首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Selective vulnerability of particular groups of neurons is a characteristic of the aging nervous system. We have studied the role of neurotrophin (NT) signalling in this phenomenon using rat sympathetic (SCG) neurons projecting to cerebral blood vessels (CV) and iris which are, respectively, vulnerable to and protected from atrophic changes during old age. RT-PCR was used to examine NT expression in iris and CV in 3- and 24-month-old rats. NGF and NT3 expression in iris was substantially higher compared to CV; neither target showed any alterations with age. RT-PCR for the principal NT receptors, trkA and p75, in SCG showed increased message during early postnatal life. However, during mature adulthood and old age, trkA expression remained stable while p75 declined significantly over the same period. In situ hybridization was used to examine receptor expression in subpopulations of SCG neurons identified using retrograde tracing. Eighteen to 20 h following local treatment of iris and CV with NGF, NT3 or vehicle, expression of NT receptor protein and mRNA was higher in iris- compared with CV-projecting neurons from both young and old rats. NGF and NT3 treatment had no effect on NT receptor expression in CV-projecting neurons at either age. However, similar treatment up-regulated p75 and trkA expression in iris-projecting neurons from 3-month-old, but not 24-month-old, rats. We conclude that lifelong exposure to low levels of NTs combined with impaired plasticity of NT receptor expression are predictors of neuronal vulnerability to age-related atrophy.  相似文献   

3.
Manipulation of neurotrophin (NT) signalling by administration or depletion of NTs, by transgenic overexpression or by deletion of genes coding for NTs and their receptors has demonstrated the importance of NT signalling for the survival and differentiation of neurons in sympathetic and dorsal root ganglia (DRG). Combination with mutation of the proapoptotic Bax gene allows the separation of survival and differentiation effects. These studies together with cell culture analysis suggest that NT signalling directly regulates the differentiation of neuron subpopulations and their integration into neural networks. The high-affinity NT receptors trkA, trkB and trkC are restricted to subpopulations of mature neurons, whereas their expression at early developmental stages largely overlaps. trkC is expressed throughout sympathetic ganglia and DRG early after ganglion formation but becomes restricted to small neuron subpopulations during embryogenesis when trkA is turned on. The temporal relationship between trkA and trkC expression is conserved between sympathetic ganglia and DRG. In DRG, NGF signalling is required not only for survival, but also for the differentiation of nociceptors. Expression of neuropeptides calcitonin gene-related peptide and substance P, which specify peptidergic nociceptors, depends on nerve growth factor (NGF) signalling. ret expression indicative of non-peptidergic nociceptors is also promoted by the NGF-signalling pathway. Regulation of TRP channels by NGF signalling might specify the temperature sensitivity of afferent neurons embryonically. The manipulation of NGF levels “tunes” heat sensitivity in nociceptors at postnatal and adult stages. Brain-derived neurotrophic factor signalling is required for subpopulations of DRG neurons that are not fully characterized; it affects mechanical sensitivity in slowly adapting, low-threshold mechanoreceptors and might involve the regulation of DEG/ENaC ion channels. NT3 signalling is required for the generation and survival of various DRG neuron classes, in particular proprioceptors. Its importance for peripheral projections and central connectivity of proprioceptors demonstrates the significance of NT signalling for integrating responsive neurons in neural networks. The molecular targets of NT3 signalling in proprioceptor differentiation remain to be characterized. In sympathetic ganglia, NGF signalling regulates dendritic development and axonal projections. Its role in the specification of other neuronal properties is less well analysed. In vitro analysis suggests the involvement of NT signalling in the choice between the noradrenergic and cholinergic transmitter phenotype, in the expression of various classes of ion channels and for target connectivity. In vivo analysis is required to show the degree to which NT signalling regulates these sympathetic neuron properties in developing embryos and postnatally. U.E. is supported by the DFG (Er145-4) and the Gemeinnützige Hertie-Stiftung.  相似文献   

