首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Experiments have been performed to examine methods to determinehydraulic conductivity and diffusional permeability in disksof red beet (Beta vulgaris) and Jerusalem artichoke (Helianthustuberosus). 2. The half-time for the weight change caused by transferringdisks between pure water and a sucrose solution, or vice-versa,has been shown to be linearly dependent on the square of thedisk thickness. 3. The efflux kinetics of sucrose from these disks are alsocharacterized by a half-time linearly dependent on the squareof the disk thickness. 4. It is concluded that extracellular solute diffusion, andnot hydraulic conductivity, is the principal rate-controllingfactor in experiments of this type. 5. Efflux studies with tritiated water also show a characteristichalf-time which is linearly dependent on the square of the diskthickness. The cell membrane does not constitute a sufficientbarrier to diffusion fot its diffusional permeability to bedetermined.  相似文献   

2.
THE PERMEABILITY OF THE AMPHIBIAN OOCYTE NUCLEUS, IN SITU   总被引:8,自引:4,他引:4       下载免费PDF全文
Ultralow temperature radioautography, suitable for the quantitative localization of diffusible solutes, was used to study the permeability of the nuclear envelope in the intact amphibian oocyte Sucrose-3H solutions were injected into mature oocytes, in volumes of 0 016–0 14% of that of the cell, and the subsequent movement of the solute was recorded. The resultant radioautographs show diffusion gradients in the cytoplasm and nucleus, and concentration gradients across the nuclear envelope Analysis of these gradients discloses that the nuclear envelope is as permeable as a comparable structure composed of cytoplasm, and is about 108 times more permeable than the oocyte plasma membrane The diffusion coefficient of sucrose in cytoplasm is 2 x 10-6 cm2/sec, or about one-third its diffusivity in pure water. This reduction can probably be accounted for by an effective lengthening of the diffusional path because of obstruction by cytoplasmic inclusions. The nuclear: cytoplasmic sucrose concentration ratio at diffusional equilibrium is about 3 05, or 1.6 times as great as expected from the water content of the two compartments This asymmetry is attributed to an unavailability of 36% of the cytoplasmic water as solvent Finally, sucrose entry into oocytes from a bathing solution was monitored by whole cell analysis and radioautography. These and the microinjection results are consistent with a model in which sucrose entry into the cell is entirely limited by the permeability of the plasma membrane. The results are inconsistent with cell models that hypothesize a short-circuit transport route from the extracellular compartment to the nucleus, and with models in which cytoplasmic diffusion is viewed as limiting the rate of solute permeation.  相似文献   

3.
The effect of 0.5 ppm ozone for 0.5-1 hr on plant cell membrane permeability was ascertained. Permeabilities to both water and solutes were estimated by measuring leaf disc weight changes and following tritiated water and 86Rb fluxes. Measurements were made immediately after ozone exposure and 24 hr after exposure. The reflection coefficient, σ, an index of solute permeability, decreased in ozone-treated primary leaves of pinto bean (Phaseolus vulgaris). The latter indicates an increase in membrane solute permeability or internal solute leakage. Water and THO flux estimates both indicated a decrease in membrane permeability to water; both the hydraulic conductivity (Lp) and the water diffusional coefficient (LD) apparently decreased, an anomaly which is discussed. These data indicate that ozone has a direct effect on membrane function by altering permeability characteristics. We assume from these data that cell membranes are primary target sites for ozone injury.  相似文献   

4.
SYNOPSIS. This paper reviews present knowledge on the transportmechanisms responsible for integumentary uptake of exogenousmonosaccharides and amino acids in marine invertebrates. Thediscussion is based on work in the author's laboratory, usingthe polychaete Nereis diversicolor Miiller as the main experimentalmodel. Comparison is made with solute transport in other animalepithelia, especially those of vertebrate origin. Transport across the apical epidermal membrane via specifictransport systems or by diffusion in the lipoid plasmalemmais described with emphasis on the trans-membrane concentrationgradients maintained. The epidermal cells seem to be functionallyasymmetric, favoring outflux across the basolateral membrane(into the extracellular fluid) over that across the apical one.The intercellular spaces provide a paracellular pathway fornutrient diffusion from the extracellular fluid to the exterior,but the quantitative importance of this route needs furtherinvestigation. Although a net uptake from low external concentrationsinto the epidermis is clearly established, there is insufficientevidence specifically related to a true trans-epidermal netflow, a problem of critical importance for evaluating the nutritionalrole of exogenous organic material. Accumulating transport systemsin the apical membrane seem to be involved in solute recyclingat the cuticular-epidermal interface, thereby decreasing theeffective epidermal permeability to diffusional loss of valuablenutrients.  相似文献   

