首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G Shinder  W Parris    M Gold 《Nucleic acids research》1988,16(7):2765-2785
Terminase Host Factor (THF), an E. coli protein capable of fulfilling the host factor requirement for in vitro bacteriophage lambda terminase activity, displays properties characteristic of the prokaryotic type II DNA-binding or "histone-like" proteins. It is a 22 K basic, heat- and acid-stable protein which binds non-specifically to various DNAs. Conditions can be established, however, where THF binds preferentially to the cohesive end site (cos) of lambda DNA forming several distinct complexes as visualized by band retardation in polyacrylamide gels. DNase I footprinting reveals that THF can protect several regions of the top strand on the right side (+) of cos but does not bind as well to the left side (-). The binding regions are separated either by unprotected or by DNase I- hypersensitive bases. Under the conditions used in these experiments, DNA which does not contain cos lambda sequences does not show this pattern of protection. Several repeated motifs in the cos lambda nucleotide sequence may represent a consensus sequence for THF interaction. THF may be similar to other "histone-like" proteins which display both non-specific and selective DNA-binding capacities.  相似文献   

2.
gamma delta, a prokaryotic transposon, encodes a transposase that is essential for its transposition. We show here, by DNase I protection experiments, that purified gamma delta transposase binds at the transposon's inverted repeats (IRs). Immediately adjacent to each transposase binding site (and within gamma delta DNA) we have identified a binding site for an additional protein factor, the Escherichia coli-encoded integration host factor (IHF). The binding of transposase and IHF to these adjacent sites is mutually cooperative. An IHF binding-site was also found in the original target DNA, just outside one of the ends of gamma delta. The affinity of IHF for this flanking site is reduced by transposase. These results demonstrate that gamma delta transposase binds at the IRs of gamma delta, and suggest that IHF may be involved in forming a transposase-DNA complex and/or influencing the target site selection during the transposition of gamma delta.  相似文献   

3.
Integration host factor (IHF) is a small, basic protein that is needed for efficient recombination of bacteriophage lambda, as well as for other host and viral functions. We have constructed strains in which the two subunits of IHF, encoded by the himA and hip genes of Escherichia coli, are expressed under the control of the lambda rho L promoter. Separate overexpression of himA and hip led to the production of unstable and insoluble peptides, respectively. In contrast, the overexpression of both genes conjointly led to the accumulation of large amounts of active IHF. Extracts of such cells provided the starting material for a rapid purification procedure that results in milligram quantities of apparently homogeneous IHF.  相似文献   

4.
The Escherichia coli integration host factor (IHF) protein is required for site-specific recombination of bacteriophage lambda DNA. Previously, we had shown that alternative modules of static DNA curvature could partially replace IHF in recombination. Now we use regions of single-stranded DNA as a flexible tether to address whether the function of IHF in recombination is simply to reduce persistence length. Although we find that these modules clearly enhance recombination in the absence of IHF, they are not perfect replacements. In addition, evidence is presented that the efficacy of a flexibility swap is specific to a particular IHF site. This may indicate that additional functions beyond simple deformation of DNA are required of IHF. During the course of these experiments we discovered that these flexible sequences are still specific sites for IHF binding and function.  相似文献   

5.
6.
The aryl hydrocarbon receptor nuclear transporter (ARNT) is a basic helix-loop-helix (bHLH) protein that contains a Per-Arnt-Sim (PAS) domain. ARNT heterodimerizes in vivo with other bHLH PAS proteins to regulate a number of cellular activities, but a physiological role for ARNT homodimers has not yet been established. Moreover, no rigorous studies have been done to characterize the biochemical properties of the bHLH domain of ARNT that would address this issue. To begin this characterization, we chemically synthesized a 56-residue peptide encompassing the bHLH domain of ARNT (residues 90-145). In the absence of DNA, the ARNT-bHLH peptide can form homodimers in lower ionic strength, as evidenced by dynamic light scattering analysis, and can bind E-box DNA (CACGTG) with high specificity and affinity, as determined by fluorescence anisotropy. Dimers and tetramers of ARNT-bHLH are observed bound to DNA in equilibrium sedimentation and dynamic light scattering experiments. The homodimeric peptide also undergoes a coil-to-helix transition upon E-box DNA binding. Peptide oligomerization and DNA affinity are strongly influenced by ionic strength. These biochemical and biophysical studies on the ARNT-bHLH reveal its inherent ability to form homodimers at concentrations supporting a physiological function and underscore the significant biochemical differences among the bHLH superfamily.  相似文献   

