首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clostridium perfringens causes histotoxic infections and diseases originating in animal or human intestines. A prolific toxin producer, this bacterium also produces numerous enzymes, including sialidases, that may facilitate infection. C. perfringens type D strain CN3718 carries genes encoding three sialidases, including two large secreted sialidases (named NanI and NanJ) and one small sialidase (named NanH) that has an intracellular location in log-phase cultures but is present in supernatants of death phase cultures. Using isogenic mutants of CN3718 that are capable of expressing only NanJ, NanI, or NanH, the current study characterized the properties and activities of each sialidase. The optimal temperature determined for NanJ or NanH enzymatic activity was 37°C or 43°C, respectively, while NanI activity increased until temperature reached 48°C. NanI activity was also the most resistant against higher temperatures. All three sialidases showed optimal activities at pH 5.5. Compared to NanJ or NanH, NanI contributed most to the sialidase activity in CN3718 culture supernatants, regardless of the substrate sialic acid linkage; NanI also released the most sialic acid from Caco-2 cells. Only NanI activity was enhanced by trypsin pretreatment and then only for substrates with an α-2,3- or α-2,6-sialic acid linkage. NanJ and NanI activities were more sensitive than NanH activity to two sialidase inhibitors (N-acetyl-2,3-dehydro-2-deoxyneuraminic acid and siastatin B). The activities of the three sialidases were affected differently by several metal ions. These results indicated that each C. perfringens sialidase has distinct properties, which may allow these enzymes to play different roles depending upon environmental conditions.  相似文献   

2.
Gangliosides play key roles in cell differentiation, cell-cell interactions, and transmembrane signaling. Sialidases hydrolyze sialic acids to produce asialo compounds, which is the first step of degradation processes of glycoproteins and gangliosides. Sialidase involvement has been implicated in some lysosomal storage disorders such as sialidosis and galactosialidosis. Neu2 is a recently identified human cytosolic sialidase. Here we report the first high resolution x-ray structures of mammalian sialidase, human Neu2, in its apo form and in complex with an inhibitor, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA). The structure shows the canonical six-blade beta-propeller observed in viral and bacterial sialidases with its active site in a shallow crevice. In the complex structure, the inhibitor lies in the catalytic crevice surrounded by ten amino acids. In particular, the arginine triad, conserved among sialidases, aids in the proper positioning of the carboxylate group of DANA within the active site region. The tyrosine residue, Tyr(334), conserved among mammalian and bacterial sialidases as well as in viral neuraminidases, facilitates the enzymatic reaction by stabilizing a putative carbonium ion in the transition state. The loops containing Glu(111) and the catalytic aspartate Asp(46) are disordered in the apo form but upon binding of DANA become ordered to adopt two short alpha-helices to cover the inhibitor, illustrating the dynamic nature of substrate recognition. The N-acetyl and glycerol moieties of DANA are recognized by Neu2 residues not shared by bacterial sialidases and viral neuraminidases, which can be regarded as a key structural difference for potential drug design against bacteria, influenza, and other viruses.  相似文献   

3.
A photoreactive radioiodinatable derivative of 2-deoxy-2,3-didehydro-5-N-acetylneuraminic acid (NeuAc2en), 5-N-acetyl-9-(4-azidosalicoylamido)-2-deoxy-2,3-didehydroneuram inic acid (ASA-NeuAc2-en) has been synthesized and used to label the active site of Clostridium perfringens sialidase. Like NeuAc2en, its aryl azide derivative is a strong competitive inhibitor of sialidase (Ki approximately 15 microM). The absorbance spectrum of ASA-NeuAc2en shows a characteristic aryl azide peak, which disappears upon photolysis with UV light. When its radioiodinated counterpart 5-N-acetyl-9-(4-iodoazidosalicoylamido)-2-deoxy-2,3-didehydrone uraminic acid ([125I]IASA-NeuAc2en) was photolyzed in the presence of C. perfringens sialidase a 72-kDa protein was labeled. Labeling occurred specifically in the active site since it was inhibited in the presence of NeuAc2en. Chemical cleavage of the photoaffinity-labeled 72-kDa protein demonstrates that specifically labeled peptides involved in the formation of the active site can easily be determined. ASA-NeuAc2en is a valuable new tool for the identification and structural/functional analysis of sialidases and other proteins, recognizing this sialic acid derivative.  相似文献   