5.
The nonelectrolyte permeability of planar lipid bilayer membranes   总被引:9,自引:4,他引:5       下载免费PDF全文
The permeability of lecithin bilayer membranes to nonelectrolytes is in reasonable agreement with Overton's rule. The is, Pd alpha DKhc, where/Pd is the permeability coefficient of a solute through the bilayer, Khc is its hydrocarbon:water partition coefficient, and D is its diffusion coefficient in bulk hydrocarbon. The partition coefficients are by far the major determinants of the relative magnitudes of the permeability coefficients; the diffusion coefficients make only a minor contribution. We note that the recent emphasis on theoretically calculated intramembranous diffusion coefficients (Dm'S) has diverted attention from the experimentally measurable and physiologically relevant permeability coefficients (Pd'S) and has obscured the simplicity and usefulness of Overton's rule.  相似文献   

6.
Permeability studies on red cell membranes of dog, cat, and beef   总被引:7,自引:6,他引:1  
Water permeability coefficients of dog, cat, and beef red cell membranes have been measured under an osmotic pressure gradient. The measurements employed a rapid reaction stop flow apparatus with which cell shrinking was measured under a relative osmotic pressure gradient of 1.25 to 1.64 times the isosmolar concentration. For the dog red cell the osmotic permeability coefficient is 0.36 cm4/(sec, osmol). The water permeability coefficient for the dog red cell under a diffusion gradient was also measured (rate constant = 0.10/msec). The ratio between the two permeabilities was used to calculate an equivalent pore radius of 5.9 A. This value agrees welt with an equivalent pore radius of 6.2 A obtained from reflection coefficients of nonelectrolyte water-soluble molecules, and is consistent with data on the permeability of the dog red cell membrane to glucose. These data provide evidence supporting the existence of equivalent pores in single biological membranes.  相似文献   

7.
We have studied the permeability of a series of hydrophilic amides and ureas through the red cell membrane by determining the three phenomenological coefficients which describe solute-membrane interaction: the hydraulic permeability (Lp), the phenomenological permeability coefficient (omega i) and the reflection coefficient (sigma i). In 55 experiments on nine solutes, we have determined that the reflection coefficient (after a small correction for solute permeation by membrane dissolution) is significantly less than 1.0 (P less than 0.003, t-test), which provides very strong evidence that solute and water fluxes are coupled as they cross the red cell membrane. It is proposed that the aqueous channel is a tripartite assembly, comprising H-bond exchange regions at both faces of the membrane, joined by a narrower sieve-specific region which crosses the lipid. The solutes bind to the H-bond exchange regions to exchange their solvation shell with the H-bonds of the channel; the existence of these regions is confirmed by the finding that the permeation of all the amides and ureas requires binding to well-characterized sites with Km values of 0.1-0.5 M. The sieve-specific regions provide the steric restraints which govern the passage of the solutes according to their size; their existence is shown by the findings that: (1) the reflection coefficient (actually the function [1-corrected sigma i]) is linearly dependent upon the solute molecular diameter; and (2) the permeability coefficient is linearly dependent upon solute molar volume. These several observations, taken together, provide strong arguments which lead to the conclusion that the amides and urea cross the red cell membrane in an aqueous pore.  相似文献   

8.
When human red cells are treated with the mercurial sulfhydryl reagent, p-chloromercuribenzene sulfonate, osmotic water permeability is suppressed and only diffusional water permeability remains (Macey, R.I. and Farmer, R.E.L. (1970) Biochim. Biophys. Acta 211, 104–106). It has been suggested that the route for the remaining water permeation is by diffusion through the membrane lipids. However, after making allowance for the relative lipid area of the membrane, the water diffusion coefficient through lipid bilayers which contain cholesterol is too small by a factor of two or more. We have measured the permeability coefficient of normal human red cells by proton T1 NMR and obtained a value of 4.0 · 10?3 cm · s?1, in good agreement with published values. In order to study permeation-through red cell lipids we have perturbed extracted red cell lipids with the lipophilic anesthetic, halothane, and found that halothane increases water permeability. The same concentration of halothane has no effect on the water permeability of human red cells, after maximal pCMBS inhibition. In order to compare halothane mobility in extracted red cell membrane lipids with that in red cell ghost membranes, we have studied halothane quenching of N-phenyl-1-naphthylamine by equilibrium fluorescence and fluorescence lifetime methods. Since halothane mobility is similar in these two preparations, we have concluded that the primary route of water diffusion in pCMBS-treated red cells is not through membrane lipids, but rather through a membrane protein channel.  相似文献   

