首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The rate of uptake of mixed rumen bacteria and free amino acids by washed suspensions of seven species of rumen ciliate protozoa has been followed. By assuming that the behaviour of these protozoa was the same under these conditions as during growth it was shown that Ophryoscolex caudatus could obtain the amino acids for growth by the engulfment of rumen bacteria. However, all the cellulolytic protozoa studied (Diploplastron affine, Diplodinium anacanthum, Diplodinium anisacanthum, Enoploplastron triloricatum, Eremoplastron bovis and Ostracodinium obtusum bilobum) were unable to obtain sufficient amino acids from either source to grow at even 25% of the maximum rate and it is postulated that they might utilize plant protein. O. caudatus grown in vitro did not engulf Klebsiella aerogenes or Escherichia coli but took up other bacteria and a rumen yeast at rates of up to 54000 organisms/protozoon/h from a population density of 109/ml. When grown in vivo it was more selective and engulfed mixed rumen bacteria at only 10% of the rate obtained with protozoa grown in vitro. D. affine grown in vitro did not engulf Bacteroides ruminicola, Esch. coli, Kl. aerogenes or Proteus mirabilis but took up mixed rumen bacteria from a population of 109/ml at a rate of 2200 bacteria/ protozoon/h.  相似文献   

2.
Entodinium longinucleatum grown in vitro in the presence of bacteria engulfed a wide range of bacterial species at rates of 130–3400 bacteria/h/protozoon (from suspensions of 10 bacteria/ml), but showed a preference for Klebsiella aerogenes and Proteus mirabilis which occurred in the growth medium. Some of the bacteria were digested with release of soluble material into the medium. Free amino acids were incorporated by the protozoa in the presence of chloramphenicol at rates of 5·4–15·1 nmol/h/106 protozoa and approximately 40% of the amino acid-carbon was incorporated into protein. There was no appreciable synthesis of protozoal protein from carbohydrate. Evidence was obtained that the protozoa obtained the amino acids required for growth largely from engulfed bacteria.  相似文献   

3.
Endoglucanase and xylanase activities of three rumen protozoa, Polyplastron multivesiculatum, Eudiplodinium maggii, and Entodinium sp. were compared qualitatively by zymograms and quantitatively by measuring specific activities against different polysaccharides. A set of carboxymethylcellulases and xylanases was produced by the large ciliates whereas no band of activity was observed for Entodinium sp. in zymograms. Specific activity of endoglucanases from P. multivesiculatum (1.3 micromol mg prot(-1) min(-1)) was twice that of E. maggii, whereas xylanase specific activity (4.5 micromol mg prot(-1) min(-1)) was only half. Very weak activities were observed for Entodinium sp. A new xylanase gene, xyn11D, from P. multivesiculatum was reported and its gene product compared to 33 other family 11 xylanases. Phylogenetic analysis showed that xylanase sequences from rumen protozoa are closely related to those of bacteria.  相似文献   

4.
Washed suspensions of the rumen ciliate protozoon Eudiplodinium maggii grown in vitro and incubated anaerobically engulfed all the bacteria tested except for Bacteroides ruminicola and Klebsiella aerogenes. There was considerable variation (160–9100 bacteria/h/protozoon at an external concentration of 1010 bacteria/ml) in the rate at which the bacteria were engulfed, but Eu. maggii showed some preference for bacteria of rumen origin. Some of the bacteria were digested with the release of soluble materials into the medium. Free amino acids were incorporated from an 0.1 mM solution at rates of 0.13 to 0.84 pmol/h/protozoon. Evidence is presented that Eu. maggii could obtain half the amino acids required for growth by the engulfment and digestion of bacteria and half by the uptake of free amino acids. Eudiplodinium maggii incorporated uridine 5' monophosphate and also hydrolysed this to uridine and then to uracil which was reduced to dihydrouracil. These products all appeared in the medium. Ribose was incorporated by the protozoon and appeared as glucose in protozoal and bacterial polysaccharide; none was incorporated as such into protozoal nucleic acid.  相似文献   

