首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
  • 1 Quantifying dispersal in predator–prey systems can improve our understanding of how these species interact in space and time, as well as their relative distributions across complex landscapes.
  • 2 We measured the dispersal abilities of three forest insects associated with red pine decline: the eastern five spined pine engraver Ips grandicollis (Coleoptera: Curculionidae), its main predator Thanasimus dubius (Coleoptera: Cleridae) and the basal stem and root colonizer Dendroctonus valens (Coleoptera: Curculionidae). We also examined the edge behaviours of these species and the predator Platysoma spp (Coleoptera: Histeridae) between red pine stands (habitat) and clearings (nonhabitat).
  • 3 Thanasimus dubius dispersed 12 times farther than its prey I. grandicollis, with 50% of predators dispersing farther than 1.54 km. This profound difference in dispersal behaviour between prey and predator may contribute to the clumped distribution of I. grandicollis.
  • 4 Most T. dubius and D. valens were confined in the pine forest, thus showing strong edge behaviour. This differed from I. grandicollis and Platysoma spp., which were commonly found in open areas adjacent to red pine plantations.
  • 5 The bark beetle I. grandicollis and one of its main predators, T. dubius, exhibited different patterns of movement within a fragmented landscape. Despite a greater dispersal ability of T. dubius within forests, the spatial distribution of this predator may be restricted by fragmentation of its habitat, and provide an opportunity for partial escape of its prey.
  • 6 The present study contributes to our knowledge of top‐down forces within red pine stands undergoing decline. Differences of dispersal patterns and edge behaviour could contribute to the initiation of new pockets of decline, as well as the connectedness among existing ones.
  相似文献   

4.
ABSTRACT.
  • 1 A field study was made of foraging time allocation by a population of parasitic wasps, Diadegma spp. (Ichneumonidae), to plants containing different densities of their hosts, the caterpillars of Plutella xylostella (L.).
  • 2 The parasitoid population exhibited a clear aggregative response, spending more total time on higher density patches, which probably resulted from wasps making more and longer visits to these densities.
  • 3 Despite this aggregation, positive density dependent parasitism was not found. The functional response of the Diadegma population exhibited an upper asymptote at high host densities, probably due to an increase in the proportion of time spent handling hosts, which countered the effect of aggregation.
  • 4 While Diadegma may select and forage preferentially on plants with higher host density, they do not exhibit the tendency, predicted by some optional foraging models, to exploit progressively less profitable plants during a foraging bout. Some factors affecting patterns of parasitoid foraging in the field are discussed.
  相似文献   

5.
6.
7.
8.
  • 1 Understanding the spatio‐temporal dynamics of insects in agroecosystems is crucial when developing effective management strategies that emphasize the biological control of pests.
  • 2 Wild populations of Trichogramma Westwood egg parasitoids are utilized for the biological suppression of the potentially resistant pest species Helicoverpa armigera (Hübner) in Bt‐transgenic cotton Gossypium hirsutum L. crops in the Ord River Irrigation Area (ORIA), Western Australia, Australia.
  • 3 Extensive, spatially‐stratified sampling during a season of relatively high Trichogramma abundance found that spatial patterns of pest egg parasitism in the ORIA tend toward heterogeneity, and do not necessarily coincide with host spatio‐temporal dynamics. Both patterns of host egg density and mean rates of parasitism are not good indicators of parasitoid spatio‐temporal dynamics in ORIA cotton crops.
  • 4 Parasitism rates can be significantly higher within the middle strata of the cotton plant canopy before complete canopy closure, despite a similar number of host eggs being available elsewhere in the plant.
  • 5 Spatial variation in egg parasitism by Trichogramma in Bt‐transgenic cotton is evident at the between‐field, within‐field and within‐plant scale, and is not solely driven by host spatial dynamics. These factors should be considered when estimating Trichogramma impact on pest species during biological control and spatio‐temporal studies of host‐parasitoid interactions in general.
  相似文献   

