首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In a murine model of repeated exposure of the skin to infective Schistosoma mansoni cercariae, events leading to the priming of CD4 cells in the skin draining lymph nodes were examined. The dermal exudate cell (DEC) population recovered from repeatedly (4x) exposed skin contained an influx of mononuclear phagocytes comprising three distinct populations according to their differential expression of F4/80 and MHC-II. As determined by gene expression analysis, all three DEC populations (F4/80-MHC-IIhigh, F4/80+MHC-IIhigh, F4/80+MHC-IIint) exhibited major up-regulation of genes associated with alternative activation. The gene encoding RELMα (hallmark of alternatively activated cells) was highly up-regulated in all three DEC populations. However, in 4x infected mice deficient in RELMα, there was no change in the extent of inflammation at the skin infection site compared to 4x infected wild-type cohorts, nor was there a difference in the abundance of different mononuclear phagocyte DEC populations. The absence of RELMα resulted in greater numbers of CD4+ cells in the skin draining lymph nodes (sdLN) of 4x infected mice, although they remained hypo-responsive. Using mice deficient for IL-4Rα, in which alternative activation is compromised, we show that after repeated schistosome infection, levels of regulatory IL-10 in the skin were reduced, accompanied by increased numbers of MHC-IIhigh cells and CD4+ T cells in the skin. There were also increased numbers of CD4+ T cells in the sdLN in the absence of IL-4Rα compared to cells from singly infected mice. Although their ability to proliferate was still compromised, increased cellularity of sdLN from 4x IL-4RαKO mice correlated with reduced expression of Fas/FasL, resulting in decreased apoptosis and cell death but increased numbers of viable CD4+ T cells. This study highlights a mechanism through which IL-4Rα may regulate the immune system through the induction of IL-10 and regulation of Fas/FasL mediated cell death.  相似文献   

2.
Dengue is a growing global concern with 390 million people infected each year. Dengue virus (DENV) is transmitted by mosquitoes, thus host cells in the skin are the first point of contact with the virus. Human skin contains several populations of antigen-presenting cells which could drive the immune response to DENV in vivo: epidermal Langerhans cells (LCs), three populations of dermal dendritic cells (DCs), and macrophages. Using samples of normal human skin we detected productive infection of CD14+ and CD1c+ DCs, LCs and dermal macrophages, which was independent of DC-SIGN expression. LCs produced the highest viral titers and were less sensitive to IFN-β. Nanostring gene expression data showed significant up-regulation of IFN-β, STAT-1 and CCL5 upon viral exposure in susceptible DC populations. In mice infected intra-dermally with DENV we detected parallel populations of infected DCs originating from the dermis and migrating to the skin-draining lymph nodes. Therefore dermal DCs may simultaneously facilitate systemic spread of DENV and initiate the adaptive anti-viral immune response.  相似文献   

3.
A number of antigen-presenting cells (APCs) expressing major histocompatibility complex class II (MHC-II) have been identified in healthy human skin including the Langerhans cells of the epidermis and the three recently defined dermal APC subsets. It is well documented that in other tissues HLA-DR expression is not exclusive to APCs. Following a comprehensive analysis of the cells in human skin using flow cytometry and fluorescence immunohistochemistry, we have identified additional cell subsets that express HLA-DR. Using markers exclusive for blood and lymphatic endothelium, we demonstrated that both of these cell populations have the capacity to express HLA-DR. In addition, a small subset of dermal T lymphocytes was found to express low-level HLA-DR suggesting an activated phenotype. Dermal T lymphocytes were often in intimate contact with either CD1a(+) CD207(-) dermal APCs or CD1a(+) CD207(+) dermal Langerhans cells, possibly explaining the activated phenotype of a subset of dermal T lymphocytes.  相似文献   