5.
The importance of methanogenic bacteria associated with ciliate protozoa was estimated either by removing protozoa from whole rumen fluid (using defaunated rumen fluid to correct for the effects of centrifugation on bacteria) or by isolating the protozoa. Rumen fluid was withdrawn from sheep inoculated with either Polyplastron multivesiculatum , a co-culture of Isotricha prostoma plus Entodinium spp. or a mixed type B fauna of Entodinium, Eudiplodinium and Epidinium spp. Methanogenesis was highest in rumen fluid containing a mixed protozoal population of the following genera: Entodinium, Eudiplodinium and Epidinium , was lower in defaunated rumen fluid and lowest in rumen fluid containing either I. prostoma plus Entodinium or P. multivesiculatum . Methanogenic bacteria associated with rumen ciliates were apparently responsible for between 9 and 25% of methanogenesis in rumen fluid.  相似文献   

6.
Washed suspensions of Entodinium bursa were incubated anaerobically with Entodinium caudatum, ten species of bacteria and a yeast. The rate of uptake and digestion of these micro-organisms was investigated. Protozoa grown in vivo did not engulf Proteus mirabilis or Klebsiella aerogenes but rapidly took up Bacillus megaterium. Selenomonas ruminantium, Torulopsis glabrata and Streptococcus bovis, although only the last was digested with release of soluble material into the medium. Protozoa grown in vitro engulfed each of the bacteria tested, taking up Megasphaera elsdenii and Proteus mirabilis most rapidly. Individual bacterial species and mixed rumen bacteria were engulfed more rapidly (up to 20 times) by protozoa grown in vivo than those grown in vitro, although the latter digested over 80% of the B. megaterium, Escherichia coli and P. mirabilis taken up. Labelled Ent. caudatum was extensively digested after engulfment by Ent. bursa. Some of the digestion products were released into the medium but individual amino acids were transferred as such from Ent. caudatum protein to Ent. bursa protein. Engulfed bacteria and polysaccharide granules were transferred intact from one protozoon to the other. Free amino acids were also taken up intact from the medium into protozoal protein but there was little biosynthesis of amino acids from glucose. When available for engulfment Ent. caudatum was quantitatively a much more valuable source of amino acids for protein synthesis by Ent. bursa than free amino acids or bacteria.  相似文献   

7.
C oleman , G.S. & H all , F.J. 1984. The uptake and utilization of Entodinium caudatum , bacteria, free amino acids and glucose by the rumen ciliate Entodinium bursa. Journal of Applied Bacteriology 56 , 283–294.
Washed suspensions of Entodinium bursa were incubated anaerobically with Entodinium caudatum , ten species of bacteria and a yeast. The rate of uptake and digestion of these micro-organisms was investigated. Protozoa grown in vivo did not engulf Proteus mirabilis or Klebsiella aerogenes but rapidly took up Bacillus mega-terium, Selenomonas ruminantium, Torulopsis glabrata and Streptococcus bouis , although only the last was digested with release of soluble material into the medium. Protozoa grown in vitro engulfed each of the bacteria tested, taking up Megasphaera elsdenii and i>Proteus mirabilis most rapidly. Individual bacterial species and mixed rumen bacteria were engulfed more rapidly (up to 20 times) by protozoa grown in vivo than those grown in vitro , although the latter digested over 80% of the B. megaterium, Escherichia coli and P. mirabilis taken up. Labelled Ent. caudatum was extensively digested after engulfment by Ent. bursa . Some of the digestion products were released into the medium but individual amino acids were transferred as such from Ent. caudatum protein to Ent. bursa protein. Engulfed bacteria and polysaccharide granules were transferred intact from one protozoon to the other. Free amino acids were also taken up intact from the medium into protozoal protein but there was little biosynthesis of amino acids from glucose. When available for engulfment Ent. caudatum was quantitatively a much more valuable source of amino acids for protein synthesis by Ent. bursa than free amino acids or bacteria.  相似文献   