4.
Sympathetic neurons comprise a population of postmitotic, tyrosine hydroxylase expressing cells whose survival is dependent upon nerve growth factor (NGF) both in vivo and in vitro. However, during development precursors to rat sympathetic neurons in the thoracolumbar region are not responsive to NGF because they lack the signal transducing NGF receptor, trkA. We have previously shown that acquisition of trkA expression is sufficient to confer a functional response to NGF. Here we describe four subpopulations of thoracolumbar sympathetic neuroblasts which are mitotically active and unresponsive to NGF at E13.5 of rat gestation, but differ based upon their neurotrophic responsiveness in vitro. The survival in culture of the largest sympathetic subpopulation is mediated by neurotrophin-3 (NT-3) or glial-derived neurotrophic factor (GDNF), whereas the cell survival of two smaller subpopulations of neuroblasts are mediated by either solely GDNF or solely NT-3. Finally, we identify a subpopulation of sympathetic neuroblasts in the thoracolumbar region whose survival, exit from the cell cycle, induction of trkA expression, and consequent acquisition of NGF responsiveness in culture appear to be neurotrophin independent and cell autonomous. These subpopulations reflect the diversity of neurotrophic actions that occur in the proper development of sympathetic neurons.  相似文献   

5.
The neurotrophins NGF and NT3 collaborate to support development of sympathetic neurons. Although both promote axonal extension via the TrkA receptor, only NGF activates retrograde transport of TrkA endosomes to support neuronal survival. Here, we report that actin depolymerization is essential for initiation of NGF/TrkA endosome trafficking and that?a Rac1-cofilin signaling module associated with TrkA early endosomes supports their maturation to retrograde transport-competent endosomes. These actin-regulatory endosomal components are absent from NT3/TrkA endosomes, explaining the failure of NT3 to support retrograde TrkA transport and survival. The inability of NT3 to activate Rac1-GTP-cofilin signaling is likely due to the labile nature of NT3/TrkA complexes within the acidic environment of TrkA early endosomes. Thus, TrkA endosomes associate with actin-modulatory proteins to promote F-actin disassembly, enabling their maturation into transport-competent signaling endosomes. Differential control of this process explains how NGF but not NT3 supports retrograde survival of sympathetic neurons.  相似文献   

6.
Nerve growth factor (NGF) is a potent regulator of sympathetic neuronal function in both developing and adult animals. This article reviews the evidence published in recent years indicating that another member of the NGF family, neurotrophin 3 (NT3), plays both a complementary and overlapping role in the development and maturation of sympathetic neurons. In migratory neural crest cells, expression of the high-affinity receptor, trkC, and promotion of mitosis by NT3 suggest an involvement in gangliogenesis, since sympathetic neuroblasts express both NT3 and trkC and require NT3 for their proliferation, differentiation, and survival, it has been proposed that the factor acts at this developmental stage as an autocrine or paracrine factor. However, NT3 also acts in parallel with NGF to promote the survival of postmitotic neurons during late development. Both trkC and trkA are expressed in sympathetic neurons and function as high-affinity receptors for NT3. NT3 is synthesized in sympathetic effector tissues and the endogenous factor is retrogradely transported to accumulate within the cell soma. Thus, in addition to its role in the differentiation of sympathetic neurons, NT3, like NGF, is also an effector tissue-derived neurotrophic factor for these neurons in maturity.  相似文献   

7.
8.
Developmental sympathetic neuron death is determined by functional interactions between the TrkA/NGF receptor and the p75 neurotrophin receptor (p75NTR). A key question is whether p75NTR promotes apoptosis by directly inhibiting or modulating TrkA activity, or by stimulating cell death independently of TrkA. Here we provide evidence for the latter model. Specifically, experiments presented here demonstrate that the presence or absence of p75NTR does not alter Trk activity or NGF- and NT-3-mediated downstream survival signaling in primary neurons. Crosses of p75NTR-/- and TrkA-/- mice indicate that the coincident absence of p75NTR substantially rescues TrkA-/- sympathetic neurons from developmental death in vivo. Thus, p75NTR induces death regardless of the presence or absence of TrkA expression. These data therefore support a model where developing sympathetic neurons are "destined to die" by an ongoing p75NTR-mediated apoptotic signal, and one of the major ways that TrkA promotes neuronal survival is by silencing this ongoing death signal.  相似文献   