4.
Langerhans cells (LCs) serve as epidermal sentinels of the adaptive immune system. Conventional wisdom suggests that LCs encounter Ag in the skin and then migrate to the draining lymph nodes, where the Ag is presented to T cells, thus initiating an immune response. Platelet-activating factor (PAF) is a phospholipid mediator with potent biological effects. During inflammation, PAF mediates recruitment of leukocytes to inflammatory sites. We herein tested a hypothesis that PAF induces LC migration. Applying 2,4-dinitro-1-fluorobenzene (DNFB) to wild-type mice activated LC migration. In contrast, applying DNFB to PAF receptor-deficient mice or mice injected with PAF receptor antagonists failed to induce LC migration. Moreover, after FITC application the appearance of hapten-laden LCs (FITC+, CD11c+, Langerin+) in the lymph nodes of PAF receptor-deficient mice was significantly depressed compared with that found in wild-type mice. LC chimerism indicates that the PAF receptor on keratinocytes but not LCs is responsible for LC migration. Contrary to the diminution of LC migration in PAF receptor-deficient mice, we did not observe any difference in the migration of hapten-laden dermal dendritic cells (FITC+, CD11c+, Langerin-) into the lymph nodes of PAF receptor-deficient mice. Additionally, the contact hypersensitivity response generated in wild-type or PAF receptor-deficient mice was identical. Finally, dermal dendritic cells, but not LCs isolated from the draining lymph nodes after hapten application, activated T cell proliferation. These findings suggest that LC migration may not be responsible for the generation of contact hypersensitivity and that dermal dendritic cells may play a more important role.  相似文献   

5.
The mechanism by which immunity to Herpes Simplex Virus (HSV) is initiated is not completely defined. HSV initially infects mucosal epidermis prior to entering nerve endings. In mice, epidermal Langerhans cells (LCs) are the first dendritic cells (DCs) to encounter HSV, but it is CD103+ dermal DCs that carry viral antigen to lymph nodes for antigen presentation, suggesting DC cross-talk in skin. In this study, we compared topically HSV-1 infected human foreskin explants with biopsies of initial human genital herpes lesions to show LCs are initially infected then emigrate into the dermis. Here, LCs bearing markers of maturation and apoptosis formed large cell clusters with BDCA3+ dermal DCs (thought to be equivalent to murine CD103+ dermal DCs) and DC-SIGN+ DCs/macrophages. HSV-expressing LC fragments were observed inside the dermal DCs/macrophages and the BDCA3+ dermal DCs had up-regulated a damaged cell uptake receptor CLEC9A. No other infected epidermal cells interacted with dermal DCs. Correspondingly, LCs isolated from human skin and infected with HSV-1 in vitro also underwent apoptosis and were taken up by similarly isolated BDCA3+ dermal DCs and DC-SIGN+ cells. Thus, we conclude a viral antigen relay takes place where HSV infected LCs undergo apoptosis and are taken up by dermal DCs for subsequent antigen presentation. This provides a rationale for targeting these cells with mucosal or perhaps intradermal HSV immunization.  相似文献   

6.
The mechanisms through which Schistosoma mansoni larvae induce Th1 rather than Th2 immune responses are not well understood. In this study, using CD154-/- mice exposed to radiation-attenuated S. mansoni larvae, we demonstrate roles for CD154/CD40 in the activation of skin-derived APCs and the development of Th1 cells in the skin-draining lymph nodes (sdLN). The presence of CD154 was important for optimal IL-12p40 and essential for Ag-specific IFN-gamma, but CD154 expression by wild-type CD4- cells was insufficient to rescue recall responses of CD4+ cells from CD154-/- mice. This defect is probably due to impaired CD40-dependent IL-12 production in vivo, because administration of anti-CD40 Ab, or rIL-12, restored IFN-gamma production by sdLN cells from CD154-/- mice. CD154 ligation of CD40 was not required for the migration of skin-derived APCs, but did have a limited role in their maturation (increased MHC II and CD86). Unexpectedly, although CD4 cells from CD154-/- mice were deficient in their ability to produce IFN-gamma, they produced significant amounts of IL-4 and IL-5 in the presence of skin-derived APCs from wild-type and CD154-/- mice. Thus, in contrast to IFN-gamma, the production of Th2-associated cytokines is (in this model) independent of CD154. We conclude that whereas the priming of Th1 responses soon after exposure to schistosome larvae is completely CD40/CD154 dependent, IL-4, IL-5, and IL-13 are independent of CD154, suggesting a dichotomy in the specific mechanisms that induce these cytokines by CD4+ cells in the sdLN.  相似文献   

