首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mitochondrial dysfunction contributes to a number of human diseases, such as hyperlipidemia, obesity, and diabetes. The mutation and reduction of mitochondrial DNA (mtDNA) have been suggested as factors in the pathogenesis of diabetes. To elucidate the association of cellular mtDNA content and insulin resistance, we produced L6 GLUT4myc myocytes depleted of mtDNA by long term treatment with ethidium bromide. L6 GLUT4myc cells cultured with 0.2 mug/ml ethidium bromide (termed depleted cells) revealed a marked decrease in cellular mtDNA and ATP content, concomitant with a lack of mRNAs encoded by mtDNA. Interestingly, the mtDNA-depleted cells showed a drastic decrease in basal and insulin-stimulated glucose uptake, indicating that L6 GLUT4myc cells develop impaired glucose utilization and insulin resistance. The repletion of mtDNA normalized basal and insulin-stimulated glucose uptake. The mRNA level and expression of insulin receptor substrate (IRS)-1 associated with insulin signaling were decreased by 76 and 90% in the depleted cells, respectively. The plasma membrane (PM) GLUT4 in the basal state was decreased, and the insulin-stimulated GLUT4 translocation to the PM was drastically reduced by mtDNA depletion. Moreover, insulin-stimulated phosphorylation of IRS-1 and Akt2/protein kinase B were drastically reduced in the depleted cells. Those changes returned to control levels after mtDNA repletion. Taken together, our data suggest that PM GLUT4 content and insulin signal pathway intermediates are modulated by the alteration of cellular mtDNA content, and the reductions in the expression of IRS-1 and insulin-stimulated phosphorylation of IRS-1 and Akt2/protein kinase B are associated with insulin resistance in the mtDNA-depleted L6 GLUT4myc myocytes.  相似文献   

2.
Summary Mitochondrial DNA (mtDNA) replication in petite mutants ofSaccharomyces cerevisiae is generally less sensitive to inhibition by ethidium bromide than in grande (respiratory competent) cells. In every petite that we have examined, which retain a range of different grande mtDNA sequences, this general phenomenon has been demonstrated by measurements of the loss of mtDNA from cultures grown in the presence of the drug. The resistance is also demonstrable by direct analysis of drug inhibition of mtDNA replication in isolated mitochondria. Furthermore, the resistance to ethidium bromide is accompanied, in every case tested, by cross-resistance to berenil and euflavine, although variations in the levels of resistance are observed.In one petite the level of in vivo resistance to the three drugs was very similar (4-fold over the grande parent) whilst another petite was mildly resistant to ethidium bromide and berenil (each 1.6-fold over the parent) and strongly resistant (nearly 8-fold) to inhibition of mtDNA replication by euflavine. The level of resistance to ethidium bromide in several other petite clones tested was found to vary markedly. Using genetic techniques it is possible to identify those petites which display an enhanced resistance to ethidium bromide inhibition of mtDNA replication.It is considered that the general resistance of petites arises because a product of mitochondrial protein synthesis is normally involved in facilitating the inhibitory action of these drugs on mtDNA synthesis in grande cells. The various levels of resistance in petites may be modulated by the particular mtDNA sequences retained in each petite.  相似文献   

3.
Maternally inherited mitochondrial DNA (mtDNA) has been suggested to be a genetic factor for diabetes. Reports have shown a decrease of mtDNA content in tissues of diabetic patients. We investigated the effects of mtDNA depletion on glucose metabolism by use of rho(0) SK-Hep1 human hepatoma cells, whose mtDNA was depleted by long-term exposure to ethidium bromide. The rho(0) cells failed to hyperpolarize mitochondrial membrane potential in response to glucose stimulation. Intracellular ATP content, glucose-stimulated ATP production, glucose uptake, steady-state mRNA and protein levels of glucose transporters, and cellular activities of glucose-metabolizing enzymes were decreased in rho(0) cells compared with parental rho(+) cells. Our results suggest that the quantitative reduction of mtDNA may suppress the expression of nuclear DNA-encoded glucose transporters and enzymes of glucose metabolism. Thus this may lead to diabetic status, such as decreased ATP production and glucose utilization.  相似文献   