8.
Ecological factors that control the establishment of cellulolytic bacteria and ciliate protozoa in the lamb rumen were studied in meroxenic animals. Axenic lambs received dilutions of rumen liquor from either conventional lambs and sheep (pool A) or meroxenic lambs (pool B). The total number of bacteria established in the rumen was between 10(9) and 5 x 10(10) g-1. In lambs inoculated with dilutions (10(-6), 10(-7), 10(-8)) of pool A, cellulolytic bacteria did not become established. However, subsequent inoculation with Bacteroides succinogenes, resulted in colonization in lambs that had received 10(-6) and 10(-7) dilutions of pool A. However, B. succinogenes became established in only one of three lambs that received the 10(-8) dilution. Similar results were obtained for the protozoan Entodinium sp. With pool B, lambs were inoculated earlier and cellulolytic bacteria were established directly from the 10(-6) and 10(-7) inocula. Polyplastron multivesiculatum establishment occurred readily when inoculated into the lambs which had received the 10(-6) dilution of pool B. Results obtained in this study suggest that establishment of cellulolytic bacteria and protozoa requires an abundant and complex flora and is favoured by early animal inoculation.  相似文献   

9.
The present study aimed at the long-term storage of rumen protozoa as living cells in liquid nitrogen. The two-step or interrupted slow freezing procedure was used to cryopreserve six of the dominant species of rumen ciliates isolated from monofaunated animals, Dasytricha ruminantium, Entodinium caudatum, Epidinium ecaudatum caudatum, Eudiplodinium maggii, Isotricha prostoma, and Polyplastron multivesiculatum. We optimized the first step in the interrupted slow freezing procedure, from the extracellular ice nucleation temperature to the holding temperature, and studied the effects of the cooling rates on survival. In addition to the nature of the cryoprotectant (dimethyl sulfoxide), the equilibration temperature and equilibration time (25 degrees C and 5 min, respectively), and the holding time at subzero temperature (45 min) recommended previously (S. Kisidayová, J. Microbiol. Methods 22:185-192, 1995), we found that a holding temperature of -30 degrees C, a cooling rate from extracellular ice nucleation temperature to holding temperature of between 1.2 degrees C/min and 2.5 degrees C/min, depending on the ciliate, and rumen juice as the freezing and thawing medium markedly improved the survival rate. Survival rates determined after 2 weeks in liquid nitrogen were 100% for Isotricha, 98% for Dasytricha, 85% for Epidinium, 79% for Polyplastron, 63% for Eudiplodinium, and 60% for Entodinium. They were not significantly modified after a period of 1 year in liquid nitrogen. Four of the five ciliate species cryopreserved for 8 months in liquid nitrogen successfully colonized the rumen when inoculated into defaunated animals. These results have made it possible to set up a bank of cryopreserved rumen protozoa.  相似文献   

10.
The relative contributions to O2 consumption made by the protozoal and bacterial populations present within the rumen were determined by using an open-type oxygen electrode system. Measurements indicated that two separate microbial populations contributed approximately equally to ruminal O2 consumption over the O2 concentration range experienced in situ (0.25 to 1.0 microM). The populations were observed to consume O2 under liquid-phase O2 concentrations of up to 7 microM, above which point rapid inactivation of O2 utilization was observed. Km values for the mixed population of bacteria and protozoa were 0.36 +/- 0.17 and 3.2 +/- 0.4 microM at concentrations of less than 1.6 and greater than 1.6 microM, respectively. O2 affinity values obtained for both the protozoal and bacterial populations were similar. O2 affinities of the isolated entodiniomorphid ciliates Polyplastron multivesiculatum and Eudiplodinium maggii showed O2 inhibition thresholds of 10 and 5, respectively, and apparent half-saturation constants (Km values) of 1.7 and 5.2 microM O2, respectively. Corresponding Vmax values were 7.8 microM O2 per min per 10(5) organisms for P. multivesiculatum and 3.6 microM O2 per min per 10(5) organisms for E. maggii. Mass spectroscopic analysis detected average rates of H2 production of 12.0 and 3.7 microM H2 per min per 10(5) organisms for P. multivesiculatum and E. maggii, respectively. Trace levels of dissolved O2 (less than 0.25 microM) stimulated the H2 production rate of E. maggii eightfold but inhibited that of P. multivesiculatum by 18%.  相似文献   