7.
Cytokine response to schistosomula of Schistosoma mansoni was evaluated in the skin of mice during the initial 72 h following infection. These studies showed a significant increase in the levels of IL-4 and IL-10 message in the skin in areas of cercarial penetration. The IL-4 message was detectable in the skin as early as 8 h after infection and the message for IL-10 appeared from 16 h after infection. However, mRNA for IFN-gamma was undetectable in the skin samples for up to 72 h after infection with normal cercariae. In sharp contrast, vaccination with irradiated cercariae induced IFN-gamma and IL-2 responses in the skin within 24 h. Analysis of the cytokine profile of cells isolated from the skin during these early time points showed that T cells are probably not a source of IL-4 or IL-10 in the skin of mice infected with normal cercariae. However, in vaccinated animals, the majority of the IFN-gamma is derived from skin-residing T cells. In vaccinated animals, responses in the skin were mirrored in the skin-draining lymph nodes as well. Analysis of the CD4/CD8 ratio showed a significant decrease in the skin following vaccination suggesting an increase in CD8+ cells. Interestingly however, when vaccinated animals were challenged with normal cercariae, there was a significant reduction in IFN-gamma response in the skin and its draining lymph nodes. These results show that vaccination with irradiated cercariae of S. mansoni, preferentially induce the accumulation of IFN-gamma producing T cells in the skin and skin-draining lymph nodes of mice.  相似文献   

8.
Many natural transmissible spongiform encephalopathy (TSE) infections are likely to be acquired peripherally, and studies in mice show that skin scarification is an effective means of scrapie transmission. After peripheral exposure, TSE agents usually accumulate in lymphoid tissues before spreading to the brain. The mechanisms of TSE transport to lymphoid tissues are not known. Langerhans cells (LCs) reside in the epidermis and migrate to the draining lymph node after encountering antigen. To investigate the potential role of LCs in scrapie transportation from the skin, we utilized mouse models in which their migration was blocked either due to CD40 ligand deficiency (CD40L-/- mice) or after caspase-1 inhibition. We show that the early accumulation of scrapie infectivity in the draining lymph node and subsequent neuroinvasion was not impaired in mice with blocked LC migration. Thus, LCs are not involved in TSE transport from the skin. After intracerebral inoculation with scrapie, wild-type mice and CD40L-/- mice develop clinical disease with similar incubation periods. However, after inoculation via skin scarification CD40L-/- mice develop disease significantly earlier than do wild-type mice. The shorter incubation period in CD40L-/- mice is unexpected and suggests that a CD40L-dependent mechanism is involved in impeding scrapie pathogenesis. In vitro studies demonstrated that LCs have the potential to acquire and degrade protease-resistant prion protein, which is thought to be a component of the infectious agent. Taken together, these data suggest that LCs are not involved in scrapie transport to draining lymphoid tissues but might have the potential to degrade scrapie in the skin.  相似文献   

9.
Langerhans cells (LCs) are immature dendritic cells (DCs) present in the skin epithelium. Upon Ag exposure, they migrate to the draining lymph nodes where they mature into potent stimulators of naive T cells. The aim of this study was to investigate the influence of T cells on LC migration and maturation. Therefore, the in vivo migration and maturation of LCs after sensitization with the hapten FITC was compared between C57BL/6 or BALB/c mice used as positive controls, and recombination activating gene (RAG) 1 knockout (-/-) mice or SCID mice used as T cell-deficient mice. Phenotypically, there was no difference between migrated LCs from RAG1-/- or SCID mice vs normal C57BL/6 or BALB/c mice: both populations of FITC+ cells had a dendritic morphology and a mature phenotype as they expressed high levels of MHC class II molecules and costimulatory molecules CD80, CD86, and CD54. Sorted migrated LCs of RAG1-/- or SCID mice were efficient stimulators of allogeneic T cells and Ag-specific CD4+ T cells. The same results were found if migrated LCs were fixed instead of irradiated, excluding the possibility that LCs derived from RAG1-/- or SCID mice would mature in the presence of T cells during the stimulation tests. Importantly, fixed migrated LCs of RAG1-/- mice were also efficient stimulators of cytotoxic CD8+ T cells. These data suggest that T cells are not required for full maturation of LCs.  相似文献   

