首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cistus creticus ssp. creticus is an indigenous shrub of the Mediterranean area. The glandular trichomes covering its leaf surfaces secrete a resin called “ladanum”, which among others contains a number of specific labdane-type diterpenes that exhibit antibacterial and antifungal action as well as in vitro and in vivo cytotoxic and cytostatic activity against human cancer cell lines. In view of the properties and possible future exploitation of these metabolites, it was deemed necessary to study the geranylgeranyl diphosphate synthase enzyme (GGDPS, EC 2.5.1.30), a short chain prenyltransferase responsible for the synthesis of the precursor molecule of all diterpenes. In this work, we present the cloning, functional characterisation and expression profile at the gene and protein levels of two differentially expressed C. creticus full-length cDNAs, CcGGDPS1 and CcGGDPS2. Heterologous yeast cell expression system showed that these cDNAs exhibited GGDPS enzyme activity. Gene and protein expression analyses suggest that this enzyme is developmentally and tissue-regulated showing maximum expression in trichomes and smallest leaves (0.5–1.0 cm). This work is the first attempt to study the terpenoid biosynthesis at the molecular level in C. creticus ssp. creticus.  相似文献   

2.
The detailed pH and temperature kinetics of human term placenta cysteinyl-tRNA synthetase (EC 6.1.1.16) were studied. The ATP-PPi exchange reaction catalyzed by the cysteinyl-tRNA synthetase was highly dependent on temperature, pH, and ionic strength. The Arrhenius plot at temperatures between 5 degrees and 40 degrees was linear, giving an activation energy of 19 +/- 2.5 Kcal/mol. The pH dependence of the kinetic parameters Km and Vmax was investigated. Apparent pKa value of 6.4 was observed in the pH-dependence of Vmax/Km plot. The pH versus Vmax plot showed two apparent pKa values of about 5.8 and 7.8. Van't Hoff's enthalpies were used to differentiate the nature of the possible groups responsible for the ionization. These results are valuable for the selection of chemical modifying reagents in characterizing the amino acid residues involved in substrate (nucleotide) binding or catalysis.  相似文献   

3.
4.
5.
From a cDNA library of developing siliques of rapeseed (Brassica napus L.) we have isolated five full-length clones encoding polypeptides of the AMP-binding protein family. Two cDNAs encode fatty acyl-CoA synthetase activity (EC 6.2.1.3). The deduced polypeptides share about 52% identical amino acids. After expression in Escherichia coli the predicted enzymatic activity was confirmed by in vitro assays and product analysis. The enzymatic activity for one of the clones was characterized in detail by determination of the K m for oleic acid (10.4 µm) and the pH optimum (between 7 and 8). For the three additional clones no enzymatic activities could be demonstrated after expression in E. coli, although two of them exhibit similarity to either eukaryotic or prokaryotic acyl-CoA synthetases. The sequences are compared to a number of related expressed sequence tags from Brassica and Arabidopsis. Potential subcellular locations and functions of the deduced polypeptides within plant cells are discussed.  相似文献   

6.
A cDNA selection technique has been used to isolate full-length human cDNAs of the phosphodiesterase 1 (PDE1) calcium calmodulin (CaM)-regulated phosphodiesterase gene family. We isolated cDNAs representing multiple splice variants of PDE1A, 1B and 1C from a variety of tissues. Included among these were two novel splice variants for PDE1A and 1B. The first, PDE1A5, encodes a 519-residue protein, which is different from PDE1A1 by the insertion of 14 residues, a divergent carboxy terminus and also differs from PDE1A3 through a divergent amino terminus. Our second novel splice variant represents the first occurrence of a splice variant of the PDE1B gene. PDE1B2 encodes a 516-residue protein and diverges from PDE1B1 by the replacement of the first 38 residues by an alternative 18, which is predicted to be functionally significant. Using the splice variant sequence differences to perform comparative Northern analysis, we have demonstrated that each variant has a differential tissue distribution.  相似文献   

7.
The cDNAs encoding two different Atlantic cod elastases have been isolated and sequenced. The predicted amino acid sequences revealed two preproelastases, consisting of a signal peptide, an activation peptide and a mature enzyme of 242 and 239 amino acids. Amino acid sequence identity between the two cod elastases was 60.1% and identity with mammalian elastases ranged from 50–64%. The two cod elastases contain all the major structural features common to serine proteases, such as the catalytic triad His57, Asp102 and Ser195. Both cod elastases have a high content of methionine, consistent with previous findings in psychrophilic fish enzymes.  相似文献   

8.
9.
10.
11.
Two cDNAs encoding rice (Oryza sativa L.) S-adenosyl-l-methionine synthetase (SAMS) have been cloned, sequenced and identified. The deduced protein sequences share a high homology (90–94%) with those of other plant SAMS and are 60–62% identical to yeast, rat and human SAMS. The rice SAMS genes are differentially regulated in a tissue-specific manner and by a salt stress, while they are coordinately expressed during growth of the rice cell culture.  相似文献   

12.
Isolation of several cDNAs encoding yeast peroxisomal enzymes   总被引:1,自引:0,他引:1  
Several candidate clones carrying partial cDNAs for yeast peroxisomal enzymes, such as catalase, carnitine acetyltransferase, isocitrate lyase, malate synthase and acyl-CoA oxidase, were efficiently isolated at a single plating from a phage lambda gt11 recombinant cDNA library prepared with poly(A)-rich RNA from an n-alkane-grown yeast, Candida tropicalis, with a mixture of antibodies against the respective purified enzymes. Among them, one candidate clone carrying partial cDNA for catalase was subcloned and subjected to nucleotide sequence analysis. We succeeded in determining that the amino acid sequence deduced from the nucleotide analysis included the sequences derived from the two peptide fragments obtained from the purified enzyme.  相似文献   

