首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang G  Luo H  Meng K  Wang Y  Huang H  Shi P  Pan X  Yang P  Diao Q  Zhang H  Yao B 《PloS one》2011,6(2):e16731

Background

The rumen harbors a complex microbial ecosystem for efficient hydrolysis of plant polysaccharides which are the main constituent of the diet. Xylanase is crucial for hemicellulose hydrolysis and plays an important role in the plant cell wall degradation. Xylanases of ruminal strains were widely studied, but few studies have focused on their diversity in rumen microenvironment.

Methodology/Principal Findings

We explored the genetic diversity of xylanases belonging to two major glycosyl hydrolase families (GH 10 and 11) in goat rumen contents by analyzing the amplicons generated with two degenerate primer sets. Fifty-two distinct GH 10 and 35 GH 11 xylanase gene fragments (similarity <95%) were retrieved, and most had low identities with known sequences. Based on phylogenetic analysis, all GH 10 xylanase sequences fell into seven clusters, and 88.5% of them were related to xylanases from Bacteroidetes. Five clusters of GH 11 xylanase sequences were identified. Of these, 85.7% were related to xylanases from Firmicutes, and 14.3% were related to those of rumen fungi. Two full-length xylanase genes (one for each family) were directly cloned and expressed in Escherichia coli. Both the recombinant enzymes showed substantial xylanase activity, and were purified and characterized. Combined with the results of sheep rumen, Bacteroidetes and Firmicutes are the two major phyla of xylan-degrading microorganisms in rumen, which is distinct from the representatives of other environments such as soil and termite hindgut, suggesting that xylan-degrading microorganisms are environment specific.

Conclusion/Significance

The numerous new xylanase genes suggested the functional diversity of xylanase in the rumen microenvironment which may have great potential applications in industry and agriculture. The phylogenetic diversity and different distributions of xylanase genes will help us understand their roles in plant cell wall degradation in the rumen microenvironment.  相似文献   

2.
Four commercial preparations of fibrolytic enzymes, from Irpex lacteus, Trichoderma viride, Aspergillus niger, and a mixture designed to be similar to the I. lacteus extract, were incubated in vitro with digesta taken from the rumen of sheep receiving a grass hay/concentrate diet, and the survival of major enzyme activities was measured. Some activities, including the beta-1,4-endoglucanase and xylanase from the extract derived from Aspergillus niger, were stable for at least 6 h in rumen fluid. The same activities in the other extracts also retained substantial activity for several hours. beta-Glucosidase and beta-xylosidase activities were much more labile, most being almost completely destroyed after 1 h, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that most proteins in the extracts were digested extensively after up to 7 h of incubation. Adding bovine serum albumin (0.5 g/l) to the incubation increased the half-life of Trichoderma viride beta-glucosidase activity from less than 0.5 h to 3 h. Proteins extracted from plant materials, particularly the soybean 7S globulin fraction, also conferred protection from proteolytic breakdown, but none was as effective as bovine serum albumin. It was concluded that the stability of most fibrolytic enzymes in rumen fluid is not likely to be a limiting factor in the use of enzymes as feed additives for ruminants; but if the enzymes are not stable, means can be found for their stabilization.  相似文献   

3.
Genes encoding glycosyl hydrolase family 11 (GH11) xylanases and xylanases have been identified from Pseudobutyrivibrio xylanivorans. In contrast, little is known about the diversity and distribution of the GH10 xylanase in strains of P. xylanivorans. Xylanase and associated activities of P. xylanivorans have been characterized in detail in the type strain, Mz5. The aim of the present study was to identify GH10 xylanase genes in strains 2 and Mz5 of P. xylanivorans. In addition, we evaluated degradation and utilization of xylan by P. xylanivorans 2 isolated from rumen of Creole goats. After a 12-h culture, P. xylanivorans 2 was able to utilize up to 53 % of the total pentose content present in birchwood xylan (BWX) and to utilize up to 62 % of a ethanol-acetic acid-soluble fraction prepared from BWX. This is the first report describing the presence of GH10 xylanase-encoding genes in P. xylanivorans. Strain 2 and Mz5 contained xylanases which were related to GH10 xylanase of Butyrivibrio sp. Identifying xylanase-encoding genes and activity of these enzymes are a step toward understanding possible functional role of P. xylanivorans in the rumen ecosystem and contribute to providing an improved choice of enzymes for improving fiber digestion in ruminant animals, agricultural biomass utilization for biofuel production, and other industries.  相似文献   