9.
Summary The hydrodynamic permeability of normal term human amnion is measured using pressure-driven bulk flows. The permeability coefficient is found to vary widely, variations between tissues taken from different subjects being significantly greater than those from samples taken from one subject. No correlation is observed between this coefiicient and either tissue thickness or the diffusional permeability coefficient measured using tritiated water; it is, however, found to be very sensitive to epithelial damage.The results indicate that the bulk transport of water through amnion is largely controlled by the amniotic epithelium alone. This contrasts with water diffusion which is a function of total membrane thickness. The two permeability coefficients cannot therefore be employed to formulate an equivalent pore model of the whole tissue. An equivalent pore model of the epithelial layer only is considered and the results assessed in the light of other evidence bearing on the structure of amnion. It is concluded that the epithelial layer is intersected by a large number of pores with radius 10 to 30 Å, and a smaller number of much broader pores.  相似文献   

10.
The transport of sterols incorporated into the lecithin bilayer of small unilamellar liposomes through a model membrane was studied. A two-chamber diffusion cell containing liposomes with incorporated [4-14C]cholesterol or β-[4-14C]sitosterol in the donor chamber and liposomes with unlabeled cholesterol in the receiver chamber was used. The permeability coefficients of the sterols through silastic rubber membranes which served as a model membrane were measured. The permeability for cholesterol incorporated into liposomes in a phosphatidyl choline/cholesterol molar ratio of 1 : 1, produced by sonication for 1 h, and subsequent centrifugation at 100000 × g for 1 h, was 1.6 · 10?8 cm sec?1. Dilution of the liposome suspension did not change the permeability coefficient significantly. The permeability coefficient of sitosterol incorporated into liposomes was about 4-times smaller than that of cholesterol. These results suggest that the sterols were delivered to the silastic membrane by the intact liposomes and that free solute was not involved in the transport to the membrane to a significant degree. The large differences in the permeability coefficients between cholesterol and sitosterol indicate that an aqueous interfacial barrier was crossed by the sterol during the delivery to the membrane.  相似文献   

11.
The longitudinal diffusion of a homologous series of monoamides through lecithin-water lamellar phases with aqueous channel widths of 16–27 Å has been studied. The diffusion coefficients relative to water of the hydrophilic amides, formamide and acetamide, depend logarithmically on solute molar volume, as previously demonstrated in human red cells. Aqueous diffusion of amides in red-cell membranes is similar to that in a lecithin-water phase of aqueous channel width less than 16 Å, the smallest channel width used. Partition coefficients of the lipophilic amides, valeramide and isovaleramide, between lecithin vesicles and water are 1.64 and 1.15 at 20 °C. These data enabled us to compute a valeramide diffusion coefficient of 6.5 · 10−7cm2 · s−1 at 20 °C in the lipid region of a lamellar phase containing 30% water about one order of magnitude greater than the diffusion coefficient of spin-labelled analogs of phosphatidylcholine. The discrimination between the permeability coefficients of valeramide and isovaleramide is more than twice as great in the human red cell as between lipid diffusion coefficients in a phase containing 8% water. This suggests that the lipid region of the human red cell is more highly organized than lipid in the lecithin-water lamellar phase.  相似文献   

12.
Antidiuretic hormone (ADH) induces a large increase in the water permeability of the luminal membrane of toad urinary bladder. Measured values of the diffusional water permeability coefficient, Pd(w), are spuriously low, however, because of barriers within the tissue, in series with the luminal membrane, that impede diffusion. We have now determined the water permeability coefficient of these series barriers in fully stretched bladders and find it to be approximately 6.3 X 10(- 4) cm/s. This is equivalent to an unstirred aqueous layer of approximately 400 microns. On the other hand, the permeability coefficient of the bladder to a lipophilic molecule, hexanol, is approximately 9.0 X 10(-4) cm/s. This is equivalent to an unstirred aqueous layer of only 100 microns. The much smaller hindrance to hexanol diffusion than to water diffusion by the series barriers implies a lipophilic component to the barriers. We suggest that membrane-enclosed organelles may be so tightly packed within the cytoplasm of granular epithelial cells that they offer a substantial impediment to diffusion of water through the cell. Alternatively, the lipophilic component of the barrier could be the plasma membranes of the basal cells, which cover most of the basement membrane and thereby may restrict water transport to the narrow spaces between basal and granular cells.  相似文献   

