首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
 Nineteen sequence-tagged site (STS) primer pairs were designed on coding and non-coding regions in nine published Stylosanthes genes, which were mostly derived from cDNA. Direct sequencing of PCR products derived from genomic DNA allowed us to identify introns and to design specific primers flanking these introns. The use of 24 STS primer pairs for the detection of intra- and inter-specific variation in Stylosanthes based on size differences was tested on a core set of Stylosanthes species. Based on these results, 20 STS markers were selected to determine genetic relationships among 63 genotypes representing 24 Stylosanthes species. A total of 148 alleles were amplified and analyzed, resulting in a genetic similarity value ranging from 0.62 to 0.98 among the species. Based on cluster analysis, three main groups and three subgroups were determined, and most of the species were classified unambiguously. Alloploid species were recognized by the occurrence of more than one allele per STS marker, indicating fixed heterozygosity. Sixteen STS markers were useful for the identification of genotypes within a species. Inter-species relationships, as revealed by STS, were in general agreement with previous morphological and molecular relationship studies. These STS markers are useful as an additional tool for the identification of species, subspecies and genotypes in Stylosanthes, with a view to plant conservation and breeding. Received: 2 June 1998 / Accepted: 28 October 1998  相似文献   

2.
Stylosanthes sp. aff.S. scabra is an undescribed taxon showing affinities with the allotetraploid speciesS. scabra, but distinct in a number of attibutes. Several collections show potential as forage for clay soils in northern Australia. Twelve accessions have been analysed using STS (sequence-tagged-sites) as genetic markers, and they all displayed STS phenotypes of typical diploid species. Taking into account their morphological similarities, the STS analysis provides strong evidence thatStylosanthes sp. aff.S. scabra might be a diploid progenitor of the allotetraploidS. scabra. This speculation was supported by cytological examinations. Somatic chromosome numbers of two of these accessions were counted and both were found to be diploid (2n = 20). The level of polymorphism among the 12Stylosanthes sp. aff.S. scabra accessions, estimated using randomly amplified polymorphic DNA (RAPD) as markers, was 7.8%, and the dissimilarity value betweenStylosanthes sp. aff.S. scabra andS. viscosa (the other putative progenitor ofS. scabra) was 89%.  相似文献   

3.
Summary Random amplified polymorphic DNA (RAPD) markers were generated from 20 cultivars and accessions representing four agronomically important species of Stylosanthes, S. scabra, S. hamata, S. guianensis, and S. humilis. Approximately 200 fragments generated by 22 primers of arbitrary sequence were used to assess the level of DNA variation. Relatively low levels of polymorphism (0–16% of total bands in pairwise comparisons) were found within each species, while polymorphisms between the species were much higher (up to 46%). Very few polymorphisms (0–2%) were detected between the individuals of the same cultivar or accession. A phenogram of relationships among the species was constructed based on band sharing. Four main clusters corresponding to each species were readily distinguished on this phenogram. The allotetraploid species S. hamata and its putative diploid progenitor, S. humilis, were more similar to each other than to S. scabra and S. guianensis. No variation in RAPD markers was found between the two commercial S. hamata cvs Verano and Amiga. Cultivar Oxley in S. guianensis was considerably different from the other cultivars and accessions of this species. The phylogenetic distinctions obtained with RAPDs were in agreement with other studies from morphology, cytology, and enzyme electrophoresis. The low level of polymorphisms observed within each species suggested that interspecific crosses may be a better vehicle for the construction of RAPD linkage maps in Stylosanthes.  相似文献   

4.
Retrotransposons play an important role in plant genetic instability and genome evolution. Retrotransposon-based molecular markers are valuable tools to reveal the behavior of retrotransposons in their host genome. In this study, suppression polymerase chain reaction was used, for the first time, to develop retrotransposon long terminal repeat (LTR) and polypurine tract (PPT) primers in Japanese persimmon (Diospyros kaki Thunb.), which were then employed for germplasm identification by means of interretrotransposon-amplified polymorphism (IRAP), sequence-specific amplified polymorphism (SSAP) and retrotransposon-microsatellite-amplified polymorphism (REMAP) molecular markers. The results showed that 16 out of 26 primers produced expected amplifications and abundant polymorphisms by IRAP in 28 genotypes of Diospyros. Moreover, some of these primers were further successfully used in REMAP and SSAP analysis. Each type of molecular markers produced unique fingerprint in 28 genotypes analyzed. Among the primers/primer combinations, two IRAP primers and four SSAP primer combinations could discriminate all of the germplasm solely. Further comparative analysis indicated that IRAP was the most sensitive marker system for detecting variability. High level of retrotransposon insertion polymorphisms between bud sports were detected by IRAP and SSAP, and the primers/primer combinations with powerful discrimination capacity for two pairs of bud sports lines were further obtained. Additionally, possible genetic relationships between several Japanese persimmon were discussed. To our knowledge, this is the first report on the development of retrotransposon LTR and PPT primers in Diospyros, and the retrotransposon primers developed herein might open new avenue for research in the future.  相似文献   