4.
A membrane-bound sialidase in pig liver microsomes was solubilized with a nonionic detergent, IGEPAL CA630, and purified to homogeneity by sequential chromatographies on SP-Toyopearl, Butyl-Toyopearl (1st), SuperQ-Toyopearl, Hydroxyapatite, Butyl-Toyopearl (2nd), GM1-Cellulofine affinity, and sialic acid-Cellulofine affinity columns. The molecular weight of the purified enzyme was estimated to be 57 kDa on SDS-PAGE. The pH optimum was 4.8 for the activity measured using 4-methylumbelliferyl-alpha-N-acetylneuraminic acid (4MU-Neu5Ac) as the substrate. The enzyme activity was inhibited by 2-deoxy-2,3-dehydro-N-acetylneuraminic acid, iodoacetamide and p-chloromercuribenzoic acid. While the enzyme could effectively hydrolyze 4MU-Neu5Ac, it failed to significantly cleave a sialic acid residue(s) from sialyllactose, glycoproteins or gangliosides at pH 4.8. These results suggest that the purified enzyme is a novel sialidase with a substrate specificity distinct from those of known membrane-bound sialidases in mammalian tissues.  相似文献   

5.
Aspergillus fumigatus is a filamentous fungus that can cause severe respiratory disease in immunocompromised individuals. A putative sialidase from A. fumigatus was recently cloned and shown to be relatively poor in cleaving N-acetylneuraminic acid (Neu5Ac) in comparison with bacterial sialidases. Here we present the first crystal structure of a fungal sialidase. When the apo structure was compared with bacterial sialidase structures, the active site of the Aspergillus enzyme suggested that Neu5Ac would be a poor substrate because of a smaller pocket that normally accommodates the acetamido group of Neu5Ac in sialidases. A sialic acid with a hydroxyl in place of an acetamido group is 2-keto-3-deoxynononic acid (KDN). We show that KDN is the preferred substrate for the A. fumigatus sialidase and that A. fumigatus can utilize KDN as a sole carbon source. A 1.45-Å resolution crystal structure of the enzyme in complex with KDN reveals KDN in the active site in a boat conformation and nearby a second binding site occupied by KDN in a chair conformation, suggesting that polyKDN may be a natural substrate. The enzyme is not inhibited by the sialidase transition state analog 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (Neu5Ac2en) but is inhibited by the related 2,3-didehydro-2,3-dideoxy-d-glycero-d-galacto-nonulosonic acid that we show bound to the enzyme in a 1.84-Å resolution crystal structure. Using a fluorinated KDN substrate, we present a 1.5-Å resolution structure of a covalently bound catalytic intermediate. The A. fumigatus sialidase is therefore a KDNase with a similar catalytic mechanism to Neu5Ac exosialidases, and this study represents the first structure of a KDNase.  相似文献   

6.
Sialidases release the terminal sialic acid residue from a wide range of sialic acid-containing polysaccharides. Bacteroides thetaiotaomicron, a symbiotic commensal microbe, resides in and dominates the human intestinal tract. We characterized the recombinant sialidase from B. thetaiotaomicron (BTSA) and demonstrated that it has broad substrate specificity with a relative activity of 97, 100 and 64 for 2,3-, 2,6- and 2,8-linked sialic substrates, respectively. The hydrolysis activity of BTSA was inhibited by a transition state analogue, 2-deoxy-2,3-dehydro-N-acetyl neuraminic acid, by competitive inhibition with a Ki value of 35 μM. The structure of BSTA was determined at a resolution of 2.3 Å. This structure exhibited a unique carbohydrate-binding domain (CBM) at its N-terminus (a.a. 23–190) that is adjacent to the catalytic domain (a.a. 191–535). The catalytic domain has a conserved arginine triad with a wide-open entrance for the substrate that exposes the catalytic residue to the surface. Unlike other pathogenic sialidases, the polysaccharide-binding site in the CBM is near the active site and possibly holds and positions the polysaccharide substrate directly at the active site. The structural feature of a wide substrate-binding groove and closer proximity of the polysaccharide-binding site to the active site could be a unique signature of the commensal sialidase BTSA and provide a molecular basis for its pharmaceutical application.  相似文献   