13.
14.
In the yeast Saccharomyces cerevisiae, two genes (GRS1 and GRS2) encode glycyl-tRNA synthetase (GlyRS1 and GlyRS2, respectively). 59% of the sequence of GlyRS2 is identical to that of GlyRS1. Others have proposed that GRS1 and GRS2 encode the cytoplasmic and mitochondrial enzymes, respectively. In this work, we show that GRS1 encodes both functions, whereas GRS2 is dispensable. In addition, both cytoplasmic and mitochondrial phenotypes of the knockout allele of GRS1 in S. cerevisiae are complemented by the expression of the only known gene for glycyl-tRNA synthetase in Schizosaccharomyces pombe. Thus, a single gene for glycyl-tRNA synthetase likely encodes both cytoplasmic and mitochondrial activities in most or all yeast. Phylogenetic analysis shows that GlyRS2 is a predecessor of all yeast GlyRS homologues. Thus, GRS1 appears to be the result of a duplication of GRS2, which itself is pseudogene-like.  相似文献   

15.
Isolation and characterization of variant cDNAs encoding mouse tyrosinase   总被引:6,自引:0,他引:6  
Two different cDNA clones encoding mouse tyrosinase (monophenol oxygenase, E.C. 1.14.18.1) were isolated from B16 melanoma cells, and their primary structure was determined. One of the cDNAs consists of 3309 nucleotides with an open reading frame coding for a peptide of 533 amino acids. The other cDNA is approximately 1600 nucleotides long, with a shorter 3'-untranslated region and a deduced in-frame deletion of 77 amino acid residues with respect to the former clone. Neither of these clones is structurally identical to other described mouse tyrosinase cDNAs (1-3). RNA blotting analysis demonstrates that multiple tyrosinase mRNA species are not only present in B16 melanoma, but also in normal skin melanocytes.  相似文献   

16.
17.
Two novel cDNAs, Plubc1 and Plubc2, encoding ubiquitin-conjugatingenzyme E2, were isolated from a Pavlova lutheri cDNA library. They areeach encoded by single copy genes in thealgae genome. Sequence comparison withplant, yeast and algal E2 sequences showedthat PlUBC1 and PlUBC2 are members of newE2 subfamilies. Time-course expressionanalysis of the two cDNAs revealed thatPlubc1 is transitionallyover-expressed at the end of theexponential phase of growth of the culture,while Plubc2 is constitutivelyexpressed at the same level throughout thecell growth. The phylogenetic study and thedifferent expression patterns suggest thatthese two enzymes could exhibit differentphysiological functions in P. lutheri.The partial sequence of the 18S rRNA geneand the full-length cDNA sequence of Plubc1 and Plubc2 reported in thispaper will appear in the Genbank databaseunder the accession numbers AY135218,AY135219 and AY135220 respectively.  相似文献   

18.
M Emi  Y Nakamura  M Ogawa  T Yamamoto  T Nishide  T Mori  K Matsubara 《Gene》1986,41(2-3):305-310
Two cDNA clones encoding two major human trypsinogen isozymes were isolated from a human pancreatic cDNA library. The deduced amino acid (aa) sequences of the two trypsinogen precursors are found to have 89% sequence homology, and have the same number of aa (247), including 15 aa for a signal peptide and 8 aa for an activation peptide. Southern blot analysis of human genomic DNA using the cloned cDNA as a probe, revealed that the human trypsinogen genes constitute a multigene family of more than ten genes.  相似文献   

19.
A defective S-allele, S 0, and a functional S-allele, S x, have previously been found to be retained in an F1 hybrid of a self-compatible commercial cultivar of Petunia hybrida. Pistil proteins associated with these two alleles have also been identified. Their amino-terminal sequences have been found to share a high degree of similarity with those of S-proteins characterized from self-incompatible solanaceous species. Here we report the isolation and sequencing of cDNAs encoding S 0- and S x-proteins. Their deduced amino acid sequences contain all the consensus primary structural features of S-proteins from self-incompatible solanaceous species. Both proteins also have ribonuclease activity. The implications of these findings are discussed in relation to the presumed function of the S-protein in the self-incompatibility interaction.  相似文献   

20.
Methylenetetrahydrofolate reductase (MTHFR) is the least understood enzyme of folate-mediated one-carbon metabolism in plants. Genomics-based approaches were used to identify one maize and two Arabidopsis cDNAs specifying proteins homologous to MTHFRs from other organisms. These cDNAs encode functional MTHFRs, as evidenced by their ability to complement a yeast met12 met13 mutant, and by the presence of MTHFR activity in extracts of complemented yeast cells. Deduced sequence analysis shows that the plant MTHFR polypeptides are of similar size (66 kDa) and domain structure to other eukaryotic MTHFRs, and lack obvious targeting sequences. Southern analyses and genomic evidence indicate that Arabidopsis has two MTHFR genes and that maize has at least two. A carboxyl-terminal polyhistidine tag was added to one Arabidopsis MTHFR, and used to purify the enzyme 640-fold to apparent homogeneity. Size exclusion chromatography and denaturing gel electrophoresis of the recombinant enzyme indicate that it exists as a dimer of approximately 66-kDa subunits. Unlike mammalian MTHFR, the plant enzymes strongly prefer NADH to NADPH, and are not inhibited by S-adenosylmethionine. An NADH-dependent MTHFR reaction could be reversible in plant cytosol, where the NADH/NAD ratio is 10(-3). Consistent with this, leaf tissues metabolized [methyl-(14)C]methyltetrahydrofolate to serine, sugars, and starch. A reversible MTHFR reaction would obviate the need for inhibition by S-adenosylmethionine to prevent excessive conversion of methylene- to methyltetrahydrofolate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号