9.
《The Journal of cell biology》1993,123(6):1555-1566
We have investigated the role of trkA, the tyrosine kinase NGF receptor, in mediating the survival response of embryonic neurons to NGF. Embryonic trigeminal mesencephalic (TMN) neurons, which normally survive in the presence of brain-derived neurotrophic factor (BDNF) but not NGF, become NGF-responsive when microinjected with an expression vector containing trkA cDNA. In contrast, microinjection of ciliary neurotrophic factor (CNTF)-dependent embryonic ciliary neurons with the same construct does not result in the acquisition of NGF responsiveness by these neurons despite de novo expression of trkA mRNA and protein. The failure of trkA to result in an NGF-promoted survival response in ciliary neurons is not due to absence of the low-affinity NGF receptor, p75, in these neurons. Quantitative RT/PCR and immunocytochemistry showed that TMN and ciliary neurons both express p75 mRNA and protein. These findings not only provide the first direct experimental demonstration of trkA mediating a physiological response in an appropriate cell type, namely NGF-promoted survival of embryonic neurons, but indicate that not all neurons are able to respond to a trkA-mediated signal transduction event.  相似文献   

10.
The survival and growth of embryonic and postnatal sympathetic neurons is dependent on both NGF and NT3. While it has been established that adult sensory neurons survive independently of neurotrophins, the case is less clear for adult sympathetic neurons, where the studies of survival responses to neurotrophins have relied upon using long-term cultures of embryonic neurons. We have previously established a method to culture purified young (7 day) and adult (12 week) sympathetic neurons isolated from adult rat superior cervical ganglia (SCG) in order to examine their survival and growth responses to neurotrophins. We now show that by 12 weeks after birth virtually all neurons (90%) survive for 24 h in the absence of neurotrophins. Neuron survival is unaffected by treatment with anti-NGF antibodies (anti-NGF) or with the tyrosine kinase inhibitor, K252a, confirming the lack of dependence on extrinsic neurotrophins. Duration of neuron survival in culture increases significantly between E19 and day 7 and week 12 posnatally, and is similarly unaffected by the presence of anti-NGF or K252a. Saturating concentrations of NGF and NT3 are equipotent in promoting neurite extension and branching. However, we find that NGF is more potent than NT3 in promoting neurite growth, irrespective of postnatal age. The growth-promoting effects of NGF and NT3 are almost entirely blocked by K252a, demonstrating that these effects are mediated via activation of Trk receptors, which therefore appear to remain crucial to plasticity of adult neurons. Our results indicate that maturing neurons acquire protection against cell death, induced in the absence of neurotrophin, while retaining their growth responsiveness to these factors.  相似文献   

11.
The survival and growth of embryonic and postnatal sympathetic neurons is dependent on both NGF and NT3. While it has been established that adult sensory neurons survive independently of neurotrophins, the case is less clear for adult sympathetic neurons, where the studies of survival responses to neurotrophins have relied upon using long‐term cultures of embryonic neurons. We have previously established a method to culture purified young (7 day) and adult (12 week) sympathetic neurons isolated from adult rat superior cervical ganglia (SCG) in order to examine their survival and growth responses to neurotrophins. We now show that by 12 weeks after birth virtually all neurons (90%) survive for 24 h in the absence of neurotrophins. Neuron survival is unaffected by treatment with anti‐NGF antibodies (anti‐NGF) or with the tyrosine kinase inhibitor, K252a, confirming the lack of dependence on extrinsic neurotrophins. Duration of neuron survival in culture increases significantly between E19 and day 7 and week 12 posnatally, and is similarly unaffected by the presence of anti‐NGF or K252a. Saturating concentrations of NGF and NT3 are equipotent in promoting neurite extension and branching. However, we find that NGF is more potent than NT3 in promoting neurite growth, irrespective of postnatal age. The growth‐promoting effects of NGF and NT3 are almost entirely blocked by K252a, demonstrating that these effects are mediated via activation of Trk receptors, which therefore appear to remain crucial to plasticity of adult neurons. Our results indicate that maturing neurons acquire protection against cell death, induced in the absence of neurotrophin, while retaining their growth responsiveness to these factors. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 295–305, 2001  相似文献   