13.
The low permeability of the mycobacterial cell wall is thought to contribute to the intrinsic drug resistance of mycobacteria. In this study, the permeability of the Mycobacterium tuberculosis cell wall is studied by computer simulation. Thirteen known drugs with diverse chemical structures were modeled as solutes undergoing transport across a model for the M. tuberculosis cell wall. The properties of the solute-membrane complexes were investigated by means of molecular dynamics simulation, especially the diffusion coefficients of the solute molecules inside the cell wall. The molecular shape of the solute was found to be an important factor for permeation through the M. tuberculosis cell wall. Predominant lateral diffusion within, as opposed to transverse diffusion across, the membrane/cell wall system was observed for some solutes. The extent of lateral diffusion relative to transverse diffusion of a solute within a biological cell membrane may be an important finding with respect to absorption distribution, metabolism, elimination, and toxicity properties of drug candidates. Molecular similarity measures among the solutes were computed, and the results suggest that compounds having high molecular similarity will display similar transport behavior in a common membrane/cell wall environment. In addition, the diffusion coefficients of the solute molecules across the M. tuberculosis cell wall model were compared to those across the monolayers of dipalmitoylphosphatidylethanolamine and dimyristoylphosphatidylcholine, are two common phospholipids in bacterial and animal membranes. The differences among these three groups of diffusion coefficients were observed and analyzed.  相似文献   

14.
The permeability of human red cell membrane to 90 different molecules has been measured. These solutes cover a wide spectrum of nonelectrolytes with varying chemical structure, chain length, lipid solubility, chemical reactive group, ability to form hydrogen bonds, and other properties. In general, the present study suggests that the permeability of red cell membrane to a large solute is determined by lipid solubility, its molecular size, and its hydrogen-bonding ability. The permeability coefficient increases with increasing lipid solubility and decreasing ability to form hydrogen bonds, whereas it decreases with increasing molecular size. In the case of small solutes, the predominant diffusion factor is steric hindrance augmented by lipid solubility. It is also found that replacement of a hydroxyl group by a carbonyl group or an ether linkage tends to increase permeability. On the other hand, replacement of a hydroxyl group by an amide group tends to decrease the permeability coefficient.  相似文献   

15.
Nonelectrolyte diffusion across lipid bilayer systems   总被引:6,自引:6,他引:0       下载免费PDF全文
The permeability coefficients of a homologous series of amides from formamide through valeramide have been measured in spherical bilayers prepared by the method described by Jung. They do not depend directly on the water:ether partition coefficient which increases regularly with chain length. Instead there is a minimum at acetamide. This has been ascribed to the effect of steric hindrance on diffusion within the bilayer which increases with solute molar volume. This factor is of the same magnitude, though opposite in sign to the effect of lipid solubility, thus accounting for the minimum. The resistance to passage across the interface has been compared to the resistance to diffusion within the membrane. As the solute chain length increases the interface becomes more important, until for valeramide it comprises about 90% of the total resistance. Interface resistance is also important in urea permeation, causing urea to permeate much more slowly than an amide of comparable size, after allowance is made for the difference in the water:ether partition coefficient. Amide permeation coefficients have been compared with relative liposome permeation data measured by the rate of liposome swelling. The ratios of the two measures of permeation vary between 3 and 16 for the homologous amides. The apparent enthalpy of liposome permeation has been measured and found to be in the neighborhood of 12 kcal mol-1 essentially independent of chain length. Comparison of the bilayer permeability coefficients with those of red cells shows that red cell permeation by the lipophilic solutes resembles that of the bilayers, whereas permeation by the hydrophilic solutes differs significantly.  相似文献   

16.
The extracellular matrix of cartilage is a charged porous fibrous material. Transport phenomena in such a medium are very complex. In this study, solute diffusive flux and convective flux in porous fibrous media were investigated using a continuum mixture theory approach. The intrinsic diffusion coefficient of solute in the mixture was defined and its relation to drag coefficients was presented. The effect of mechanical loading on solute diffusion in cartilage under unconfined compression with a frictionless boundary condition was analyzed numerically using the model developed. Both strain-dependent hydraulic permeability and diffusivity were considered. Analyses and results show that (1) In porous media, the convective velocity for each solute phase is different. (2) The solute convection in tissue is governed by the relative convective velocity (i.e., relative to solid velocity). (3) Under the assumption that all the frictional interactions among solutes are negligible, the relative convective velocity for α-solute phase is equal to the relative solvent velocity multiplied by its convective coefficient (H α) which is also known as the hindrance factor in the literature. The relationship between the convective coefficient and the relative diffusivity of solute is presented. (4) Solute concentration profile within the cartilage sample depends on the phase of dynamic compression.  相似文献   