7.
8.
It was shown that synthetic peptides with amphiphilic beta-sheet structure can bind to and stabilize double and triple stranded DNA. CD spectra indicated that beta-sheet conformation of peptides were emphasized in the presence or absence of DNA and that no significant change of DNA conformation occurred. UV melting study at pH 7.0 revealed that interaction of peptides with DNA and its hybrids are sensitive and specific depending the host structure.  相似文献   

9.
The specific binding of HeLa cell factors to DNA sequences at the Epstein-Barr virus (EBV) latent origin of DNA replication was detected by gel shift experiments and DNase I footprinting analysis. These cellular proteins protected at least five discrete regions of the DNA replication origin. The viral protein required for EBV plasmid replication, EBV nuclear antigen 1 (EBNA-1), binds to specific sequences within the origin region. The HeLa cell proteins competed with EBNA-1 for binding to EBV origin DNA in vitro, leading to the possibility that these cellular proteins regulate EBV DNA replication by displacing EBNA-1 at the origin sites.  相似文献   

10.
Binding sites for the Escherichia coli protein integration host factor (IHF) include a set of conserved bases that can be summarized by the consensus sequence WATCAANNNNTTR (W is dA or dT, R is dA or dG, and N is any nucleotide). However, additional 5'-proximal bases, whose common feature is a high dA+dT content, are also thought to be required for binding at some sites. We examine the relative contribution of these two sequence elements to IHF binding to the H' and H1 sites in attP of bacteriophage lambda by using the bacteriophage P22-based challenge-phage system. IHF was unable to act as a repressor in the challenge-phage assay at H' sites containing the core consensus element but lacking the dA+dT-rich element. This indicates that both elements are required for IHF to bind to the H' site. In contrast, the core consensus determinant alone is sufficient for IHF binding to the H1 site, which lacks an upstream dA+dT-rich region. Fifty mutants that decreased or eliminated IHF binding to the H1 site were isolated. Sequence analysis showed changes in the bases in the core consensus element only, further indicating that this determinant is sufficient for IHF binding to the H1 site. We found that placement of a dA+dT-rich element upstream of the H1 core consensus element significantly increased the affinity, suggesting that the presence of a dA+dT-rich element enhances IHF binding.  相似文献   

11.
12.
The interaction of E. coli's integration Host Factor (IHF) with fragments of lambda DNA containing the cos site has been studied by gel-mobility retardation and electron microscopy. The cos fragment used in the mobility assays is 398 bp and spans a region from 48,298 to 194 on the lambda chromosome. Several different complexes of IHF with this fragment can be distinguished by their differential mobility on polyacrylamide gels. Relative band intensities indicate that the formation of a complex between IHF and this DNA fragment has an equilibrium binding constant of the same magnitude as DNA fragments containing lambda's attP site. Gel-mobility retardation and electron microscopy have been employed to show that IHF sharply bends DNA near cos and to map the bending site. The protein-induced bend is near an intrinsic bend due to DNA sequence. The position of the bend suggests that IHF's role in lambda DNA packaging may be the enhancement of terminase binding/cos cutting by manipulating DNA structure.  相似文献   

13.
A series of monoclonal antibodies (mAbs) that react with phosphatidylcholine (PC) were established. All mAbs were highly specific to PC and no cross-reaction with other phospholipids were observed. The results obtained with two typical monoclonal antibodies, JE-1 and JE-8, were described. The analysis using synthetic PC analogs with modified polar head groups showed that the methyl groups on the quaternary nitrogen of the choline moiety were important for the binding. Each mAbs showed distinct acyl chain specificities of the PC molecules, and JE-1 showed considerable reactivity with PC with saturated fatty acids, whereas JE-8 could not react with the PC. Both mAbs bound to PC with unsaturated fatty acids, but showed distinct reactivity profiles. Both mAbs reacted only weakly with water-soluble haptens such as phosphorylcholine and L-alpha-glycerophosphocholine, suggesting that the hydrophobic moiety of the PC molecule is important for the maximum affinity. The interaction between the mAbs and the hydrophobic moieties of PC molecules was further studied by analyzing the effect of the mAbs on the activities of phospholipase A2 and phospholipase C. JE-1 inhibited both enzyme activities, while JE-8 inhibited only the phospholipase C activity, indicating that JE-1 interacts more thoroughly with the hydrophobic region of the PC molecule than JE-8 does.  相似文献   