5.
Caribbean stylo (Stylosanthes hamata) is a tropical fodder and cover crop. Along with four other Stylosanthes species (S. scabra, S. humilis, S. viscosa, S. guianensis), it was introduced in India. It became well adapted in certain parts of the country and has been recommended for the improvement of range and degraded lands. A collection of 63 S. hamata accessions was fingerprinted with RAPID, ISSR and STS markers. Though the mean discriminating power of these marker systems ranges from 0.65 to 0.71, high values of marker index (2.91), resolving power (14.92) and effective number of patterns per assay unit (50.65) makes ISSR as a better marker system in comparison to other two markers used in this study. Thirteen RAPD and eleven STS primers could differentiate a maximum of 42 and 17 accessions, respectively, whereas two ISSR primers produced distinct fingerprints of all the S. hamata accessions. Mean genetic similarities of accession ranged from 0.83 (ISSR) to 0.91 (RAPD). Two RAPD, two STS and four ISSR primers generated a set of 12 diagnostic markers which could be useful for germplasm characterization and management.  相似文献   

6.
Stylosanthes seabrana (Maass and ‘t Mannetje) (2n = 2x = 20), commonly known as Caatinga stylo, is an important tropical perennial forage legume. In nature, it largely co-exist with S. scabra, an allotetraploid (2n = 4x = 40) species, sharing a very high similarity for morphological traits like growth habit, perenniality, fruit shape and presence of small appendage at the base of the pod or loment. This makes the two species difficult to distinguish morphologically, leading to chances of contamination in respective germplasm collections. In present study, 10 S. seabrana accessions were discovered from the existing global germplasm stock of S. scabra represented by 48 diverse collections, utilizing sequence-tagged-sites (STS) genome-specific markers. All the newly identified S. seabrana accessions displayed STS phenotypes of typical diploid species. Earlier reports have conclusively indicated S. seabrana and S. viscosa as two diploid progenitors of allotetraploid S. scabra. With primer pairs SHST3F3/R3, all putative S. seabrana yielded single band of ~550 bp and S. viscosa of ~870 bp whereas both of these bands were observed in allotetraploid S. scabra. Since SHST3F3/R3 primer pairs are known to amplify single or no band with diploid and two bands with tetraploid species, the amplification patterns corroborated that all newly identified S. seabrana lines were diploid in nature. Flow cytometric measurement of DNA content of the species, along with distinguishing morphological traits such as flowering time and seedling vigour, which significantly differ from S. scabra, confirmed all identified lines as S. seabrana. These newly identified lines exhibited high level of similarity among themselves as revealed by RAPD and STS markers (>92% and 80% respectively). Along with the enrichment in genetic resources of Stylosanthes, these newly identified and characterized accessions of S. seabrana can be better exploited in breeding programs targeted to quality.  相似文献   

7.
Organelle inheritance is strictly maternal for most plant species. This property makes organelle DNAs ideal material for identifying the maternal parents of polyploid species. A chloroplast DNA (cpDNA) clone from Stylosanthes was identified. Together with rice cpDNA clones, it was used in identifying putative maternal donors for polyploid Stylosanthes species. Of 15 taxa for which 2 or more accessions each were analysed, intra-taxon cpDNA variation was only identified within the diploid species S. viscosa. Of the nine basal diploid genomes identified, results from the cpDNA probes strongly suggested that Genome A1 is the maternal donor to S. aff. hamata, S. scabra, S. aff. scabra, S. sericeiceps and S. tuberculata and that it may also be the maternal donor to the hexaploid S. erecta; Genome C is the maternal donor to S. sp. A, S. mexicana, S. subsericea and S. sundaica; Genome E is the maternal donor to S. capitata. The maternal donor to S. fruticosa is likely to be Genome B3, and that to S. ingrata is likely to be Genome A1. The maternal donor to S. sympodialis, although similar to those of S. sp. genotypes, may not be included amongst the diploid taxa analysed in this study. The fact that none of the polyploid genotypes produced cpDNA fragments from more than one of their respective progenitors indicated that cpDNA in Stylosanthes is strictly maternally inherited. Received: 17 September 1999 / Accepted: 20 April 2000  相似文献   