9.
There is an emerging consensus that parasitoids are limited by the number of eggs which they can lay as well as the amount of time they can search for their hosts. Since egg limitation tends to destabilize host–parasitoid dynamics, successful control of insect pests by parasitoids requires additional stabilizing mechanisms such as heterogeneity in the distribution of parasitoid attacks and host density-dependence. To better understand how egg limitation, search limitation, heterogeneity in parasitoid attacks, and host density-dependence influence host–parasitoid dynamics, discrete time models accounting for these factors are analyzed. When parasitoids are purely egg-limited, a complete anaylsis of the host–parasitoid dynamics are possible. The analysis implies that the parasitoid can invade the host system only if the parasitoid’s intrinsic fitness exceeds the host’s intrinsic fitness. When the parasitoid can invade, there is a critical threshold, CV *>1, of the coefficient of variation (CV) of the distribution of parasitoid attacks that determines that outcome of the invasion. If parasitoid attacks sufficiently aggregated (i.e., CV>CV *), then the host and parasitoid coexist. Typically (in a topological sense), this coexistence is shown to occur about a periodic attractor or a stable equilibrium. If the parasitoid attacks are sufficiently random (i.e. CV<CV *), then the parasitoid drives the host to extinction. When parasitoids are weakly search-limited as well as egg-limited, coexistence about a global attractor occurs even if CV<CV *. However, numerical simulations suggest that the nature of this attractor depends critically on whether CV<1 or CV>1. When CV<1, the parasitoid exhibits highly oscillatory dynamics. Alternatively, when parasitoid attacks are sufficiently aggregated but not overly aggregated (i.e. CV>1 but close to 1), the host and parasitoid coexist about a stable equilibrium with low host densities. The implications of these results for classical biological control are discussed.  相似文献   

10.
  1. The parasitoid Diadegma semiclausum Hellén (Hymenoptera: Ichneumonidae) has been widely adopted as a biological control agent for Plutella xylostella L. (Lepidoptera: Plutellidae) over the last 80 years. Earlier studies have found differential responses to temperature between the host and its parasitoid and demonstrated the multiple ways in which the parasitoid is more susceptible to elevated temperatures.
  2. Using data from experimental studies, the modelling package CLIMEX was used to investigate the suitability of current climates for the host and its parasitoid and the effects on their potential global geographical distributions. The study was then extended to investigate possible changes to these distributions that might result under different climate change scenarios by 2080. The models predict that the global distributions of both the host and parasitoid will be reduced. These changes will not be proportionate and many areas in tropical, sub-tropical, and temperate regions that are currently suitable for D. semiclausum are predicted to become unsuitable for the parasitoid, whereas retaining suitability for P. xylostella. The seasonal dynamics of both the host and parasitoid are also predicted to be significantly reshaped under climate change.
  3. Analysis of associations between annual P. xylostella outbreaks and weather conditions in three provinces in China with field data collected between 1995 and 2017 indicated significant effects of temperature on P. xylostella outbreaks at the beginning of the peak season in warmer provinces where P. xylostella can overwinter; such associations were not found in the colder provinces where it is unable to survive harsh winters.
  相似文献   

11.
1. Parasitoids do not distribute themselves evenly among available patches, which has an important bearing on the dynamics of host–parasitoid interactions. This study examined the density‐dependent nature of aggregation of the parasitoid Dirhinus giffardii Silvestri on the oriental fruit fly host, Bactrocera dorsalis (Hendel) distributed among discrete patches. 2. Four artificial patches were created in a cage, and the number of hosts in each patch was manipulated. Parasitoids were released into the cage, and whether parasitoid density and host density influence the degree of parasitoid aggregation was examined. 3. Parasitoid aggregation became stronger (e.g. uneven distribution among patches) as the parasitoid density decreased and also as the host density increased. The index of parasitoid aggregation was not influenced by the distribution of hosts among patches. 4. The empirically characterised aggregation pattern was incorporated in a host–parasitoid model that consists of one host and one parasitoid species. The analysis of the model shows that an unstable system (i.e. the coexistence of the host and parasitoid is impossible) can be stabilised (i.e. coexistence is possible) when the parasitoid aggregates in a way that is consistent with the pattern found in the experiment.  相似文献   

12.
13.
  • 1 Peristenus digoneutis Loan is a parasitoid of Lygus plant bugs, which was successfully introduced from Europe into North America in the 1980s for controlling native Lygus populations. Surveys confirmed that P. digoneutis populations have become established throughout eastern North America and that the spread of the parasitoid continues. For unknown reasons, previous releases of P. digoneutis in Western Canada were not successful.
  • 2 A bioclimate (climex ®; Hearne Scientific Software Pty Ltd, Australia) model for P. digoneutis in North America was developed, based on climate and ecological parameters, and then validated with actual distribution records. The current distribution of P. digoneutis in eastern North America was consistent with the predicted distribution. The model suggests that P. digoneutis will probably continue its spread westwards throughout the U.S.A. along the Great Lakes.
  • 3 The southern distribution of P. digoneutis is expected to be limited by hot summer temperatures, whereas its northern range is limited by the number of Lygus host generations rather than cold stress.
  • 4 Peristenus digoneutis has the potential to occur in the southern parts of the prairie ecozone of western Canada; however, Ecoclimatic Index values in the prairies indicate mainly marginal or unfavourable conditions, which may explain why earlier releases of P. digoneutis in Western Canada failed.
  相似文献   

