production occurred in the upper water column.
3. Temporal variations in both pelagic and benthic DIC production were small, although we observed a significant decrease in pelagic net DIC production after the autumn turnover. Water temperature was the single most important factor explaining temporal and vertical variations in pelagic DIC production. No single factor explained more than 10% of the benthic net DIC production, which probably was regulated by several interacting factors.
4. Pelagic DIC production, and thus most of the whole-lake net production of DIC, was mainly due to the respiration of allochthonous organic carbon. Stable isotope data inferred that nearly 100% of accumulated DIC in the hypolimnion water had an allochthonous carbon source. Similarly, in the laboratory incubation using epilimnion water, c. 85% of accumulated DIC was indicated to have an allochthonous organic carbon source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号