4.
A total of 20 fungal cultures were isolated from the rumen of cattle fed a high fibre-containing diet. All of the isolates showed polycentric growth patterns and were identified as different strains of Orpinomyces and Anaeromyces. Enzyme assays of most of the isolates showed the highest carboxymethylcellulase (CMCase) and xylanase activities after 96 h of growth and highest avicelase activity after 120 h. Among all enzymes tested, xylanase activity was the highest, followed by CMCase and avicelase. The results of the in vitro fibre digestibility and rumen fermentation analyses revealed that the addition of fungal cultures significantly increased acetate, in vitro dry matter digestibility, partition factor values and microbial biomass synthesis levels. Overall, Orpinomyces spp. were found to be the better enzyme producers and fibre degraders than Anaeromyces spp.  相似文献   

5.
xynB is one of at least four genes from the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 that encode xylanase activity. The xynB gene is predicted to encode a 781-amino acid product starting with a signal peptide, followed by an amino-terminal xylanase domain which is identical at 89% and 78% of residues, respectively, to the amino-terminal xylanase domains of the bifunctional XynD and XynA enzymes from the same organism. Two separate regions within the carboxy-terminal 537 amino acids of XynB also show close similarities with domain B of XynD. These regions show no significant homology with cellulose- or xylan-binding domains from other species, or with any other sequences, and their functions are unknown. In addition a 30 to 32-residue threonine-rich region is present in both XynD and XynB. Codon usage shows a consistent pattern of bias in the three xylanase genes from R. flavefaciens that have been sequenced.  相似文献   

6.
Agroindustrial residues are materials often rich in cellulose and hemicellulose. The use of these substrates for the microbial production of enzymes of industrial interest is mainly due to their high availability associated with their low cost. In this work, corncob (CCs) particles decomposed to soluble compounds (liquor) were incorporated in the microbial growth medium through autohydrolysis, as a strategy to increase and undervalue xylanase and β-xylosidase production by Aspergillus terricola and Aspergillus ochraceus. The CCs autohydrolysis liquor produced at 200 °C for 5, 15, 30 or 50 min was used as the sole carbon source or associated with untreated CC. The best condition for enzyme synthesis was observed with CCs submitted to 30 min of autohydrolysis. The enzymatic production with untreated CCs plus CC liquor was higher than with birchwood xylan for both microorganisms. A. terricola produced 750 total U of xylanase (144 h cultivation) and 30 total U of β-xylosidase (96-168 h) with 0.75% untreated CCs and 6% CCs liquor, against 650 total U of xylanase and 2 total U of β-xylosidase in xylan; A. ochraceus produced 605 total U of xylanase and 56 total U of β-xylosidase (168 h cultivation) with 1% untreated CCs and 10% CCs liquor against 400 total U of xylanase and 38 total U of β-xylosidase in xylan. These results indicate that the treatment of agroindustrial wastes through autohydrolysis can be a viable strategy in the production of high levels of xylanolytic enzymes.  相似文献   

7.
xynB is one of at least four genes from the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 that encode xylanase activity. The xynB gene is predicted to encode a 781-amino acid product starting with a signal peptide, followed by an amino-terminal xylanase domain which is identical at 89% and 78% of residues, respectively, to the amino-terminal xylanase domains of the bifunctional XynD and XynA enzymes from the same organism. Two separate regions within the carboxy-terminal 537 amino acids of XynB also show close similarities with domain B of XynD. These regions show no significant homology with cellulose- or xylan-binding domains from other species, or with any other sequences, and their functions are unknown. In addition a 30 to 32-residue threonine-rich region is present in both XynD and XynB. Codon usage shows a consistent pattern of bias in the three xylanase genes from R. flavefaciens that have been sequenced.  相似文献   