10.
A morphological study of in vitro wound healing has been performed by light, transmission and scanning electron microscopy in dorsal thoraco-lumbar skin of 7-day chick embryos. A circular wound, 750 microns in diameter, was punched out of dorsal skin, removing epidermis and the underlying dense dermis. Wound closure was completed within 96 to 120 hours. Feather bud development was not observed at the wound site. The epidermis began to migrate some 24 h after the wounding; the migration of peridermal cells preceded that of basal epidermal cells by some 12 hours. Mechanisms of the epidermal migration were similar to those observed in situ during wound healing of the integument in 5-day chick embryos (THEVENET, 1981), Superficial epithelization of bare dermis occurred as soon as 12 h after the injury. Cytoplasm of dermal cells exhibited many microtubules and a dilated rough endoplasmic reticulum. During the first 48 h, the epidermal cells established direct contacts and zones of close parallel apposition with epithelized dermal cell processes. The basement membrane lamina densa was maintained at the edges of the wound without retraction or ruffling. It was reconstituted concomitantly with the epidermal migration within 72 h. Cytoplasm of migratory epidermal and epithelized dermal cells exhibited many cytoskeleton structures.  相似文献   

11.
Cutaneous antigen presenting cells (APCs) are critical for the induction and regulation of skin immune responses. The human skin contains phenotypically and functionally distinct APCs subsets that are present at two separated locations. While CD1ahigh LCs form a dense network in the epidermis, the CD14+ and CD1a+ APCs reside in the dermal compartment. A better understanding of the biology of human skin APC subsets is necessary for the improvement of vaccine strategies that use the skin as administration route. In particular, progress in the characterization of uptake and activatory receptors will certainly improve APC-targeting strategies in vaccination. Here we performed a detailed analysis of the expression and function of glycan-binding and pattern-recognition receptors in skin APC subsets. The results demonstrate that under steady state conditions human CD1a+ dermal dendritic cells (DCs) were phenotypically most mature as measured by the expression of CD83 and CD86, whereas the CD14+ cells showed a higher expression of the CLRs DC-SIGN, mannose receptor and DCIR and had potent antigen uptake capacity. Furthermore, steady state LCs showed superior antigen cross-presentation as compared to the dermal APC subsets. Our results also demonstrate that the TLR3 ligand polyribosinic-polyribocytidylic acid (pI:C) was the most potent stimulator of cytokine production by both LCs and dDCs. These studies warrant further exploration of human CD1a+ dDCs and LCs as target cells for cancer vaccination to induce anti-tumor immune responses.  相似文献   

12.
Migration and differentiation of Langerhans cell precursors   总被引:1,自引:0,他引:1  
Epidermal Langerhans cells (LC) are the first sentinels of the skin immune system. To study immigration of human LC precursor cells into the skin, we established a two-compartmental skin model consisting of a dermal matrix and an epidermal sheet of keratinocytes. We tested the individual components of the skin model for their influence on phenotype and function of LC precursors. A time window at day 5/6 of differentiation was determined, during which in vitro generated LC precursors expressed adhesion molecules and chemokine receptors required for transmigration across endothelial cell layers and the dermis towards the epidermis. They expressed L-selectin, integrins, platelet endothelial cell adhesion molecule-1, E-cadherin and CC-chemokine receptor 6 and were thus fitted out for transendothelial migration and immigration into the dermis. In a transwell system, these LC precursors migrated towards the chemokine MIP3alpha, demonstrating functional integrity of chemokine receptor 6. For the in vitro reconstituted skin, keratinocytes were grown on a de-epidermized dermis for one to three weeks and formed an epidermal sheet. We allowed LC precursor cells to migrate into this two-compartmental model from the dermal side and examined the presence of CD1alpha--positive cells. LC precursors migrated through the dermal matrix towards the layer of keratinocytes representing the epidermis and could be identified by immunohistology. Experiments designed to investigate the influence of signals provided by both the skin components and by the LC precursors on LC immigration into the skin are in progress.  相似文献   