12.
In this report we examine the biological and molecular basis of the control of sympathetic neuron differentiation and survival by NGF and neurotrophin-3 (NT-3). NT-3 is as efficient as NGF in mediating neuritogenesis and expression of growth-associated genes in NGF-dependent sympathetic neurons, but it is 20–40fold less efficient in supporting their survival. Both NT-3 and NGF induce similar sustained, long-term activation of TrkA, while NGF is 10-fold more efficient than NT-3 in mediating acute, short-term TrkA activity. At similar acute levels of TrkA activation, NT-3 still mediates neuronal survival two- to threefold less well than NGF. However, a mutant NT-3 that activates TrkC, but not TrkA, is unable to support sympathetic neuron survival or neuritogenesis, indicating that NT3–mediated TrkA activation is necessary for both of these responses. On the basis of these data, we suggest that NGF and NT-3 differentially regulate the TrkA receptor both with regard to activation time course and downstream targets, leading to selective regulation of neuritogenesis and survival. Such differential responsiveness to two ligands acting through the same Trk receptor has important implications for neurotrophin function throughout the nervous system.  相似文献   

13.
A M Davies  L Minichiello    R Klein 《The EMBO journal》1995,14(18):4482-4489
Neurotrophins promote neuronal survival by signalling through Trk receptor tyrosine kinases: nerve growth factor signals through TrkA, brain-derived neurotrophic factor (BDNF) and neurotrophin (NT)4 through TrkB and NT3 through TrkC. Although studies in some, but not all, cell lines indicate that NT3 can also signal through TrkA and TrkB, it is not known if such signalling can occur in neurons. We show that NT3 can promote the in vitro survival of sensory and sympathetic neurons isolated from embryos that are homozygous for a null mutation in the trkC gene. During the mid-embryonic period, NT3 promoted the survival of as many trigeminal and nodose neurons as the preferred neurotrophins, NGF and BDNF. However, later in development, these neurons lost their ability to respond to NT3. NT3 also promoted the survival of almost all sympathetic neurons, but no decrease in effectiveness was observed during development. Trigeminal neurons from trkC-/- trkA-/- embryos did not respond to NT3 and nodose neurons from trkB-/- embryos likewise failed to respond to NT3. These results show that NT3 can signal through TrkA and TrkB in neurons at certain stages of development and may explain why the phenotype of NT3-/- mice is more severe than that of trkC-/- mice.  相似文献   

14.
15.
16.
17.
Kuruvilla R  Zweifel LS  Glebova NO  Lonze BE  Valdez G  Ye H  Ginty DD 《Cell》2004,118(2):243-255
A fundamental question in developmental biology is how a limited number of growth factors and their cognate receptors coordinate the formation of tissues and organs endowed with enormous morphological complexity. We report that the related neurotrophins NGF and NT-3, acting through a common receptor, TrkA, are required for sequential stages of sympathetic axon growth and, thus, innervation of target fields. Yet, while NGF supports TrkA internalization and retrograde signaling from distal axons to cell bodies to promote neuronal survival, NT-3 cannot. Interestingly, final target-derived NGF promotes expression of the p75 neurotrophin receptor, in turn causing a reduction in the sensitivity of axons to intermediate target-derived NT-3. We propose that a hierarchical neurotrophin signaling cascade coordinates sequential stages of sympathetic axon growth, innervation of targets, and survival in a manner dependent on the differential control of TrkA internalization, trafficking, and retrograde axonal signaling.  相似文献   