4.
Disorders of mitochondrial DNA (mtDNA) maintenance have emerged as an important cause of human genetic disease, but demonstrating the functional consequences of de novo mutations remains a major challenge. We studied the rate of depletion and repopulation of mtDNA in human fibroblasts exposed to ethidium bromide in patients with heterozygous POLG mutations, POLG2 and TK2 mutations. Ethidium bromide induced mtDNA depletion occurred at the same rate in human fibroblasts from patients and healthy controls. By contrast, the restoration of mtDNA levels was markedly delayed in fibroblasts from patients with compound heterozygous POLG mutations. Specific POLG2 and TK2 mutations did not delay mtDNA repopulation rates. These observations are consistent with the hypothesis that mutations in POLG impair mtDNA repopulation within intact cells, and provide a potential method of demonstrating the functional consequences of putative pathogenic alleles causing a defect of mtDNA synthesis.  相似文献   

5.
Chinese hamster ovary cells labelled with [14C]thymidine were made permeable, incubated with various concentrations of the intercalating dye ethidium bromide, and centrifuged through neutral sucrose gradients. The gradient profiles of these cells were qualitatively similar to those obtained by centrifuging DNA from untreated, lysed permeable cells through gradients containing ethidium bromide. The sedimentation distance of DNA had a biphasic dependence on the concentration of ethidium bromide, suggesting that the dye altered the amount of DNA supercoiling in situ. The effect of ethidium bromide intercalation on incorporation of [3H]dTMP into acid-precipitable material in an in vitro DNA synthesis mixture was measured. The incorporation of [3H]dTMP was unaffected by less than 1 microgram/ml of ethidium bromide, enhanced up to two-fold by 1--10 microgram/ml, and inhibited by concentrations greater than 10 micrograms/ml. Alkaline sucrose gradient analysis revealed a higher percentage of small DNA fragments (6--20 S) in the cells treated with 2 micrograms/ml ethidium bromide than in control cells. These fragments attained parental size within the same time as the fragments in control cells. In cells treated with 2 micrograms/ml ethidium bromide, a significant fraction of newly synthesized DNA resulted from new starts, whereas in untreated cells practically none of the newly synthesized DNA resulted from new starts. These results suggest that relaxation of DNA supercoiled structures ahead of the replication fork generates spurious initiations of DNA synthesis and that in intact cells the rate of chain elongation is limited by supercoiled regions ahead of the growing point.  相似文献   

6.
Ethidium bromide (EtBr) is widely used to deplete mitochondrial DNA (mtDNA) and produce mitochondrial DNA-less cell lines. However, it frequently fails to deplete mtDNA in mouse cells. In this study we show by using a highly sensitive real-time PCR, that low doses of EtBr (10 microM) did lead to a three-fold increase of the total amount of mitochondrial DNA in a human neuronal cell line (Ntera 2). A higher dose of EtBr (25 microM) led to the expected decrease of mtDNA until day 22 when the cells almost died. Cell growth and mtDNA content could be restored after additional 22 days of non-EtBr treatment. The highest concentration of 50 microM also led to a significant increase of mtDNA. The cells died when they had only about 10% of mtDNA left, indicating a mtDNA threshold for cell survival. Additionally, the so-called common 4977 bp deletion could be induced by prolonged exposure to ethidium bromide. Whereas the higher doses led to significant higher amounts of deleted mtDNA.  相似文献   

7.
Summary The effects of the acridines euflavine and proflavine on mitochondrial DNA (mtDNA) replication and mutation inSaccharomyces cerevisiae have been compared. In contrast to previous results we found that under our conditions proflavine can indeed induce high levels (>80%) of petite mutants, although six times less efficiently than euflavine. The parameters measured for mutagenesis of the mitochondrial genome and inhibition of mtDNA replication in whole cells suggest that the modes of action of euflavine and proflavine are very similar. After extended (18h) treatment of growing cells with each drug the percentage loss of mtDNA or genetic loci was almost coincidental with the extent of petite induction.It was found that proflavine is equally as effective as euflavine in inhibiting mtDNA replication in isolated mitochondria in contrast to the differential between the drugs observed in vivo. However, proflavine and euflavine inhibit cellular growth at almost the same concentrations. It is therefore proposed that there is some intracellular permeability barrier which impedes proflavine access to the mitochondrial DNA replicating system.The petites induced by euflavine (and proflavine) are characterized by there being a preferential induction ofrho 0 petites lacking mtDNA as opposed torho - petites retaining mtDNA. This is in contrast to the relative proportions of such petites induced by ethidium bromide or berenil. A scheme for the production of petites by euflavine is presented, in which euflavine inhibits the replication of mtDNA, but does not cause direct fragmentation of mtDNA (unlike ethidium bromide and berenil). The proposed scheme explains the production of the high frequency ofrho o cells, as well as therho - cells induced by euflavine. The scheme also accounts for previous observations that euflavine only mutants growing cultures, and that the buds, but not mother cells, become petite.  相似文献   