13.
Migrated Langerhans cells (m-LCs) have recently been shown to comprise only a minority of skin-derived dendritic cells (DCs) expressing Langerin in cutaneous lymph nodes. We have used BM chimeric mice that differ in CD45 and MHC class II alleles to unequivocally distinguish between radioresistant m-LCs and radiosensitive migrated dermal DCs (m-dDCs), to determine their phenotype, response to contact sensitization, and ability to activate naive CD4+ T cells in vivo. We have also characterized three subsets of dDCs and their migratory counterparts, as distinguished by expression of CD11b and Langerin. Each of the four subsets of skin DCs showed differential migration to draining LN in response to contact sensitizing agents. Migration of Langerin-CD11b+ and Langerin+CD11blow dDCs peaked after 1 day, followed by Langerin-CD11blow dDCs at 2 days and Langerin+ LCs at 4 days. Moreover, while m-LCs and m-dDCs had similar surface phenotypes in the steady state, they displayed unexpectedly different activation responses to contact sensitization: m-dDCs markedly up-regulated CD80 and CD86 at day 1, whereas only m-LCs up-regulated CD40, with delayed kinetics. Thus, m-dDCs are likely to be responsible for the initial response to skin immunization. However, when expression of cognate MHC class II was restricted to LCs and m-LCs, they were also capable of processing and presenting protein Ag to drive naive CD4 T cell proliferation in vivo. Thus, m-dDCs and m-LCs display distinct behavior in cutaneous lymph nodes while sharing the ability to interact specifically with T cells to control the immune response.  相似文献   

14.
Inflammation of the skin and systemic fever, both of which occur with injury or infection, include a hyperthermic component that many believe constitutes a physiological stress. Such increases in local or systemic body temperature may also have a regulatory effect on immune function. Langerhans cells (LCs), the dendritic cells of the skin, continuously monitor the extracellular matrix of the skin by taking up particles and microbes that they then carry to draining lymph nodes for presentation to T lymphocytes. We hypothesize that the thermal element of inflammation and/or fever may help regulate the activation and migration of LCs out of the epidermis. To test this hypothesis, Balb/ c mice were exposed to a mild (39.8 degrees C +/- 0.2 degrees C), long-duration (6 hours) whole body hyperthermia (WBH) treatment, which mimics the thermal component of fever. The number of LCs and their morphology were analyzed at various time points up to 7 days after the initiation of WBH. The LCs of the ear epidermis were visualized using a fluorescein isothiocyanate-conjugated antibody specific for the major histocompatibility complex (MHC) class II molecule and confocal microscopy. Although MHC class II staining was diffuse on the surface of the LC body and dendritic extensions of both WBH and control samples, the WBH-treated LCs exhibited a more punctate morphology with fewer dendritic processes compared with control LCs. A significant decrease in the number of LCs was also observed 1 to 5 days after WBH treatment. Furthermore, in vitro heating of Balb/c ear skin cultures at 40 degrees C for 6 to 8 hours enhanced the numbers of viable LCs that migrated into the culture wells. These results suggest that WBH treatment stimulates epidermal LCs in the absence of foreign antigen.  相似文献   

15.
Langerhans cells (LCs) seem to play a crucial role in the immune system of the skin. Changes in their density, distribution, phenotype and/or morphology have been described in a number of skin diseases, mostly immunologically mediated. For this reason, we investigated LCs in human hypertrophic scars, since these scars are presently believed to have an immunological basis. A preliminary analysis of the histological features was carried out on vertical serial sections, stained with hematoxylin and eosin. Both epidermal and dermal components of hypertrophic scar biopsies were examined. The total epidermal thickness and the thickness of the single epidermal layers were also measured; the values obtained were similar to those of control skin and normotrophic scars. Subsequently, CDla-positive LCs, revealed by indirect immunofluorescence and immunoperoxidase techniques, were studied to determine their position among the epidermal layers and within the dermis, their dimensions, their density and their morphology. According to these observations, two main types of hypertrophic scars were identified. In the first type (7 scars), LCs were widely clustered within both the whole epidermis and the dermis. Their density was increased (about 750 cells/mm2 of epidermal area), if compared to control skin and normotrophic scars (both about 400 cells/mm2 of epidermal area; p less than 0.001). The epidermal cell profiles, nearly three times larger than those of control skin, exhibited a dense network of interconnected dendrites. Further analysis for the presence of HLA-DR molecules revealed an anomalous expression of these antigens on keratinocytes. In the second type (3 scars), LCs density within the stratum Malpighii was unchanged, relative to control skin and normal scars, while CDla-positive cell bodies remained numerous in basal position and within the subpapillary corion. Epidermal LCs, only slightly larger than those evidentiated in control skin, displayed short and retracted dendritic projections. The aberrant expression of HLA-DR antigens on keratinocytes was very weak and sparse. The present results strongly suggest an immunologically activated state of the tissues examined; they provide morphological data that support the involvement of the immune system in hypertrophic scarring.  相似文献   