7.
We here report the design and synthesis of selective human lysosomal sialidase (NEU1) inhibitors. A series of amide-linked C9 modified DANA (2-deoxy-2,3-dehydro-N-acetylneuraminic acid) analogues were synthesized and their inhibitory activities against all four human sialidases (NEU1-NEU4) were determined. Structure-based approach was used to investigate the basis of selectivity of the compounds with experimentally observed activity. Results from the present study are found to be informative in a qualitative manner for the further design of isoform selective human sialidase inhibitors for therapeutic value.  相似文献   

8.
9.
N-Acetylneuraminic acid preparations from the urine of a patient with sialuria contain 1--2% of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid. This new human sialic acid was isolated by ion-exchange and partition chromatography. The structure has been elucidated by mass spectrometry and confirmed by comparison with the synthetic compound. The properties of this unsaturated sialic acid in the orcinol/Fe3+/HCl and the periodic acid/thiobarbituric acid tests as well as in thin-layer and gas-liquid chromatography are described. It does not react with acylneuraminate pyruvatelyase. The origin of this new human sialic acid is discussed.  相似文献   

10.
Trypanosoma rangeli sialidase is a glycoside hydrolase (family GH33) that catalyzes the cleavage of alpha-2-->3-linked sialic acid residues from sialoglycoconjugates with overall retention of anomeric configuration. Retaining glycosidases usually operate through a ping-pong mechanism, wherein a covalent intermediate is formed between the carbohydrate and an active site carboxylic acid of the enzyme. Sialidases, instead, appear to use a tyrosine as the catalytic nucleophile, leaving the possibility of an essentially different catalytic mechanism. Indeed, a direct nucleophilic role for a tyrosine was shown for the homologous trans-sialidase from Trypanosoma cruzi, although itself not a typical sialidase. Here we present the three-dimensional structures of the covalent glycosyl-enzyme complexes formed by the T. rangeli sialidase with two different mechanism-based inactivators at 1.9 and 1.7 Angstroms resolution. To our knowledge, these are the first reported structures of enzymatically competent covalent intermediates for a strictly hydrolytic sialidase. Kinetic analyses have been carried out on the formation and turnover of both intermediates, showing that structural modifications to these inactivators can be used to modify the lifetimes of covalent intermediates. These results provide further evidence that all sialidases likely operate through a similar mechanism involving the transient formation of a covalently sialylated enzyme. Furthermore, we believe that the ability to "tune" the inactivation and reactivation rates of mechanism-based inactivators toward specific enzymes represents an important step toward developing this class of inactivators into therapeutically useful compounds.  相似文献   

11.
The structure of the recombinant Trypanosoma rangeli sialidase (TrSA) has been determined at 1.6A resolution, and the structures of its complexes with the transition state analog inhibitor 2-deoxy-2,3-dehydro-N-acetyl-neuraminic acid (DANA), Neu-5-Ac-thio-alpha(2,3)-galactoside (NATG) and N-acetylneuraminic acid (NANA) have been determined at 1.64A, 2.1A and 2.85A, respectively. The 3D structure of TrSA is essentially identical to that of the natural enzyme, except for the absence of covalently attached sugar at five distinct N-glycosylation sites. The protein exhibits a topologically rigid active site architecture that is unaffected by ligand binding. The overall binding of DANA to the active site cleft is similar to that observed for other viral and bacterial sialidases, dominated by the interactions of the inhibitor carboxylate with the conserved arginine triad. However, the interactions of the other pyranoside ring substituents (hydroxyl, N-acetyl and glycerol moieties) differ between trypanosomal, bacterial and viral sialidases, providing a structural basis for specific inhibitor design. Sialic acid is found to bind the enzyme with the sugar ring in a distorted (half-chair or boat) conformation and the 2-OH hydroxyl group at hydrogen bonding distance of the carboxylate of Asp60, substantiating a direct catalytic role for this residue. A detailed comparison of TrSA with the closely related structure of T.cruzi trans-sialidase (TcTS) reveals a highly conserved catalytic center, where subtle structural differences account for strikingly different enzymatic activities and inhibition properties. The structure of TrSA in complex with NATG shows the active site cleft occupied by a smaller compound which could be identified as DANA, probably the product of a hydrolytic side reaction. Indeed, TrSA (but not TcTS) was found to cleave O and S-linked sialylated substrates, further stressing the functional differences between trypanosomal sialidases and trans-sialidases.  相似文献   