14.
15.
Integration host factor (IHF) is a DNA-binding and -bending protein that has been found in a number of gram-negative bacteria. Here we describe the cloning, sequencing, and functional analysis of the genes coding for the two subunits of IHF from Pseudomonas putida. Both the ihfA and ihfB genes of P. putida code for 100-amino-acid-residue polypeptides that are 1 and 6 residues longer than the Escherichia coli IHF subunits, respectively. The P. putida ihfA and ihfB genes can effectively complement E. coli ihf mutants, suggesting that the P. putida IHF subunits can form functional heterodimers with the IHF subunits of E. coli. Analysis of the amino acid differences between the E. coli and P. putida protein sequences suggests that in the evolution of IHF, amino acid changes were mainly restricted to the N-terminal domains and to the extreme C termini. These changes do not interfere with dimer formation or with DNA recognition. We constructed a P. putida mutant strain carrying an ihfA gene knockout and demonstrated that IHF is essential for the expression of the P(U) promoter of the xyl operon of the upper pathway of toluene degradation. It was further shown that the ihfA P. putida mutant strain carrying the TOL plasmid was defective in the degradation of the aromatic model compound benzyl alcohol, proving the unique role of IHF in xyl operon promoter regulation.  相似文献   

16.
The receptors for thyroid hormone (T3R) and retinoic acid (RAR) are members of a nuclear receptor subfamily that are capable of recognizing similar DNA sequences. Native response elements for T3R and RAR consist of two or more putative half-site binding motifs organized as imperfect direct or inverted repeats separated by different sized nucleotide gaps. To clarify how T3R, RAR, and related factors recognize DNA response elements, we analyzed the interaction of purified receptors with a series of inverted and direct repeats of an idealized AGGTCA half-site separated by different sized nucleotide gaps. Our results indicate that RAR and T3R can bind to half-sites as monomers and, depending on the orientation and distance between half-sites, also bind as homodimers or T3R-RAR heterodimers. T3R also binds to certain DNA elements as a heterodimer with one or more nuclear factors from eucaryotic cells. Thus, the orientation and spacing of half-sites play a central role in determining which configuration of receptors and nuclear factors will interact with a specific DNA element. This along with the ability of these factors to participate in reversible protein-protein interactions serve to broaden and diversify the responses mediated by T3R, RAR, and related members of this nuclear receptor subfamily.  相似文献   

17.
Maltooligosaccharides with two to six (alpha 1-4)-linked glucose residues, carrying at their reducing end a 3-azi-1-methoxybutyl group in either alpha or in beta glycosidic linkage, were synthesized. These maltooligosaccharide analogues inhibit maltose uptake via the maltose-binding-protein-dependent transport system in Escherichia coli. The concentration of half-maximal inhibition of maltose transport, at 15 nM concentration, decreases with increasing chain length of the analogue, levelling off at 40 microM after a chain length of four glucose residues in the alpha series and at 350 microM after a chain length of three glucose residues in the beta series. The inhibition of maltose transport occurs at the level of the periplasmic maltose-binding protein. 3-Azi-1-methoxybutyl alpha-D-[3H]maltotrioside was bound by the maltose-binding protein with a Kd of 0.18 mM. Irradiation at 350 nm of purified maltose-binding protein in the presence of 4 microM of this substrate labeled the protein covalently; labeling was prevented by 1 mM maltose. Using a crude preparation of periplasmic proteins two proteins were labeled, the maltose-binding protein and alpha-amylase. Thus, 3-azi-1-methoxybutyl alpha-D-maltooligosaccharides are potent photoaffinity labels for proteins with maltooligosaccharides-binding sites.  相似文献   