8.
Digital-imaging microscopy was used in conditions that allowed the native state to be preserved and hence fluorescence variations of specific probes to be followed in the real time of living mammalian cells. Ethidium bromide was shown to enter into living cells and to intercalate stably into mitochondrial DNA (mtDNA), giving rise to high fluorescence. When the membrane potential or the pH gradient across the inner membrane was abolished by specific inhibitors or ionophores, the ethidium fluorescence disappeared from all mtDNA molecules within 2 min. After removal of the inhibitors or ionophores, ethidium fluorescence rapidly reappeared in mitochondria, together with the membrane potential. The fluorescence extinction did not result from an equilibrium shift caused by leakage of free ethidium out of mitochondria when the membrane potential was abolished but was most likely due to a dynamical mtDNA change that exposed intercalated ethidium to quencher, either by weakening the ethidium binding constant or by giving access of a proton acceptor (such as water) to the interior of mtDNA. Double labeling with ethidium and with a minor groove probe (4',6-diamino-2-phenylindole) indicated that mtDNA maintains a double-stranded structure. The two double-stranded DNA states, revealed by the fluorescence of mitochondrial ethidium, enhanced or quenched in the presence of ethidium, seem to coexist in mitochondria of unperturbed fibroblast cells, suggesting a spontaneous dynamical change of mtDNA molecules. Therefore, the ethidium fluorescence variation allows changes of DNA to be followed, a property that has to be taken into consideration when using this intercalator for in vivo as well as in vitro imaging studies.  相似文献   

9.
Ethidium bromide-resistant cell strains were obtained by continuous selection of an adult rat liver-derived cell line (ARL6T) grown in the continuous presence of 200 ngl ml ethidium bromide. Comparison of resistant strains and parental (sensitive) cells was made for uptake and binding of ethidium bromide, visualized as fluorescent ethidium bromide-nucleic acid complexes. Although uptake of ethidium bromide was similar in parental and resistant cells, efflux kinetics were markedly different. Over a three-hour period, parental (sensitive) cells maintained fluorescence following a short ethidium bromide pulse (100 g/ ml ethidium bromide). In contrast, ethidium bromide-resistant cell lines eliminated photographically detectable fluorescent complexes within three hours following pulse exposure to ethidium bromide. The rapid elimination of ethidium bromide fluorescent complexes in all (5) resistant cell strains examined supports an efflux mechanism as contributing to the resistance of ethidium bromide cytotoxicity in these cells.Abbreviations EtBr ethidium bromide - HBSS Hanks' balanced salt solution  相似文献   

10.
Disorders of mitochondrial DNA (mtDNA) maintenance have emerged as an important cause of human genetic disease, but demonstrating the functional consequences of de novo mutations remains a major challenge. We studied the rate of depletion and repopulation of mtDNA in human fibroblasts exposed to ethidium bromide in patients with heterozygous POLG mutations, POLG2 and TK2 mutations. Ethidium bromide induced mtDNA depletion occurred at the same rate in human fibroblasts from patients and healthy controls. By contrast, the restoration of mtDNA levels was markedly delayed in fibroblasts from patients with compound heterozygous POLG mutations. Specific POLG2 and TK2 mutations did not delay mtDNA repopulation rates. These observations are consistent with the hypothesis that mutations in POLG impair mtDNA repopulation within intact cells, and provide a potential method of demonstrating the functional consequences of putative pathogenic alleles causing a defect of mtDNA synthesis.  相似文献   

11.
Petite-positivity - the ability to tolerate the loss of mtDNA - was examined after the treatment with ethidium bromide (EB) in over hundred isolates from the Saccharomyces/Kluyveromyces complex. The identity of petite mutants was confirmed by the loss of specific mtDNA DAPI staining patterns. Besides unequivocal petite-positive and petite-negative phenotypes, a few species exhibited temperature sensitive petite positive phenotype and petiteness of a few other species could be observed only at the elevated EB concentrations. Several yeast species displayed a mixed 'moot' phenotype, where a major part of the population did not tolerate the loss of mtDNA but several cells did. The genera from postwhole-genome duplication lineages (Saccharomyces, Kazachstania, Naumovia, Nakaseomyces) were invariably petite-positive. However, petite-positive traits could also be observed among the prewhole-genome duplication species.  相似文献   