16.
松江鲈鱼皮肤的显微和亚显微结构   总被引:2,自引:0,他引:2  
采用光学显微镜、扫描电镜和透射电镜,对松江鲈鱼(Trachidermus fasciatus)成体皮肤的显微和亚显微结构进行了观察。结果表明,松江鲈鱼体表不同部位皮肤的厚薄不一,但基本结构相似。皮肤由表皮和真皮层构成。松江鲈鱼的皮肤裸露无鳞,表皮层较薄,由约4~8层细胞构成,主要由复层上皮细胞和黏液细胞及基底细胞组成。表层细胞呈扁平、多边形,细胞之间主要靠桥粒紧密连接,连接处形成增厚的边缘嵴状突起。表皮细胞游离面向内凹陷,表面形成指纹状微嵴。黏液细胞呈圆形或卵圆形,散布在上皮细胞之间。黏液细胞内的黏原颗粒具有椭圆颗粒状、均匀致密的块状和疏松丝状3种不同形态。真皮通过基膜与表皮相连,由稀疏层和致密层构成。真皮结缔组织在腹部较厚而在其他部位较薄。表皮与真皮连接处有色素层,头部、背部、尾柄和体侧皮肤色素细胞分布多,色素层明显,而腹部和颏部皮肤缺少色素。松江鲈鱼黄河群体真皮层中有角质棘状突起,而滦河群体则无。头部、体侧和尾柄处皮肤上还分布有侧线孔和表面神经丘等感觉器官。  相似文献   

17.
Incorporation of Ags by dendritic cells (DCs) increases when Ags are targeted to endocytic receptors by mAbs. We have previously demonstrated in the mouse that mAbs against C-type lectins administered intradermally are taken up by epidermal Langerhans cells (LCs), dermal Langerin(neg) DCs, and dermal Langerin(+) DCs in situ. However, the relative contribution of these skin DC subsets to the induction of immune responses after Ag targeting has not been addressed in vivo. We show in this study that murine epidermal LCs and dermal DCs transport intradermally injected mAbs against the lectin receptor DEC-205/CD205 in vivo. Skin DCs targeted in situ with mAbs migrated through lymphatic vessels in steady state and inflammation. In the skin-draining lymph nodes, targeting mAbs were found in resident CD8α(+) DCs and in migrating skin DCs. More than 70% of targeted DCs expressed Langerin, including dermal Langerin(+) DCs and LCs. Numbers of targeted skin DCs in the nodes increased 2-3-fold when skin was topically inflamed by the TLR7 agonist imiquimod. Complete removal of the site where OVA-coupled anti-DEC-205 had been injected decreased endogenous cytotoxic responses against OVA peptide-loaded target cells by 40-50%. Surprisingly, selective ablation of all Langerin(+) skin DCs in Langerin-DTR knock-in mice did not affect such responses independently of the adjuvant chosen. Thus, in cutaneous immunization strategies where Ag is targeted to DCs, Langerin(+) skin DCs play a major role in transport of anti-DEC-205 mAb, although Langerin(neg) dermal DCs and CD8α(+) DCs are sufficient to subsequent CD8(+) T cell responses.  相似文献   