12.
Oehler C  Kopitz J  Cantz M 《Biological chemistry》2002,383(11):1735-1742
A ganglioside-specific sialidase that controls cellular functions such as growth, differentiation, and adhesion has been observed in a variety of cells, but its characterization proved difficult due to firm membrane attachment and lability of the purified enzyme. Here we report on the specificity toward gangliosides and susceptibility to certain inhibitors of a ganglioside sialidase solubilized and purified 5100-fold from human brain. The sialidase removed terminal sialic acids from gangliosides GM3, GM4, GD3, GD2, GD1 a, GD1 b, GT1 b and GQ1 b, but was inactive toward gangliosides with sialic acid in a branching position (as in GM1 and GM2). Lyso-GM3 and -GD1a were good substrates, too, whereas O-acetylation of the sialic acid as in 9-O-acetyl-GD3 caused strongly reduced cleavage. The new influenza virus drug 4-guanidino-2-deoxy-2,3-dehydro-N-acetylneuraminic acid (Zanamivir) exhibited an IC50 value of about 7 x 10(-5) M that was in the range of the 'classical' sialidase inhibitor 2-deoxy-2,3-dehydro-N-acetylneuraminic acid; the bacterial sialidase inhibitor 4-nitrophenyloxamic acid, however, was ineffective. The glycosaminoglycans heparan sulfate, heparin, chondroitin sulfates A and B, as well as dextran sulfate and suramin, were all strongly inhibitory, suggesting that glycosaminoglycans present on the cell surface or in the extracellular matrix may influence the ability of the sialidase to alter the ganglioside composition of the membrane.  相似文献   

13.
The Streptococcus pneumoniae genomes encode up to three sialidases (or neuraminidases), NanA, NanB and NanC, which are believed to be involved in removing sialic acid from host cell surface glycans, thereby promoting colonization of the upper respiratory tract. Here, we present the crystal structure of NanB to 1.7 Å resolution derived from a crystal grown in the presence of the buffer Ches (2-N-cyclohexylaminoethanesulfonic acid). Serendipitously, Ches was found bound to NanB at the enzyme active site, and was found to inhibit NanB with a Ki of ∼ 0.5 mM. In addition, we present the structure to 2.4 Å resolution of NanB in complex with the transition-state analogue Neu5Ac2en (2-deoxy-2,3-dehydro-N-acetyl neuraminic acid), which inhibits NanB with a Ki of ∼ 0.3 mM. The sulphonic acid group of Ches and carboxylic acid group of Neu5Ac2en interact with the arginine triad of the active site. The cyclohexyl group of Ches binds in the hydrophobic pocket of NanB occupied by the acetamidomethyl group of Neu5Ac2en. The topology around the NanB active site suggests that the enzyme would have a preference for α2,3-linked sialoglycoconjugates, which is confirmed by a kinetic analysis of substrate binding. NMR studies also confirm this preference and show that, like the leech sialidase, NanB acts as an intramolecular trans-sialidase releasing Neu2,7-anhydro5Ac. All three pneumoccocal sialidases possess a carbohydrate-binding domain that is predicted to bind sialic acid. These studies provide support for a possible differential role for NanB compared to NanA in pneumococcal virulence.  相似文献   