11.
J E Ellis  A G Williams    D Lloyd 《Applied microbiology》1989,55(10):2583-2587
The relative contributions to O2 consumption made by the protozoal and bacterial populations present within the rumen were determined by using an open-type oxygen electrode system. Measurements indicated that two separate microbial populations contributed approximately equally to ruminal O2 consumption over the O2 concentration range experienced in situ (0.25 to 1.0 microM). The populations were observed to consume O2 under liquid-phase O2 concentrations of up to 7 microM, above which point rapid inactivation of O2 utilization was observed. Km values for the mixed population of bacteria and protozoa were 0.36 +/- 0.17 and 3.2 +/- 0.4 microM at concentrations of less than 1.6 and greater than 1.6 microM, respectively. O2 affinity values obtained for both the protozoal and bacterial populations were similar. O2 affinities of the isolated entodiniomorphid ciliates Polyplastron multivesiculatum and Eudiplodinium maggii showed O2 inhibition thresholds of 10 and 5, respectively, and apparent half-saturation constants (Km values) of 1.7 and 5.2 microM O2, respectively. Corresponding Vmax values were 7.8 microM O2 per min per 10(5) organisms for P. multivesiculatum and 3.6 microM O2 per min per 10(5) organisms for E. maggii. Mass spectroscopic analysis detected average rates of H2 production of 12.0 and 3.7 microM H2 per min per 10(5) organisms for P. multivesiculatum and E. maggii, respectively. Trace levels of dissolved O2 (less than 0.25 microM) stimulated the H2 production rate of E. maggii eightfold but inhibited that of P. multivesiculatum by 18%.  相似文献   

12.
Predation by ciliate protozoa can account for 90% of the eubacterial protein turnover in the rumen. However, little is known about the factors affecting the lysis of archaea in rumen fluid. Bacterial lysis was followed from the release of acid-soluble 14C from 14C leucine-labelled bacteria. The rumen methanogen Methanobrevibacter MF1 was broken down more rapidly than other non-ruminal archaea in rumen fluid withdrawn from sheep harbouring either a mixed protozoal population or monofaunated with Polyplastron multivesiculatum or Entodinium spp. The removal of protozoa from the rumen fluid had little effect on the breakdown of Methanobrevibacter , while lysis of the non-methanogenic ruminal bacterium Selenomonas ruminantium decreased by over 70%. Substantial lysis of Methanobrevibacter occurred in cell-free rumen fluid and thzis effect could be abolished by autoclaving. In view of the high number of bacteriophages in rumen fluid and susceptibility of ruminal bacteria to phage-induced lysis it is tempting to suggest that phages have a role in the lysis of archaea in rumen fluid.  相似文献   

13.
The rate of peptide breakdown in the rumen frequently exceeds the rate at which the amino acids released can be used for microbial growth. The final step in this often wasteful process involves the cleavage of dipeptides. The main rumen bacterial species with high dipeptidase activity, Prevotella ruminicola, Fibrobacter succinogenes, Lachnospira multipara and Megasphaera elsdenii , had activities which were inhibited >95% by 1,10-phenanthroline, a chelator of divalent metal ions and metalloprotease inhibitor. Dipeptidase activity in digesta taken from the rumen of sheep decreased by 33% in the presence of 1,10-phenanthroline, while mixed bacteria from the same samples were inhibited by 80% and the activity of mixed protozoa decreased by only 15%. Thus a substantial amount of dipeptide breakdown appears to be due to ciliate protozoa in the mixed population. Extensive washing of the protozoa increased the sensitivity of protozoal dipeptidase activity to 1,10-phenanthroline, suggesting that protozoa too have a metallo-dipeptidase activity but that it is normally protected from inhibition by 1,10-phenanthroline. Breakdown of the pentapeptide, Ala5, was also inhibited 27% by 1,10-phenanthroline in the mixed population, and when Trypticase, a pancreatic casein hydrolysate containing a mixture of oligopeptides, dipeptides and amino acids, was incubated with rumen fluid, the production of ammonia and free amino groups was inhibited 71% by 1,10-phenanthroline. It was concluded that metal ion chelation inhibits oligopeptidase and dipeptidase activities of rumen micro-organisms and may be a means of controlling ammonia production from peptides in the rumen.  相似文献   