8.
Gossypium species represent a vast resource of genetic multiplicity for the improvement of cultivated cotton. To determine genetic diversity and relationships within a diverse collection of Gossypium, we employed 120 SSR primers on 20 diploid species representing seven basic genome groups of the genus Gossypium, five AD allotetraploid cotton accessions while T. populnea served as an outgroup species. Out of 120 SSR primers, 49 pairs are polymorphic, which produced a total of 99 distinct alleles with an average of 2.0 alleles per primer pair. A total of 1139 major SSR bands were observed. Genetic similarities among all the diploid species ranged from 0.582 (between G. herbaceum and G. trilobum) up to 0.969 (between G. arboreum and G. herbaceum). Phylogenetic trees based on genetic similarities were consistent with known taxonomic relationships. The results also indicated that G. raimondii is the closest living relative of the ancestral D-genome donor of tetraploid species and the A-genome donor is much similar to the present-day G. herbaceum and G. arboreum. Ancient tetraploid cotton species were formed by hybridizing and chromosome doubling between them, then different tetraploid cotton species appeared by further geographical and genetic isolation and separating differentiation. The results showed that SSRs could be an ideal means for the identification of the genetic diversity and relationship of cotton resources at the genomic level.  相似文献   

9.
Microsatellite markers are a powerful tool for genetic studies, including germplasm conservation, cultivar identification, and integration of linkage maps. Several works have shown that primer pairs designed for one species can be used in related species to facilitate wider application because it reduces the costs for primer development. The objective of this study was to evaluate the transferability of microsatellite primers which was previously developed from the genomic library of Pêra sweet orange (Citrus sinensis L. Osbeck) and to determine the level of heterozygosity between citrus accessions and related genera. Twenty-four microsatellite loci were evaluated on 12 genotypes of Citrus, Poncirus, and an intergeneric hybrid. All analyzed markers were transferable across all genotypes. Seventeen loci were polymorphic, and the number of alleles per loci ranged from one to six. The lowest level of heterozygosity was observed for Poncirus trifoliata (L.) Raf. cultivars while the highest level was for Swingle citrumelo. In general, microsatellite markers showed wide genetic variation and demonstrated that they can be useful in citrus breeding programs.  相似文献   

10.
A recent approach to detecting genetic polymorphism involves the amplification of genomic DNA using single primers of arbitrary sequence. When separated electrophoretically in agarose gels, the amplification products give banding patterns that can be scored for genetic variation. The objective of this research was to apply these techniques to cultivated peanut (Arachis hypogaea L.) and related wild species to determine whether such an approach would be feasible for the construction of a genetic linkage map in peanut or for systematic studies of the genus. Two peanut cultivars, 25 unadapted germplasm lines of A. hypogaea, the wild allotetraploid progenitor of cultivated peanut (A. monticola), A. glabrata (a tetraploid species from section Rhizomatosae), and 29 diploid wild species of Arachis were evaluated for variability using primers of arbitrary sequence to amplify segments of genomic DNA. No variation in banding pattern was observed among the cultivars and germplasm lines of A. hypogaea, whereas the wild Arachis species were uniquely identified with most primers tested. Bands were scored (+/–) in the wild species and the PAUP computer program for phylogenetic analysis and the HyperRFLP program for genetic distance analysis were used to generate dendrograms showing genetic relationships among the diploid Arachis species evaluated. The two analyses produced nearly identical dendrograms of species relationships. In addition, approximately 100 F2 progeny from each of two interspecific crosses were evaluated for segregation of banding patterns. Although normal segregation was observed among the F2 progeny from both crosses, banding patterns were quite complex and undesirable for use in genetic mapping. The dominant behavior of the markers prevented the differentiation of heterozygotes from homozygotes with certainty, limiting the usefulness of arbitrary primer amplification products as markers in the construction of a genetic linkage map in peanut.  相似文献   