14.
A direct link between receptor glycosylation and activation following natural ligand interaction has not been observed. Here, we discover a membrane sialidase-controlling mechanism that depends on ligand binding to its receptor to induce enzyme activity which targets and desialylates the receptor and, consequently, causes the induction of receptor dimerization and activation. We also identify a specific sialyl alpha-2,3-linked beta-galactosyl sugar residue of TrkA tyrosine kinase receptor, which is rapidly targeted and hydrolyzed by the sialidase. Trk-expressing cells and primary cortical neurons following stimulation with specific neurotrophic growth factors express a vigorous membrane sialidase activity. Neuraminidase inhibitors, Tamiflu, BCX1812, and BCX1827, block sialidase activity induced by nerve growth factor (NGF) in TrkA-PC12 cells and by brain-derived neurotrophic factor (BDNF) in primary cortical neurons. In contrast, the neuraminidase inhibitor, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid, specific for plasma membrane ganglioside Neu3 and Neu2 sialidases has no inhibitory effect on NGF-induced pTrkA. The GM1 ganglioside specific cholera toxin subunit B applied to TrkA-PC12 cells has no inhibitory effect on NGF-induced sialidase activity. Neurite outgrowths induced by NGF-treated TrkA-PC12 and BDNF-treated PC12(nnr5) stably transfected with TrkB receptors (TrkB-nnr5) cells are significantly inhibited by Tamiflu. Our results establish a novel mode of regulation of receptor activation by its natural ligand and define a new function for cellular sialidases.  相似文献   

15.
Vibrio cholerae neuraminidase (VCNA) plays a significant role in the pathogenesis of cholera by removing sialic acid from higher order gangliosides to unmask GM1, the receptor for cholera toxin. We previously showed that the structure of VCNA is composed of a central beta-propeller catalytic domain flanked by two lectin-like domains; however the nature of the carbohydrates recognized by these lectin domains has remained unknown. We present here structures of the enzyme in complex with two substrates, alpha-2,3-sialyllactose and alpha-2,6-sialyllactose. Both substrate complexes reveal the alpha-anomer of N-acetylneuraminic acid (Neu5Ac) bound to the N-terminal lectin domain, thereby revealing the role of this domain. The large number of interactions suggest a relatively high binding affinity for sialic acid, which was confirmed by calorimetry, which gave a Kd approximately 30 microm. Saturation transfer difference NMR using a non-hydrolyzable substrate, Neu5,9Ac2-2-S-(alpha-2,6)-GlcNAcbeta1Me, was also used to map the ligand interactions at the VCNA lectin binding site. It is well known that VCNA can hydrolyze both alpha-2,3- and alpha-2,6-linked sialic acid substrates. In this study using alpha-2,3-sialyllactose co-crystallized with VCNA it was revealed that the inhibitor 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en) was bound at the catalytic site. This observation supports the notion that VCNA can produce its own inhibitor and has been further confirmed by 1H NMR analysis. The discovery of the sialic acid binding site in the N-lectin-like domain suggests that this might help target VCNA to sialic acid-rich environments, thereby enhancing the catalytic efficiency of the enzyme.  相似文献   

16.
Trypanosoma cruzi trans-sialidase (TcTS) is a crucial enzyme for the infection of Trypanosoma cruzi, the protozoa responsible for Chagas' disease in humans. It catalyzes the transfer of sialic acids from the host's glycoconjugates to the parasite's glycoconjugates. Based on kinetic isotope effect (KIE) studies, a strong nucleophilic participation at the transition state could be determined, and recently, elaborate experiments used 2-deoxy-2,3-difluorosialic acid as substrate and were able to trap a long-lived covalent intermediate (CI) during the catalytic mechanism. In this paper, we compute the KIE and address the entire mechanistic pathway of the CI formation step in TcTS using computational tools. Particularly, the free energy results indicate that in the transition state there is a strong nucleophilic participation of Tyr342, and after this, the system collapsed into a stable CI. We find that there is no carbocation intermediate for this reaction. By means of the energy decomposition method, we identify the residues that have the biggest influence on catalysis. This study facilitates the understanding of the catalytic mechanism of TcTS and can serve as a guide for future inhibitor design studies.  相似文献   