12.
Bovine fetal fibroblast cells were treated with ethidium bromide at a low concentration for 15 passages in culture to determine its effect on mitochondrial DNA copy number and on cell metabolism. Mitochondrial membrane potential and lactate production were estimated in order to characterize cell metabolism. In addition, mitochondrial DNA ND5 in proportion to a nuclear gene (luteinizing hormone receptor) was determined at the 1st, 2nd, 3rd, 10th, and 15th passages using semi-quantitative PCR amplification. Treated cells showed a lower mitochondrial membrane potential and higher levels of lactate production compared with control cells. However, the mitochondrial DNA/nuclear DNA ratio was higher in treated cells compared with control cells at the 10th and 15th passages. This ratio changed between the 3rd and 10th passages. Despite a clear impairment in mitochondrial function, ethidium bromide treatment did not lead to mitochondrial DNA depletion. It is possible that in response to a lower synthesis of ATP, due to an impairment in oxidative phosphorylation, treated cells develop a mechanism to resist the ethidium bromide effect on mtDNA replication, resulting in an increase in mitochondrial DNA copy number.  相似文献   

13.
Oxidative stress can induce mitochondrial dysfunction, mitochondrial DNA (mtDNA) depletion, and neurodegeneration, although the underlying mechanisms are poorly understood. The major mitochondrial antioxidant system that protects cells consists of manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx) and glutathione (GSH). To investigate the putative adaptive changes in antioxidant enzyme protein expression and targeting to mitochondria as mtDNA depletion occurs, we progressively depleted U87 astrocytoma cells of mtDNA by chronic treatment with ethidium bromide (EB, 50 ng/ml). Cellular MnSOD protein expression was markedly increased in a time-related manner while that of GPx showed time-related decreases. The mtDNA depletion also altered targeting or subcellular distribution of GPx, suggesting the importance of intact mtDNA in mitochondrial genome-nuclear genome signaling/communication. Cellular NADP+-ICDH activity also showed marked, time-related increases while their GSH content decreased. Thus, our findings suggest that interventions to elevate MnSOD, GPx, NADP+-ICDH, and GSH levels may protect brain cells from oxidative stress.  相似文献   

14.
The sensitivity of endothelial cells to oxidative stress and the high concentrations of iron in mitochondria led us to test the hypotheses that (1) changes in respiratory capacity alter iron homeostasis, and (2) lack of aerobic metabolism decreases labile iron stores and attenuates oxidative stress. Two respiration-deficient (rho(o)) endothelial cell lines with selective deletion of mitochondrial DNA (mtDNA) were created by exposing a parent endothelial cell line (EA) to ethidium bromide. Surviving cells were cloned and mtDNA-deficient cell lines were demonstrated to have diminished oxygen consumption. Total cellular and mitochondrial iron levels were measured, and iron uptake and compartmentalization were measured by inductively coupled plasma atomic emission spectroscopy. Iron transport and storage protein expression were analyzed by real-time polymerase chain reaction and Western blot or ELISA, and total and mitochondrial reactive oxygen species (ROS) generation was measured. Mitochondrial iron content was the same in all three cell lines, but both rho(o) lines had lower iron uptake and total cellular iron. Protein and mRNA expressions of major cytosolic iron transport constituents were down-regulated in rho(o) cells, including transferrin receptor, divalent metal transporter-1 (-IRE isoform), and ferritin. The mitochondrial iron-handling protein, frataxin, was also decreased in respiration-deficient cells. The rho(o) cell lines generated less mitochondrial ROS but released more extracellular H(2)O(2), and demonstrated significantly lower levels of lipid aldehyde formation than control cells. In summary, rho(o) cells with a minimal aerobic capacity had decreased iron uptake and storage. This work demonstrates that mitochondria regulate iron homeostasis in endothelial cells.  相似文献   

15.
Lebr 625 and Lebr 350 cells, resistant to ethidium bromide in concentrations 25 and 50 mkg/ml, are able to grow continuously in serum- and protein-free media. Under the same conditions the parental L929 cells are not able to. Two cell lines (625 sf and 350 sf) were established capable of growing in serum- and protein free media. It is found that ethidium bromide is toxic for resistant cells grown the in serum-free medium. The addition of serum lowers the toxic action of ethidium bromide. A continuous growth of resistant cells in serum-free medium (under nonselective conditions) leads to a decreased level of resistance, which may nevertheless persist for a long period of cultivation (over 2.5 years).  相似文献   