8.
产木聚糖酶厌氧真菌菌株筛选及产酶培养条件研究*   总被引:4,自引:0,他引:4  
从12株分离自反刍动物瘤胃及粪样的厌氧真菌中筛选到一株木聚糖酶高产菌,编号为A4,初步鉴定为Neocallimastix属菌。以稻草秸、玉米秸、花生秸、滤纸片段为发酵底物,经39℃厌氧培养,A4菌产生的木聚糖酶活分别为14.31U/mL、11.39U/mL、6.99U/mL和13.38U/mL。对A4菌产生木聚糖酶的条件进行优化,结果发现,培养基中无细胞瘤胃液浓度对A4菌产生的木聚糖酶活无显著影响;但酵母膏浓度从1.0g/L降至0.5g/L后,A4菌产生的木聚糖酶活显著下降(P<0.05)。  相似文献   

9.
【目的】了解牦牛瘤胃微生物木聚糖酶多样性及其降解特征,为木聚糖降解提供新的基因资源。【方法】根据对已构建的瘤胃微生物元基因组细菌人工染色体(BAC)克隆文库高通量测序结果的注释,筛选其中编码木聚糖酶的基因并进行多样性分析;对其中一个木聚糖酶基因及其连锁的木糖苷酶基因进行克隆表达和酶学性质表征,分析其协同作用。【结果】共筛选到14个木聚糖酶基因,均编码GH10家族木聚糖酶,其氨基酸序列之间的相似性为20.5%-91.3%;其中7个木聚糖酶基因所在的不同的DNA片段(contig)上存在木糖苷酶基因,编码的木糖苷酶属于GH43或GH3糖苷水解酶家族。将其中一对连锁的木聚糖酶(Xyn32)和木糖苷酶基因(Xyl33)分别克隆、表达和纯化。纯化后的木聚糖酶比活为1.98 IU/mg,但不具有阿魏酸酯酶活性;木糖苷酶比活为0.07 U/mg,且具有α-阿拉伯呋喃糖苷酶活性。体外实验证明,木糖苷酶Xyl33对与之连锁的木聚糖酶Xyn32的木聚糖降解具有协同作用。  相似文献   

10.
A cDNA (xynA), encoding xylanase A (XYLA), was isolated from a cDNA library, derived from mRNA extracted from the rumen anaerobic fungus, Neocallimastix patriciarum. Recombinant XYLA, purified from Escherichia coli harbouring xynA, had a M(r) of 53,000 and hydrolysed oat-spelt xylan to xylobiose and xylose. The enzyme did not hydrolyse any cellulosic substrates. The nucleotide sequence of xynA revealed a single open reading frame of 1821 bp coding for a protein of M(r) 66,192. The predicted primary structure of XYLA comprised an N-terminal signal peptide followed by a 225-amino-acid repeated sequence, which was separated from a tandem 40-residue C-terminal repeat by a threonine/proline linker sequence. The large N-terminal reiterated regions consisted of distinct catalytic domains which displayed similar substrate specificities to the full-length enzyme. The reiterated structure of XYLA suggests that the enzyme was derived from an ancestral gene which underwent two discrete duplications. Sequence comparison analysis revealed significant homology between XYLA and bacterial xylanases belonging to cellulase/xylanase family G. One of these homologous enzymes is derived from the rumen bacterium Ruminococcus flavefaciens. The homology observed between XYLA and a rumen prokaryote xylanase could be a consequence of the horizontal transfer of genes between rumen prokaryotes and lower eukaryotes, either when the organisms were resident in the rumen, or prior to their colonization of the ruminant. It should also be noted that Neocallimastix XYLA is the first example of a xylanase which consists of reiterated sequences. It remains to be established whether this is a common phenomenon in other rumen fungal plant cell wall hydrolases.  相似文献   