18.
Site-specific DNA binding of architectural protein integration host factor (IHF) is involved in formation of functional multiprotein-DNA assemblies in Escherichia coli, while non-specific binding of IHF and other histone-like proteins serves to structure the nucleoid. Here, we report an isothermal titration calorimetry study of the thermodynamics of binding IHF to a 34 bp fragment composed entirely of the specific H' site from lambda-phage DNA. At low to moderate [K(+)] (60-100 mM), strong competition is observed between specific and non-specific binding as a result of a low specificity ratio (approximately 10(2)) and a very small non-specific site size. In this [K(+)] range, both specific and non-specific binding are enthalpy-driven, with large negative enthalpy, entropy and heat capacity changes and binding constants that are insensitive to [K(+)]. Above 100 mM K(+), only specific binding is observed, and both the binding constant and the magnitudes of enthalpy, entropy and heat capacity changes all decrease strongly with increasing [K(+)]. When interpreted in the context of the structure of the specific complex, the thermodynamics provide compelling evidence for a previously unrecognized design principle by which proteins that form extensive binding interfaces with nucleic acids control binding constants, binding site sizes and effects of temperature and ion concentrations on stability and specificity. We propose that up to 22 of the 23 IHF cationic side-chains that are located within 6 A of DNA phosphate oxygen atoms in the complex, are masked in the absence of DNA by pairing with anionic carboxylate groups in intramolecular salt-bridges (dehydrated ion-pairs). These salt-bridges increase in stability with increasing temperature and decreasing [K(+)]. To explain the unusual thermodynamics of IHF-DNA interactions, we propose that both specific and non-specific binding at low [K(+)] require disruption of salt-bridges (as many as 18 for specific binding) whereupon many of the unmasked charged groups hydrate and the cationic groups interact with DNA. From structural or thermodynamic parallels with IHF, we propose that large-scale coupling of disruption of protein salt-bridges to DNA binding is significant for other large-interface DNA wrapping proteins including the nucleosome, lac repressor core tetramer, RNA polymerase core protein, HU and SSB.  相似文献   

19.
Inhibitors of the peptidase and esterase activities of carboxypeptidases A and B have been isolated from extracts of Ascaris lumbricoides var suis. These proteins were obtained by treatment of the aqueous extracts at low pH, precipitation with ammonium sulfate, molecular sieving on Bio-Gel P-4, and chromatography on DEAE-cellulose. The inhibitors were resolved into three homogeneous peaks on CM-cellulose. These components, CM-A, CM-B, and CM-C, have constant specific activity and were recovered in a 41% yield. They moved as single bands when subjected to electrophoresis at high or low pH on polyacrylamide gels and they have similar amino acid compositions. Methionine, tyrosine, and cysteine are absent from each of the inhibitors. The 65 residues of CM-B suggest a minimum molecular weight of 7530, in close agreement to the value of 7600 +/- 200 determined on a Bio-Gel P-100 column. Each of the proteins has the same NH2-terminal residues, NH2-Asx-Glx-Val-Glx- and the same COOH-terminal residue, leucine. A plot of per cent acrylamide versus log relative mobility suggests that the three proteins are charge isomers. CM-B appears to be stable to high NaCl concentrations, extremes of pH, high temperatures, and digestion by intestinal proteases. Carboxypeptidase C, carboxypeptidase N, and yeast protease C are not inhibited by CM-B. However, the exopeptidase and esterase activities of human carboxypeptidase A are inhibited. The inhibitors appear to bind to bovine carboxypeptidase A with an atypical stoichiometry. Two moles of CM-B inhibitor bind to 1 mol of enzyme. The evidence is: (a) a demonstrated purity of bovine carboxypeptidase A, (b) minimal and maximal inhibitor molecular weights by different methods, of 7600 and 8300, and (c) a maximum specific activity of apparently homogeneous inhibitors which is 50% of that predicted for unit stoichiometry.  相似文献   

20.
Summary. The DNA-binding properties of cystamine compared with natural occurring polyamines have been studied in vitro by means of ethidium bromide displacement assays, studies of DNA thermal stability and analyses of DNA-B/DNA-A transition. While the first two methods did not put in evidence any peculiar property in the binding capability of cystamine, CD studies showed the interesting ability of cystamine to shift the equilibrium B/A-DNA towards the B-form. In the same experimental conditions spermine and spermidine induced the A form of DNA, instead putrescine and cadaverine did not show any particular activity. The ability of cystamine to bind DNA, as shown also by its DNA radioprotective capability, might be important in chromatin condensation and stabilization, and might be a cause of the antiviral activity observed by some authors. Received March 3, 2000 Accepted July 23, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号