16.
rho 0 HeLa cells entirely lacking mitochondrial DNA (mtDNA) and mitochondrial transfection techniques were used to examine intermitochondrial interactions between mitochondria with and without mtDNA, and also between those with wild-type (wt) and mutant-type mtDNA in living human cells. First, unambiguous evidence was obtained that the DNA-binding dyes ethidium bromide (EtBr) and 4',6-diamidino-2- phenylindole (DAPI) exclusively stained mitochondria containing mtDNA in living human cells. Then, using EtBr or DAPI fluorescence as a probe, mtDNA was shown to spread rapidly to all rho 0 HeLa mitochondria when EtBr- or DAPI-stained HeLa mitochondria were introduced into rho 0 HeLa cells. Moreover, coexisting wt-mtDNA and mutant mtDNA with a large deletion (delta-mtDNA) were shown to mix homogeneously throughout mitochondria, not to remain segregated by use of electron microscopic analysis of cytochrome c oxidase activities of individual mitochondria as a probe to identify mitochondria with predominantly wt- or delta- mtDNA in single cells. This rapid diffusion of mtDNA and the resultant homogeneous distribution of the heteroplasmic wt- and delta-mtDNA molecules throughout mitochondria in a cell suggest that the mitochondria in living human cells have lost their individuality. Thus, the actual number of mitochondria per cell is not of crucial importance, and mitochondria in a cell should be considered as a virtually single dynamic unit.  相似文献   

17.
P. Haffter  T. D. Fox 《Genetics》1992,131(2):255-260
The fission yeast Schizosaccharomyces pombe has never been found to give rise to viable cells totally lacking mitochondrial DNA (rho(o)). This paper describes the isolation of rho(o) strains of S. pombe by very long term incubation of cells in liquid medium containing glucose, potassium acetate and ethidium bromide. Once isolated, the rho(o) strains did not require potassium acetate or any other novel growth factors. These nonrespiring strains contained no mitochondrial DNA (mtDNA) detectable either by gel-blot hybridization using as probe a clone containing the entire S. pombe mtDNA, or by 1',6-diamidino-2-phenylindole staining of whole cells. Induction of rho(o) derivatives of standard laboratory strains was not reproducible from culture to culture. The cause of this irreproducibility appears to be that growth of the rho(o) strains of S. pombe depended on nuclear mutations that occurred in some, but not all, of the initial cultures. Two independent rho(o) isolates contained mutations in unlinked genes, termed ptp1-1 and ptp2-1. These mutations allowed reproducible ethidium bromide induction of viable rho(o) strains. No other phenotypes were associated with ptp mutations in rho+ strains.  相似文献   

18.
19.
It is known that mitochondrial DNA (mtDNA) replication is independent of the cell cycle. Even in post-mitotic cells in which nuclear DNA replication has ceased, mtDNA is believed to still be replicating. Here, we investigated the turnover rate of mtDNA in primary rat hepatocytes, which are quiescent cells. Southwestern blot analysis using 5-bromo-2'-deoxyuridine (BrdU) was employed to estimate the activity of full-length mtDNA replication and to determine efficient doses of replication inhibitors. Southern blot analysis showed that a two-day treatment with 20mM 2',3'-dideoxycytidine and 0.2mug/ml ethidium bromide caused a 37% reduction in the amount of mtDNA, indicating that the hepatocytes had a considerably high rate of turnover of mtDNA. Further, pulse-chase analysis using Southwestern analysis showed that the amount of newly synthesized mtDNA labeled with BrdU declined to 60% of the basal level within two days. Because the rate of reduction of the new mtDNA was very similar to the overall turnover rate described above, it appears that degrading mtDNA molecules were randomly chosen. Thus, we demonstrated that there is highly active and random turnover of mtDNA in hepatocytes.  相似文献   

20.
Summary When growing cultures of S. cerevisiae are treated with high concentrations of ethidium bromide (>50 g/ml), three phases of petite induction may be observed: I. the majority of cells are rapidly converted to petite, II. subsequently a large proportion of cells recover the ability to form respiratory competent clones, and III. slow, irreversible conversion of all cells to petite. The extent of recovery of respiratory competence observed is dependent on the strain of S. cerevisiae employed and the temperature and the carbon source used in the growth medium. The effects of 100 g/ml ethidium bromide are also produced by 10 g/ml ethidium bromide in the presence of the detergent, sodium dodecyl sulphate, and recovery is also observed when cells are treated with 10 g/ml ethidium bromide under starvation conditions. Genetic analysis of strain differences indicates that a number of nuclear genes influence petite induction by ethidium bromide.In one strain, S288C, petite induction by 100 g/ml ethidium bromide is extremely slow under certain conditions. Mitochondria isolated from S288C lack the ethidium bromide stimulated nuclease activity found in D243-4A, a strain which shows triphasic kinetics of petite formation. This enzyme may, therefore, be responsible for the initial phase of rapid petite formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号