17.
Streptococcus pneumoniae is an important human pathogen that causes a range of disease states. Sialidases are important bacterial virulence factors. There are three pneumococcal sialidases: NanA, NanB, and NanC. NanC is an unusual sialidase in that its primary reaction product is 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en, also known as DANA), a nonspecific hydrolytic sialidase inhibitor. The production of Neu5Ac2en from α2–3-linked sialosides by the catalytic domain is confirmed within a crystal structure. A covalent complex with 3-fluoro-β-N-acetylneuraminic acid is also presented, suggesting a common mechanism with other sialidases up to the final step of product formation. A conformation change in an active site hydrophobic loop on ligand binding constricts the entrance to the active site. In addition, the distance between the catalytic acid/base (Asp-315) and the ligand anomeric carbon is unusually short. These features facilitate a novel sialidase reaction in which the final step of product formation is direct abstraction of the C3 proton by the active site aspartic acid, forming Neu5Ac2en. NanC also possesses a carbohydrate-binding module, which is shown to bind α2–3- and α2–6-linked sialosides, as well as N-acetylneuraminic acid, which is captured in the crystal structure following hydration of Neu5Ac2en by NanC. Overall, the pneumococcal sialidases show remarkable mechanistic diversity while maintaining a common structural scaffold.  相似文献   

18.
Structural insights into sialic acid enzymology   总被引:1,自引:0,他引:1  
Sialic acids are a diverse family of negatively charged sugars that play essential biological roles. Their presence and relative abundance in different cells is ultimately regulated by the concerted action of a large set of enzymes. In this review, we focus on the most recent advances on the enzymes that govern sialic acid metabolism, with emphasis on structural work. Major progress has been made in dissecting the catalytic mechanism of sialidases, revealing a modified scenario of the typical glycosidase ping-pong mechanism. Similarly, X-ray structures of sialyltransferases uncover significant variations of formerly known glycosyltransferase foldings. Both sialidases and sialyltransferases seem to tell us that sialic acid-handling enzymes have evolved important modifications related to the distinctive features of sialic acid itself.  相似文献   

19.
Bacterial sialidases represent important colonization or virulence factors. The development of a rational basis for the design of antimicrobials targeted to sialidases requires the knowledge of the exact roles of their conserved amino acids. A recombinant enzyme of the 'small' (43 kDa) sialidase of Clostridium perfringens was used as a model in our study. Several conserved amino acids, identified by alignment of known sialidase sequences, were altered by site-directed mutagenesis. All recombinant enzymes were affinity-purified and the enzymatic characteristics were determined. Among the mutated enzymes with modifications in the environment of the 4-hydroxyl group of bound sialic acids, D54N and D54E exhibited minor changes in substrate binding. However, a reduced activity and changes in their pH curves indicate the importance of a charged group at this area. R56K, which is supposed to bind directly to sialic acids as in the homologous Salmonella typhimurium sialidase, showed a 2500-fold reduced activity. The amino acids Asp-62 and Asp-100 are probably involved in catalysis, indicated by reduced activities and altered temperature and pH curves of mutant enzymes. Exchanging Glu-230 with threonine or aspartic acid led to dramatic decreases in activity. This residue and Y347 are supposed to be crucial for providing a suitable environment for catalysis. However, unaltered pH curves of mutant sialidases exclude their direct involvement in protonation or deprotonation events. These results indicate that the interactions with the substrates vary in different sialidases and that they might be more complex than suggested by mere static X-ray structures.  相似文献   

20.
Sialidases or neuraminidases are enzymes that catalyze the cleavage of terminal sialic acids from oligosaccharides and glycoconjugates. They play important roles in bacterial and viral infection and have been attractive targets for drug development. Structure-based drug design has led to potent inhibitors against neuraminidases of influenza A viruses that have been used successfully as approved therapeutics. However, selective and effective inhibitors against bacterial and human sialidases are still being actively pursued. Guided by crystal structural analysis, several derivatives of 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en or DANA) were designed and synthesized as triazole-linked transition state analogs. Inhibition studies revealed that glycopeptide analog E-(TriazoleNeu5Ac2en)-AKE and compound (TriazoleNeu5Ac2en)-A were selective inhibitors against Vibrio cholerae sialidase, while glycopeptide analog (TriazoleNeu5Ac2en)-AdE selectively inhibited Vibrio cholerae and A. ureafaciens sialidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号