17.
The leech photoreceptor forms a unicellular epithelium: every cell surrounds an extracellular “vacuole” that is connected to the remaining extracellular space via narrow clefts containing pleated septate junctions. We analyzed the complete structural layout of all septa within the junctional complex in elastic brightfield stereo electron micrographs of semithin serial sections from photoreceptors infiltrated with colloidal lanthanum. The septa form tortuous interseptal corridors that are spatially continuous, and open ended basally and apically. Individual septa seem to be impermeable to lanthanum; interseptal corridors form the only diffusional pathway for this ion. The junctions form no diffusion barrier for the electron-dense tracer Ba2+, but they hinder the diffusion of various hydrophilic fluorescent dyes as demonstrated by confocal laser scanning microscopy (CLSM) of live cells. Even those dyes that penetrate gap junctions do not diffuse beyond the septate junctions. The aqueous diffusion pathway within the septal corridors is, therefore, less permeable than the gap-junctional pore. Our morphological results combined with published electrophysiological data suggest that the septa themselves are not completely tight for small physiologically relevant ions. We also examined, by CLSM, whether the septate junctions create a permeability barrier for the lateral diffusion of fluorescent lipophilic dyes incorporated into the peripheral membrane domain. AFC16, claimed to remain in the outer membrane leaflet, does not diffuse beyond the junctional region, whereas DiIC16, claimed to flip-flop, does. Thus, pleated septate junctions, like vertebrate tight junctions, contribute to the maintenance of cell polarity.  相似文献   

18.
This paper reports a theoretical analysis of osmotic transients and an experimental evaluation both of rapid time resolution of lumen to bath osmosis and of bidirectional steady-state osmosis in isolated rabbit cortical collecting tubules exposed to antidiuretic hormone (ADH). For the case of a membrane in series with unstirred layers, there may be considerable differences between initial and steady-state osmotic flows (i.e., the osmotic transient phenomenon), because the solute concentrations at the interfaces between membrane and unstirred layers may vary with time. A numerical solution of the equation of continuity provided a means for computing these time-dependent values, and, accordingly, the variation of osmotic flow with time for a given set of parameters including: Pf (cm s–1), the osmotic water permeability coefficient, the bulk phase solute concentrations, the unstirred layer thickness on either side of the membrane, and the fractional areas available for volume flow in the unstirred layers. The analyses provide a quantitative frame of reference for evaluating osmotic transients observed in epithelia in series with asymmetrical unstirred layers and indicate that, for such epithelia, Pf determinations from steady-state osmotic flows may result in gross underestimates of osmotic water permeability. In earlier studies, we suggested that the discrepancy between the ADH-dependent values of Pf and PDDw (cm s–1, diffusional water permeability coefficient) was the consequence of cellular constraints to diffusion. In the present experiments, no transients were detectable 20–30 s after initiating ADH-dependent lumen to bath osmosis; and steady-state ADH-dependent osmotic flows from bath to lumen and lumen to bath were linear and symmetrical. An evaluation of these data in terms of the analytical model indicates: First, cellular constraints to diffusion in cortical collecting tubules could be rationalized in terms of a 25-fold reduction in the area of the cell layer available for water transport, possibly due in part to transcellular shunting of osmotic flow; and second, such cellular constraints resulted in relatively small, approximately 15%, underestimates of Pf.  相似文献   

19.
A model connective-tissue system was developed that is amenable to the determination of permeability coefficients of diffusing solutes. The system involves the culture of 13-day chick-embryo chondrocytes on a Millipore filter (HA:0.45 micron pore size) to form what is, in effect, a confluent, extremely thin cartilage slice of uniform thickness. These cultured chondrocyte membranes were used to measure the steady-state flux of radioactively labelled low-molecular-weight solutes and micro-ions. Similarly, the permeability coefficients of either radioactively labelled or enzymically active proteins across the membranes were determined. The membrane was found to have no marked effects on the diffusional behaviour of low-molecular-weight non-electrolytes (water, proline, ribose, glucose, sorbitol, raffinose). For micro-ions (Na+, SO42-, Cl-, glutamate, glucuronate,), the diffusive behaviour was found to be markedly affected by the ionic strength of the solvent used in a manner which was consistent with a Donnan distribution resulting from the immobilized proteoglycans. Globular proteins permeated the membrane at rates which decreased as the molecular size of the diffusing solute increased. The apparent diffusion rates of fibrinogen and of collagen through the membranes were greater than would be expected on the basis of their diffusion coefficients in free solution. Reasons for this behaviour are discussed.  相似文献   

20.
The Coupling of Solute Fluxes in Membranes   总被引:4,自引:4,他引:0  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号