14.
15.
We evaluated the role of the larval parasitoid, Diadegma semiclausum Hellén (Hymenoptera: Ichneumonidae), in controlling Plutella xylostella (L.) (Lepidoptera: Plutellidae) by cage exclusion experiments and direct field observation during the winter season in southern Queensland, Australia. The cage exclusion experiment involved uncaged, open cage and closed cage treatments. A higher percentage (54–83%) of P. xylostella larvae on sentinel plants were lost in the uncaged treatment than the closed (4–9%) or open cage treatments (11–29%). Of the larvae that remained in the uncaged treatment, 72–94% were parasitized by D. semiclausum, much higher than that in the open cage treatment (8–37% in first trial, and 38–63% in second trial). Direct observations showed a significant aggregation response of the field D. semiclausum populations to high host density plants in an experimental plot and to high host density plots that were artificially set-up near to the parasitoid source fields. The degree of aggregation varied in response to habitat quality of the parasitoid source field and scales of the manipulated host patches. As a result, density-dependence in the pattern of parasitism may depend on the relative degree of aggregation of the parasitoid population at a particular scale. A high degree of aggregation seems to be necessary to generate density-dependent parasitism by D. semiclausum. Integration of the cage exclusion experiment and direct observation demonstrated the active and dominant role of this parasitoid in controlling P. xylostella in the winter season. A biologically based IPM strategy, which incorporates the use of D. semiclausum with Bt, is suggested for the management of P. xylostella in seasons or regions with a mild temperature.  相似文献   

16.
Abstract.
  • 1 Whenever parasitism by more than one female occurs, larvae of parasitoids not only have to resist host defence but also face competition with other (unrelated) larvae. Competition is particularly important in solitary parasitoids where only one larva is able to complete its development. Such a situation is found in Conopidae (Diptera) parasitizing adult bumble bees where larvae of two species of conopid flies, Sicus ferrugineus L. and Physocephala rufipes F. often compete within the common host Bombus pascuorum Scopoli. This study analysed the larval development of the two species and asks how competition among larvae may be regulated.
  • 2 Parasitized workers of B.pascuorum were caught in the field and kept according to different experimental schedules in the laboratory. This provided stage-structured data for the temporal course of development of the parasitic larvae. For the analysis, a simulation model was constructed that estimated the duration of all parasitic stages (Manly, 1990, first method). In both species the egg stage was found to be approximately 2 days, first instar 3 days, second instar 4 days, and third instar 3 days. The total development time is an estimated 10.8 days from oviposition in S.ferrugineus and 11.4 days in P.rufipes. S.ferrugineus develops faster in the beginning, probably because of its larger egg size, whereas P.rufipes pupates at larger size. First-instar larvae of both species possess strong, pointed mandibles.
  • 3 The success of conopid larvae seems only marginally affected by host defence, for a single larva per host almost always completes development. Under competition, however, mortality rate increases substantially, and most larvae die in their first instar. Moreover, they show signs of melanization. The estimates for developmental times and the patterns found in this study suggest that conopid larvae seem capable of physical attacks, particularly during the first instar, when elimination of competitors is most common, and that S.ferrugineus has a time advantage because of its faster early development. Because most studies have previously been carried out with hymenopteran parasitoids, this study provides new information about the other large group of parasitoid insects, the Diptera, and demonstrates convergent patterns.
  相似文献   

17.
Venturia canescens (Gravenhorst) is an ichneumonid generalist parasitoid that successfully attacks the larvae of different lepidopteran pests that infest stored products. These pest species include Plodia interpunctella and Ephestia kuehniella. In this study, we aimed to evaluate the influence of the rearing host on the parasitoid’s ability to detect and respond to a new host different from the rearing species. For this reason, the trials tested the preference of parasitoids reared on P. interpunctella or E. kuehniella for products that were or were not infested with larvae of these hosts. The trials were conducted in a Y-tube olfactometer. Regardless of the rearing host species, the parasitoids showed no preference for uninfested products. The parasitoids were attracted to products infested with larvae of their rearing host in preference to uninfested products. They also showed preferential attraction to products infested with the new host over uninfested products. E. kuehniella was the preferred host, irrespectively of the parasitoid host rearing species. The results are discussed to develop a better understanding of the ecology of V. canescens for its application in biological control.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号