11.
Simple sequence repeats (SSRs), also known as microsatellites, are highly variable DNA sequences that can be used as markers for the genetic analysis of plants. Three approaches were followed for the development of PCR primers for the amplification of DNA fragments containing SSRs from sorghum [Sorghum bicolor (L.) Moench]: a search for sorghum SSRs in public DNA databases; the use of SSR-specific primers developed in the Poaceae species maize (Zea mays L.) and seashore paspalum grass (Paspalum vaginatum Swartz); and the screening of sorghum genomic libraries by hybridization with SSR oligonucleotides. A total of 49 sorghum SSR-specific PCR primer pairs (two designed from GenBank SSR-containing sequences and 47 from the sequences of genomic clones) were screened on a panel of 17 sorghum and one maize accession. Ten primer pairs from paspalum and 90 from maize were also screened for polymorphism in sorghum. Length polymorphisms among amplification products were detected with 15 of these primer pairs, yielding diversity values ranging from 0.2 to 0.8 with an average diversity of 0.56. These primer pairs are now available for use as markers in crop improvement and conservation efforts.  相似文献   

12.
The Dreb genes are involved in abiotic stress tolerances, such as drought, salinity, low temperature and ABA. The purpose of the present research was to establish protocols for the development of genome-specific and allele specific markers in common wheat (Triticum aestivum L.) using the Dreb1 genes as an example. Based on the available sequences of Dreb1 genes in common wheat and related species, five primer pairs were designed using Primer Premier 5.0. Two primers, P25F/PR and P21F/P21R, amplified 596- and 1113-bp fragments, respectively, from the A genome, P18F/P18R amplified a 717-bp fragment from the B genome, and primers P22F/PR and P20F/P20R amplified 596- and 1193-bp fragments, respectively, from the D genome. Using these genome-specific primers and the Chinese Spring using nulli-tetrasomic lines, the Dreb1 genes were located on chromosomes 3A, 3B and 3D. Two SNPs (S646 and S770) in Dreb-B1 distinguished the Opata 85 and W7984 parents of the ITMI mapping population, but there was no polymorphism between the orthologous Dreb-A1 and Dreb-D1 sequences. By assaying the genotypes of 115 RILs with the allele-specific primer P40 based on SNP S770, Dreb-B1 was mapped between markers Xmwg818 and Xfbb117 on chromosome 3BL. This genetic mapping of Dreb-B1 on chromosome 3B may be helpful in wheat breeding programs aimed at improving drought tolerance.  相似文献   

13.
A set of 20 wheat microsatellite markers was used with 55 elite wheat genotypes to examine their utility (1) in detecting DNA polymorphism, (2)in the identifying genotypes and (3) in estimating genetic diversity among wheat genotypes. The 55 elite genotypes of wheat used in this study originated in 29 countries representing six continents. A total of 155 alleles were detected at 21 loci using the above microsatellite primer pairs (only 1 primer amplified 2 loci; all other primers amplified 1 locus each). Of the 20 primers amplifying 21 loci, 17 primers and their corresponding 18 loci were assigned to 13 different chromosomes (6 chromosomes of the A genome, 5 chromosomes of the B genome and 2 chromosomes of the D genome). The number of alleles per locus ranged from 1 to 13, with an average of 7.4 alleles per locus. The values of average polymorphic information content (PIC) and the marker index (MI) for these markers were estimated to be 0.71 and 0.70, respectively. The (GT)n microsatellites were found to be the most polymorphic. The genetic similarity (GS) coefficient for all possible 1485 pairs of genotypes ranged from 0.05 to 0.88 with an average of 0.23. The dendrogram, prepared on the basis of similarity matrix using the UPGMA algorithm, delineated the above genotypes into two major clusters (I and II), each with two subclusters (Ia, Ib and IIa, IIb). One of these subclusters (Ib) consisted of a solitary genotype (E3111) from Portugal, so that it was unique and diverse with respect to all other genotypes belonging to cluster I and placed in subcluster Ia. Using a set of only 12 primer pairs, we were able to distinguish a maximum of 48 of the above 55 wheat genotypes. The results demonstrate the utility of microsatellite markers for detecting polymorphism leading to genotype identification and for estimating genetic diversity. Received: 15 May 1999 / Accepted: 27 July 1999  相似文献   