11.
Enzymatic pretreatment of softwood kraft pulp was investigated using xylanase and mannanase, singly or in combination, either sequentially or simultaneously. Enzymes were obtained from Streptomyces galbus NR that had been cultivated in a medium, containing either xylan of sugar cane bagasse or galactomannan of palm-seeds, when they were used as sole carbon sources from local wastes in fermentation media. No cellulase activity was detected. Incubation period, temperature, initial pH values and nature of nutritive constituents were investigated. Optimum production of both enzymes was achieved after 5 days incubation on a rotary shaker (200 rpm) at 35 degrees C and initial pH 7.0. Partial purification of xylanase and mannanase in the cultures supernatant were achieved by salting out at 40-60 and 60-80% ammonium sulphate saturation with a purification of 9.63- and 8.71-fold and 68.80 and 62.79% recovery, respectively. The xylanase and mannanase from S. galbus NR have optimal activity at 50 and 40 degrees C, respectively. Both enzymes were stable at a temperature up to 50 degrees C. Xylanase and mannanase showed highest activity at pH 6.5 and were stable from 5.0 to 8.0 and from 5.5 to 7.5, respectively. The partial purified enzymes preparations of xylanase and mannanase enzymes showed high bleaching activity, which is an important consideration for industry. Xylanase was found to be more effective for paper-bleaching than mannanase. When xylanase and mannanase were dosed together (simultaneously), both enzymes were able to enhance the liberation of reducing sugars and improve pulp bleachability, possibly as a result of nearly additive interactions. The simultaneous addition of both enzymes was more effective in pulp treatment than their sequential addition.  相似文献   

12.
The effect of ciliate protozoa on the activity of polysaccharide-degrading enzymes in microbial populations from the digesta solids and liquor fractions of rumen contents was examined after the refaunation of ciliate-free sheep with an A-type rumen protozoal population. Although the culturable rumen bacterial population was reduced after refaunation the number of fibrolytic micro-organisms detected was higher; the xylanolytic bacterial population and numbers of fungal zoospores were increased after refaunation. The proportion of propionic acid was lower in the refaunated animals, whereas the concentration of ammonia and the acidic metabolites acetate, butyrate and valerate were all increased. The range of enzyme activities present in the digesta subpopulations were the same in defaunated and refaunated animals. The activities of the polysaccharide-degrading enzymes, however, were increased in the microbial populations associated with the digesta solids after refaunation, and at 16 h after feeding the activities were 4–8 times (β-d-xylosidase 20 times) higher than the levels detected in the adherent population from defaunated sheep. The protozoa, either directly through their own enzymes or indirectly as a consequence of their effects on the population size and activity of the other fibrolytic micro-organisms present, have an important role in determining the level of activity of polysaccharide-degrading enzymes in the rumen ecosystem. Although the extent of ryegrass ( Lolium perenne ) hay digestion was similar after 24 h in the absence or presence of protozoa, the initial ruminal degradation was higher in refaunated sheep.  相似文献   

13.
The effect of ciliate protozoa on the activity of polysaccharide-degrading enzymes in microbial populations from the digesta solids and liquor fractions of rumen contents was examined after the refaunation of ciliate-free sheep with an A-type rumen protozoal population. Although the culturable rumen bacterial population was reduced after refaunation the number of fibrolytic micro-organisms detected was higher; the xylanolytic bacterial population and numbers of fungal zoospores were increased after refaunation. The proportion of propionic acid was lower in the refaunated animals, whereas the concentration of ammonia and the acidic metabolites acetate, butyrate and valerate were all increased. The range of enzyme activities present in the digesta subpopulations were the same in defaunated and refaunated animals. The activities of the polysaccharide-degrading enzymes, however, were increased in the microbial populations associated with the digesta solids after refaunation, and at 16 h after feeding the activities were 4-8 times (beta-D-xylosidase 20 times) higher than the levels detected in the adherent population from defaunated sheep. The protozoa, either directly through their own enzymes or indirectly as a consequence of their effects on the population size and activity of the other fibrolytic micro-organisms present, have an important role in determining the level of activity of polysaccharide-degrading enzymes in the rumen ecosystem. Although the extent of ryegrass (Lolium perenne) hay digestion was similar after 24 h in the absence or presence of protozoa, the initial ruminal degradation was higher in refaunated sheep.  相似文献   