14.
The establishment of ciliate protozoa in the rumen was studied in conventional lambs reared under different conditions of management. The role of the microflora in the kinetics of this establishment was also investigated in conventionalized lambs. In lambs reared under farm conditions ciliate protozoa appeared in the following order: Entodinium (15-20 days), Polyplastron, Eudiplodinium, and Epidinium (20-25 days), and Isotricha (50 days). Entodinium was the most abundant (10(5)-10(6) ciliates mL-1). During the 3rd month, ciliates disappeared spontaneously in about 60% of the lambs during a period that varied from 1 to 4 weeks. In lambs fed only cow's milk Entodinium spp. and Polyplastron multivesiculatum became established at low levels. The results obtained with the conventionalized lambs demonstrate that the establishment of the ciliates in the rumen requires that the bacterial flora be well established beforehand.  相似文献   

15.
Rumen ciliate protozoa intensively engulf bacteria. However, their ability to utilize murein which is the main polysaccharide of bacterial cell wall has hardly been recognized. The present study concerns the ability of the rumen protozoa Diploplastron affine to digest and ferment murein. The ciliates were isolated from the rumen fluid and grown in vitro or inoculated into the rumen of defaunated sheep. The results of long-term cultivation of protozoa showed a positive correlation between their number and murein content in the culture medium. It was also found that bacteria-free D. affine ciliates incubated with or without murein produced volatile fatty acids at the rate of 12.3 and 8.7 pmol/h per protozoan, respectively, acetic, butyric and propionic acids being the three main acids released to the medium. Enzyme studies performed with the use of protozoan cell extract prepared from bacteria-free ciliates degraded murein at a rate of 25 U/mg protein per h; two mureinolytic enzymes were identified by zymographic technique in the examined preparation.  相似文献   

16.
Coleman GS  Hall FJ 《Tissue & cell》1969,1(4):607-618
A study in the electron microscope of thin sections of the rumen ciliate Entodinium caudatum was undertaken in an attempt to elucidate the mode of engulfment of particulate matter. This protozoon engulfed bacteria, polystyrene latex particles and olive oil into membrane-lined vesicles in the protozoal endoplasm. Particles of palladium black were also taken up into the endoplasm, but due to the toxic nature of this material it was not possible to demonstrate vesicle formation with certainty. The initial uptake of bacteria may be into large sacs containing many organisms which were subsequently taken into the endoplasm in vesicles that contained only one bacterium each. The evidence obtained in this investigation has been used to distinguish between two different mechanisms for the digestion of bacteria and utilization of the amino acids from the bacterial protein for the synthesis of protozoal protein.  相似文献   

17.
Metabolites arising from the catabolism of lysine by the mixed rumen bacteria were chromatographically examined by using radioactive lysine. After 6 hr incubation, 241 nmole/ ml of lysine was decomposed to give ether-soluble substances and CO2 by the bacteria and 90 nmole/ml of lysine was incorporated unchanged into the bacteria. δ-Aminovalerate, cadaverine or pipecolate did not seem to be produced from lysine even after incubation of the bacteria with addition of those three amino compounds to trap besides lysine and radioactive lysine. Most of the ether-soluble substances produced from radioactive lysine was volatile fatty acids (VFAs). Fractionation of VFAs revealed that the peaks of butyric and acetic acids coincided with the strong radioactive peaks. Small amounts of radioactivities were detected in propionic acid peak and a peak assumed to be caproic acid. The rumen bacteria appeared to decompose much larger amounts of lysine than the rumen ciliate protozoa did.  相似文献   