14.
 The objectives of the present study were to evaluate the inheritance and nucleotide sequence profiles of microsatellite genetic markers in hexaploid sweetpotato [Ipomoea batatas (L.) Lam.] and its putative tetraploid and diploid ancestors, and to test possible microsatellite mutation mechanisms in polyploids by direct sequencing of alleles. Sixty three microsatellite loci were isolated from genomic libraries of I. batatas and sequenced. PCR primers were designed and used to characterize microsatellite loci in two hexaploid I. batatas populations, a tetraploid Ipomoea trifida population, and a diploid I. trifida population. Nine out of the sixty three primer pairs tested yielded a clearly discernible, heritable banding pattern; five showed Mendelian segregation. All other primer pairs produced either smeared banding patterns, which could not be scored, or no bands at all in I. batatas. All of the primers which produced discernible banding patterns from I. batatas also amplified products of similar size in tetraploid and diploid I. trifida accessions. The sequence analysis of several alleles in the three species showed differences due to mutations in the repeat regions consistent with small differences in the repeat number. However, in some cases insertions/deletions and base substitutions in the microsatellite flanking regions were responsible for polymorphisms in both polyploid and diploid species. These results provide strong empirical evidence that complex genetic mechanisms are responsible for SSR allelic variation in Ipomoea. Four I. batatas microsatellite loci showed polysomic segregation fitting tetraploid segregation ratios. To our knowledge this is the first report of segregation ratios for microsatellites markers in polyploids. Received: 4 January 1999 / Accepted: 4 January 1999  相似文献   

15.
Suzukia shikikunensis Kudo is an endemic plant in Taiwan and suffers habitat destruction caused by human overexploitation. In this study, we developed 12 microsatellite primer pairs for genetic study. These markers were screened for 24 samples collected from wild populations distributed in Taiwan, and for a sister species S. luchuensis collected from Yonaguni and Lutao Islands. The number of alleles ranged from 5 to 14. The expected (H E) and observed (H O) heterozygosities were 0.65–0.922 and 0–0.625, respectively. All loci were significantly deviated from Hardy–Weinberg equilibrium due to the heterozygote deficiency. These primers amplifying microsatellites in the two species may provide a useful tool for population genetics to establish conservation strategy.  相似文献   

16.
Genetic relationships between 6 unclassified taxa and 24 known species of the genus Stylosanthes were investigated by RFLP and STS analyses. This allowed the diploid taxa used in this study to be classified into nine basal (genome) groups. Representative species in these groups included ’S. seabrana’/S. hamata (Group A), S. viscosa (Group B), S. humilis (Group C), S. macrocephala/S. bracteata (Group D), S. pilosa (Group E), S. leiocarpa (Group F), S. guianensis (Group G), S. tomentosa (Group H) and S. calcicola (Group I). Polyploid taxa used were grouped into five classes based on their putative genomic structures. These are AABB for S. scabra, S. aff. scabra, S. sericeiceps, S. aff. hamata and S. tuberculata; AACC for S. mexicana, S. subsericea, S. sundaica and S. sp.A; DDEE for S. capitata; AAFF for S. sympodialis; and AABBXX for S. erecta, with XX representing an unknown genome. Of the 6 unclassified taxa, three were diploids and 3 tetraploids. Of the 3 diploids, the genome of S. sp. was markedly distinct from those of all other diploids analysed in this study, with that of S. leiocarpa being the closest. The genome of S. sp.B was similar to that of S. humilis, with an average dissimilarity value of 15% between them. The genome of S. aff. viscosa was very similar to that of S. viscosa. Genetic variation between these 2 taxa was not larger than that within each of the 2 taxa. Of the 3 tetraploids, the genomic structure of S. sp.A was similar to those of S. mexicana, S. sundaica and S. subsericea, and the genomic structures of S. aff. scabra and S. aff. hamata were similar to those of S. scabra and S. sericeiceps. Received: 18 September 1998 / Accepted: 23 March 1999  相似文献   

17.
We have identified a set of informative microsatellite markers for genome analysis in kiwifruit and related Actinidia species. A small-insert genomic library was constructed from Actinidia chinensis DNA, and screened for microsatellites. About 1.2% of the total colonies hybridised to a (GA)8 probe, 0.4% to (GT)8, and 0.1% to a mixture of three different trinucleotide repeat probes, (CAA)5, (GAA)5 and (CTA)5. From the DNA sequences of 35 hybridising clones, 18 primer pairs were designed, and used to amplify genomic DNA from 38 individual plants, representing 30 different accessions of ten Actinidia species. The banding patterns for most of the dinucleotide repeats showed a high degree of polymorphism in the diploid and tetraploid A. chinensis, and in the hexaploid A. deliciosa (kiwifruit). Heterozygosity levels of up to 100% were found among eight diploid accessions of A. chinensis examined, and the number of different-sized bands among all the species varied from 3 to 36 for each microsatellite. One simple CT microsatellite gave 21 bands with sizes suggesting that the number of repeats ranged from 9 to 37. The highest number of bands (36) and the largest size variation (>100 bp) were observed with a complex microsatellite harbouring four different repeat motifs. The majority of primer pairs amplified bands from most of the ten Actinidia species tested. The most polymorphic primer pairs were used successfully to fingerprint a range of closely related varieties of kiwifruit (A. deliciosa).Abbreviations PCR polymerase chain reaction - RFLP restriction fragment length polymorphism - VNTR variable number of tandem repeats  相似文献   