14.
Endoglucanase and xylanase activities of three rumen protozoa, Polyplastron multivesiculatum, Eudiplodinium maggii, and Entodinium sp. were compared qualitatively by zymograms and quantitatively by measuring specific activities against different polysaccharides. A set of carboxymethylcellulases and xylanases was produced by the large ciliates whereas no band of activity was observed for Entodinium sp. in zymograms. Specific activity of endoglucanases from P. multivesiculatum (1.3 micromol mg prot(-1) min(-1)) was twice that of E. maggii, whereas xylanase specific activity (4.5 micromol mg prot(-1) min(-1)) was only half. Very weak activities were observed for Entodinium sp. A new xylanase gene, xyn11D, from P. multivesiculatum was reported and its gene product compared to 33 other family 11 xylanases. Phylogenetic analysis showed that xylanase sequences from rumen protozoa are closely related to those of bacteria.  相似文献   

15.
Abstract Prevotella ruminicola B14 is a strictly anaerobic, Gram-negative, polysaccharide-degrading rumen bacterium. Xylanase activity in this strain was found to be inducible, the specific activity of cells grown on xylan being increased at least 20-fold by comparison with cells grown on glucose. Ten bacteriophage clones expressing xylanase activity were isolated from a A EMBL3 genomic DNA library of P. ruminicola B14. These clones were shown to represent four distinct chromosomal regions, based on restriction enzyme analysis and DNA hybridisation. Three groups of clones encoded activity against oat spelt xylan but not carboxymethylcellulose (CMC). In one of these groups, represented by clone 5, activities against pNP-arabinofuranoside and pNP-xyloside were found to be encoded separately from endoxylanase activity. The fourth region encoded activity against CM cellulose and lichenan, in addition to xylan, and contains an endoglucanase/xylanase gene isolated previously.  相似文献   

16.
Fungal xylanases have been widely studied and various production methods have been proposed using submerged and solid-state fermentation. This class of enzyme is used to supplement cellulolytic enzyme cocktails in order to enhance the enzymatic hydrolysis of plant cell walls. The present work investigates the production of xylanase and other accessory enzymes by a recently isolated endophytic Aspergillus niger DR02 strain, using the pentose-rich liquor from hydrothermal pretreatment of sugarcane bagasse as carbon source. Batch and fed-batch submerged cultivation approaches were developed in order to minimize the toxicity of the liquor and increase enzyme production. Maximum xylanase activities obtained were 458.1 U/mL for constant fed-batch, 428.1 U/mL for exponential fed-batch, and 264.37 U/mL for pulsed fed-batch modes. The results indicated that carbon-limited fed-batch cultivation can reduce fungal catabolite repression, as well as overcome possible negative effects of toxic compounds present in the pentose-rich liquor. Enzymatic panel and mass spectrometric analyses of the fed-batch A. niger secretome showed high levels of xylanolytic enzymes (GH10, GH11, and GH62 Cazy families), together with cellobiohydrolase (G6 and GH7), β-glucosidase, β-xylosidase (GH3), and feruloyl esterase (CE1) accessory enzyme activities. The yields of glucose and xylose from enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse increased by 43.7 and 65.3%, respectively, when a commercial cellulase preparation was supplemented with the A. niger DR02 constant fed-batch enzyme complex.  相似文献   

17.
The distribution of two xylanase genes was examined by Southern hybridization among 26 strains of the rumen anaerobic bacterium Prevotella (Bacteroides) ruminicola. Hybridization with a xylanase/endoglucanase gene from the type strain 23 was found in six strains while hybridization with a xylanase gene from strain D31d was found in 14 strains. Sequences related to both genes were present, on different restriction fragments, in six strains, whereas no hybridization to either gene was detected in five other strains capable of hydrolysing xylan, or in seven strains that showed little or no xylanase activity. Zymogram analyses of seven xylanolytic strains of P. ruminicola demonstrated interstrain variation in the apparent molecular masses of the major xylanases and carboxymethylcellulases that could be renatured following SDS polyacrylamide gel electrophoresis.  相似文献   