18.
Lysis of Viable Rumen Bacteria in Bovine Rumen Fluid   总被引:5,自引:4,他引:1       下载免费PDF全文
Streptococcus bovis and Butyrivibrio sp. were labeled with thymidine-methyl-(3)H, washed, and resuspended in rumen fluid or rumen fluid fractions obtained from Holstein and Jersey cows fed alfalfa hay once daily. Factors affecting the lytic activity found in untreated rumen fluid were examined. Day to day variation and differences before and after feeding were observed for the same cow. There were also differences between cows on the same day. For a given rumen fluid, the rate of release of label was roughly proportional to the number of labeled cells present over a 100-fold range in concentration. Removal of protozoa largely abolished the lytic action of fresh rumen fluid for S. bovis, but some soluble lytic activity remained. Mixed rumen protozoa added to media containing labeled S. bovis caused label to appear in solution. In a sample of rumen fluid containing 4.3 x 10(4) protozoa/ml 5.2% of the S. bovis population were destroyed by protozoa per hr. The mean rate of destruction for 12 runs on whole rumen fluid was 8.7% per hr with a standard deviation of 6.05. Parallel experiments with Butyrivibrio indicated that soluble lytic factors were more important for this organism. They could be destroyed by autoclaving and were generated when viable rumen bacteria were resuspended in autoclaved rumen fluid. The lysis of S. bovis and Butyrivibrio, at equal cell densities, by mixed rumen protozoa was compared in 30% rumen fluid media, and Butyrivibrio appeared to be more readily lysed than S. bovis.  相似文献   

19.
Mixed rumen microorganisms (MRM) or suspensions of rumen Holotrich protozoa obtained from a sheep were incubated anaerobically with [1-(14)C]linoleic acid, [U-(14)C]glucose, or [1-(14)C]acetate. With MRM, the total amount of fatty acids present did not change after incubation. An increase in fatty acids esterified into sterolesters (SE) and polar lipids at the expense of free fatty acids was observed. This effect was intensified by the addition of fermentable carbohydrate to the incubations. Radioactivity from [1-(14)C]linoleic acid was incorporated into SE and polar lipids with both MRM and Holotrich protozoa. With MRM the order of incorporation of radioactivity was as follows: SE > phosphatidylethanolamine > phosphatidylcholine. With Holotrich protozoa, the order of incorporation was phosphatidylcholine > phosphatidylethanolamine > SE. With MRM the radioactivity remaining in the free fatty acids and that incorporated into SE was mainly associated with saturated fatty acids, but a considerable part of the radioactivity in the polar lipids was associated with dienoic fatty acids. This effect of hydrogenation prior to incorporation was also noted with Holotrich protozoa but to a much lesser extent. Small amounts of radioactivity from [U-(14)C]glucose and [1-(14)C]acetate were incorporated into rumen microbial lipids. With protozoa incubated with [U-(14)C]glucose, the major part of incorporated radioactivity was present in the glycerol moiety of the lipids. From the amounts of lipid classes present, their radioactivity, and fatty acid composition, estimates were made of the amounts of higher fatty acids directly incorporated into microbial lipids and the amounts synthesized de novo from glucose or acetate. It is concluded that the amounts directly incorporated may be greater than the amounts synthesized de novo.  相似文献   

20.
Attempts were made to develop an artificial medium suitable for axenic culture of Entodinium caudatum. Agnotobiotic cultures of the protozoon were established as stock cultures for testing the suitability of various growth media. A cell-free extract of mixed bacteria isolated from the rumen was shown to contain one or more growth factors for the protozoon when supplied with activated charcoal as a carrier. The medium (CYSE medium), which supported the growth of the protozoon in the presence of 50 μg/ml each of penicillin and chloramphenicol, consisted of activated charcoal (20 mg), heat-treated yeast (Y) (80 mg), 13%β-sitosterol-coated rice starch (S) (120 mg), and cell-free extract of rumen bacteria (1 ml) in 40 ml buffer solution. When culturing the protozoon, the CYSE medium was supplemented daily with 20 mg each of Y and S and half of the medium was replaced with fresh medium once every 5 d. The possible use of this method to establish an axenic culture of E. caudatum is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号