18.
We describe the first isolation of 12 polymorphic microsatellite markers from Belenger’s jewfish (Johnius belengnerii Cuvier 1830). From a (GT)n-enriched genomic library, 54 microsatellites were selected for designing microsatellite primers, of which 36 gave working primer pairs. 12 of these loci were polymorphic in a test population of 21 individuals with alleles ranging from 3 to 18, and expected and observed heterozygosities from 0.5772 to 0.9449 and from 0.4286 to 0.9231, respectively. No significant linkage disequilibrium between pairs of loci was found, however, loci Jobe24 significantly deviated from Hardy–Weinberg equilibrium after Bonferroni correction. These polymorphic microsatellite loci should provide sufficient level of genetic diversity to investigate population structure in Belenger’s jewfish.  相似文献   

19.
Nearly 900 SSRs (simple sequence repeats) were identified among 15,000 ESTs (expressed sequence tags) belonging to bread wheat ( Triticum aestivum L.). The SSRs were defined by their minimum length, which ranged from 14 to 21 bp. The maximum length ranged from 24 to 87 bp depending upon the length of the repeat unit itself (1–7 bp). The average density of SSRs was one SSR per 9.2 kb of EST sequence screened. The trinucleotide repeats were the most abundant SSRs detected. As a representative sample, 78 primer pairs were designed, which were also used to screen the dbEST entries for Hordeum vulgare and Triticum tauschii (donor of the D-genome of cultivated wheat) using a cut-off E (expectation) value of 0.01. On the basis of in silico analysis, up to 55.12% of the primer pairs exhibited transferability from Triticum to Hordeum, indicating that the sequences flanking the SSRs are not only conserved within a single genus but also between related genera in Poaceae. Primer pairs for the 78 SSRs were synthesized and used successfully for the study of (1) their transferability to 18 related wild species and five cereal species (barley, oat, rye, rice and maize); and (2) polymorphism between the parents of four mapping populations available with us. A subset of 20 EST-SSR primers was also used to assess genetic diversity in a collection of 52 elite exotic wheat genotypes. This was done with a view to compare their utility relative to other molecular markers (gSSRs, AFLPs, and SAMPL) previously used by us for the same purpose with the same set of 52 bread wheat genotypes. Although only a low level of polymorphism was detected, relative to that observed with genomic SSRs, the study suggested that EST-SSRs can be successfully used for a variety of purposes, and may actually prove superior to SSR markers extracted from genomic libraries for diversity estimation and transferability.Communicated by R. Hagemann  相似文献   

20.
Abundance, variability and chromosomal location of microsatellites in wheat   总被引:51,自引:0,他引:51  
The potential of microsatellite sequences as genetic markers in hexaploid wheat (Triticum aestivum) was investigated with respect to their abundance, variability, chromosomal location and usefulness in related species. By screening a lambda phage library, the total number of (GA)n blocks was estimated to be 3.6 x 104 and the number of (GT)n blocks to be 2.3 x 104 per haploid wheat genome. This results in an average distance of approximately 270 kb between these two microsatellite types combined. Based on sequence analysis data from 70 isolated microsatellites, it was found that wheat microsatellites are relatively long containing up to 40 dinucleotide repeats. Of the tested primer pairs, 36% resulted in fragments with a size corresponding to the expected length of the sequenced microsatellite clone. The variability of 15 microsatellite markers was investigated on 18 wheat accessions. Significantly, more variation was detected with the microsatellite markers than with RFLP markers with, on average, 4.6 different alleles per microsatellite. The 15 PCR-amplified microsatellites were further localized on chromosome arms using cytogenetic stocks of Chinese Spring. Finally, the primers for the 15 wheat microsatellites were used for PCR amplification with rye (Secale cereale) and barley accessions (Hordeum vulgare, H. spontaneum). Amplified fragments were observed for ten primer pairs with barley DNA and for nine primer pairs with rye DNA as template. A microsatellite was found by dot blot analysis in the PCR products of barley and rye DNA for only one primer pair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号