18.
Azocasein-degrading proteinase activity was detected in all rumen ciliate protozoa that were examined from four entodiniomorphid and two holotrich genera. All of the activities were optimal in the range pH 4.0-5.0 and were inhibited by cysteine proteinase inhibitors, notably leupeptin. The inhibition profiles and extent of inhibition observed with the different groups of inhibitors were organism-specific. Gelatin-SDS-polyacrylamide gel electrophoresis of protozoal lysates revealed multiple forms of the proteinases in the species examined. The number of enzymes detected, their molecular masses, the level of activity and inhibitor susceptibility was genus-dependent. The proteinase profiles of the two holotrich species differed and inter-species differences were also apparent among species of the genus Entodinium. The characteristics and molecular size distribution of rumen bacterial proteinases were different to the protozoal proteinases. Low levels of proteinase activity, of apparently bacterial origin, were detected by gelatin-SDS-PAGE analysis of cell-free rumen liquor.  相似文献   

19.
Anaerobic fungi belonging to the family Neocallimastigaceae are native inhabitants in the rumen of the most herbivores, such as cattle, sheep and goats. A member of this unique group, Neocallimastix sp. GMLF2 was isolated from cattle feces and screened for its xylanase encoding gene using polymerase chain reaction. The gene coding for a xylanase (xyn2A) was cloned in Escherichia coli and expression was monitored. To determine the enzyme activity, assays were conducted for both fungal xylanase and cloned xylanase (Xyl2A) for supernatant and cell-associated activities. Optimum pH and temperature of the enzyme were found to be 6.5 and 50°C, respectively. The enzyme was stable at 40°C and 50°C for 20 min but lost most of its activity when temperature reached 60°C for 5-min incubation time. Rumen fungal xylanase was mainly released to the supernatant of culture, while cloned xylanase activity was found as cell-associated. Multiple alignment of the amino acid sequences of Xyl2A with published xylanases from various organisms suggested that Xyl2A belongs to glycoside hydrolase family 11.  相似文献   

20.
AIMS: To investigate the short- and long-term effects of an extract of Sapindus rarak saponins (SE) on the rumen fibrolytic enzyme activity and the major fibrolytic micro-organisms. METHODS AND RESULTS: Two feeding trials were conducted. In the short-term trial, four fistulated goats were fed a basal diet containing sugar cane tops and wheat pollard (65:35, w/w) and were supplemented for 7 days with SE at a level of 0.6 g kg(-1) body weight. Rumen liquor was taken before, during and after SE feeding. In the long-term trial, 28 sheep were fed the same basal diet as the goats and were supplemented for 105 days with 0.24, 0.48 and 0.72 g kg(-1) body mass of the extract. Rumen liquor was taken on days 98 and 100. Protozoal numbers were counted under the microscope. Cell wall degradation was determined by enzyme assays and the major fibrolytic micro-organisms were quantified by dot blot hybridization. Sapindus extract significantly depressed rumen xylanase activity in both trials and carboxymethylcellulase activity in the long-term trial (P < 0.01). Fibrobacter sp. were not affected by the SE in both trials, while ruminococci and the anaerobic fungi showed a short-term response to the application of saponins. Protozoal counts were decreased only in the long-term trial with sheep. CONCLUSION: These data suggest that there is an adaptation of Ruminococcus albus, Ruminococcus flavefaciens and Chytridiomycetes (fungi) to saponin when fed over a long period. The fact that no correlation between the cell wall degrading enzyme activities and the cell wall degrading micro-organisms was observed suggests that the organisms tracked in this experiment are not the only key players in ruminal cell wall degradation. SIGNIFICANCE AND IMPACT OF THE STUDY: Sapindus rarak saponins partially defaunate the rumen flora. Their negative effect on cell wall degradation, however, is not related to rumen organisms currently recognized as the major cell wall degrading species. The adaptation of microbes in the long-term feeding experiment suggests that the results from short-term trial on the ruminal microbial community have to be interpreted carefully.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号