18.
UVB irradiation can cause considerable changes in the composition of cells in the skin and in cutaneous cytokine levels. We found that a single exposure of normal human skin to UVB induced an infiltration of numerous IL-4(+) cells. This recruitment was detectable in the papillary dermis already 5 h after irradiation, reaching a peak at 24 h and declining gradually thereafter. The IL-4(+) cells appeared in the epidermis at 24 h postradiation and reached a plateau at days 2 and 3. The number of IL-4(+) cells was markedly decreased in both dermis and epidermis at day 4, and at later time points, the IL-4 expression was absent. The IL-4(+) cells did not coexpress CD3 (T cells), tryptase (mast cells), CD56 (NK cells), and CD36 (macrophages). They did coexpress CD15 and CD11b, showed a clear association with elastase, and had a multilobed nucleus, indicating that UVB-induced infiltrating IL-4(+) cells are neutrophils. Blister fluid from irradiated skin, but not from control skin, contained IL-4 protein as well as increased levels of IL-6, IL-8, and TNF-alpha. In contrast to control cultures derived from nonirradiated skin, a predominant type 2 T cell response was detected in T cells present in primary dermal cell cultures derived from UVB-exposed skin. This type 2 shift was abolished when CD15(+) cells (i.e., neutrophils) were depleted from the dermal cell suspension before culturing, suggesting that neutrophils favor type 2 T cell responses in UVB-exposed skin.  相似文献   

19.
Cellular events related to the resistance induced by radiation-attenuated cercariae of Schistosoma mansoni were determined immunocytochemically in the lung tissues of mice. Thy-1, CD4, CD8, Mac-1 MOMA-1, MOMA-2, and Ia antigens were identified on cryostat sections by the immunogold-silver staining technique with specific monoclonal antibodies. In mice vaccinated with irradiated cercariae and challenged with normal cercariae, the number of Thy-1+ and CD4+ lymphocytes was increased dramatically relative to the normal numbers both in perivascular tissues and in focal cellular aggregates in the parenchyma of the lungs. A high ratio of CD4+/CD8+ T cells was noted in the aggregates, both in perivascular tissues and in the foci. Macrophages showing positive reactions for Mac-1, MOMA-1, MOMA-2, and Ia also infiltrated the foci. In control mice that were unvaccinated and challenged, foci showing positive reactions for the lymphocyte subpopulations barely were detectable in the lungs by day 14. The numbers of Thy-1+, CD4+, and CD8+ cells and the CD4+/CD8+ ratio in controls were considerably less than those in vaccinated/challenged mice over the period of observation. In conclusion, pulmonary cellular aggregates in vaccinated and challenged mice were composed mainly of Thy-1+ and CD4+ cell populations characteristic of delayed-type hypersensitivity (DTH) reactions. Thus, Thy-1+ and CD4+ cells in the lungs of vaccinated mice may be involved in the elimination of challenge parasites through DTH reactions.  相似文献   

20.
Langerhans cells (LCs) positive for HLA-DR antigens were present in developing human epidermis by at least 7 weeks estimated gestational age (EGA). Most were negative for CD1 (T6) until 12-13 weeks EGA when they underwent a dramatic increase in CD1 reactivity. To gain insight into the density of LCs during ontogeny and to assess whether their distribution was coordinated with epidermal growth, the number of cells positive for both HLA-DR and CD1 antigens was determined relative to surface area and to volume of developing, interfollicular epidermis. LCs differed in their phenotype, distribution (follicular vs. interfollicular), size, and shape between 7 and 21 weeks EGA; however, during this period they maintained a statistically equivalent (P greater than .25) density (65 cells/mm2 and 1,750/mm3) even though the epidermis increased in thickness and the fetus rapidly expanded its surface area. While LCs were evenly distributed within the epidermal sheets at all gestational ages, those in embryonic skin were much smaller and less dendritic than the older cells. The density, size, and shape of LCs in developing skin seemed to be independent of epidermal status (e.g., thickness of keratinization, and number of cell layers) but rather were correlated with gestational age. The number of fetal LCs, through at least 23 weeks EGA, was only 10-20% of the adult LC density. Thus, we can conclude that the increase in LC density to adult levels must occur either during the third trimester or after birth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号