18.
Nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) and are members of the neurotrophin family, a family of neurotrophic factors that also includes neurotrophin (NT) 3 and NT4/5. Neurotrophins have essential roles in the survival, development and differentiation of neurons in the central and peripheral nervous systems. Neurotrophins exert their effects by binding to corresponding receptors which are formed by the tyrosine protein kinases TrkA, TrkB and TrkC, and the low affinity neurotrophic receptor (p75NTR). In the present study, using immunohistochemistry and quantitative analysis, we have investigated immunoreactivity to BDNF, NGF, TrkB, p75NTR and TrkA in the pelvic ganglia of normal and castrated rats. Neurons of the pelvic ganglia expressed both these neurotrophins and their receptors. After castration the immunoreactivity persisted. However, the number of BDNF- and p75NTR-IR cells statistically significant decreased after castration. These results suggest that castration modulates the expression of neurotrophins and their receptors in pelvic autonomic neurons.  相似文献   

19.
The neurosteroid dehydroepiandrosterone (DHEA), produced by neurons and glia, affects multiple processes in the brain, including neuronal survival and neurogenesis during development and in aging. We provide evidence that DHEA interacts with pro-survival TrkA and pro-death p75(NTR) membrane receptors of neurotrophin nerve growth factor (NGF), acting as a neurotrophic factor: (1) the anti-apoptotic effects of DHEA were reversed by siRNA against TrkA or by a specific TrkA inhibitor; (2) [(3)H]-DHEA binding assays showed that it bound to membranes isolated from HEK293 cells transfected with the cDNAs of TrkA and p75(NTR) receptors (K(D): 7.4 ± 1.75 nM and 5.6 ± 0.55 nM, respectively); (3) immobilized DHEA pulled down recombinant and naturally expressed TrkA and p75(NTR) receptors; (4) DHEA induced TrkA phosphorylation and NGF receptor-mediated signaling; Shc, Akt, and ERK1/2 kinases down-stream to TrkA receptors and TRAF6, RIP2, and RhoGDI interactors of p75(NTR) receptors; and (5) DHEA rescued from apoptosis TrkA receptor positive sensory neurons of dorsal root ganglia in NGF null embryos and compensated NGF in rescuing from apoptosis NGF receptor positive sympathetic neurons of embryonic superior cervical ganglia. Phylogenetic findings on the evolution of neurotrophins, their receptors, and CYP17, the enzyme responsible for DHEA biosynthesis, combined with our data support the hypothesis that DHEA served as a phylogenetically ancient neurotrophic factor.  相似文献   

20.
Colloquium 10: 3     
Previous work has shown that neurotrophins bind to and activate Trk receptors on distal axons, and that neurotrophin‐Trk complexes are internalized and retrogradely transported to cell bodies. Whether retrograde transport of neurotrophins and retrograde neurotrophin‐Trk signalling are necessary for survival remains unclear, and recently published findings are controversial. We are using compartmentalized cultures of sympathetic neurons to address the mechanism of retrograde NGF signalling and survival. We performed survival experiments using either the Trk kinase inhibitor K252a to inhibit TrkA activity in different cellular compartments, or a dominant‐negative form of dynamin, K44A dynamin, to block internalization of NGF‐TrkA complexes. We found that sympathetic neurons supported by NGF acting on distal axons undergo apoptosis when TrkA activity in either cell bodies or distal axons is inhibited by K252a, or when internalization is blocked by K44A dynamin. Results of experiments employing three‐compartment chambers indicate that TrkA signalling is required within cell bodies and distal axons, but not in proximal axons, for retrograde support of survival. Likewise, TrkA activity within distal axons, but not in proximal axons, is required for retrograde transport of [125I] NGF. Finally, peptide‐mediated delivery of affinity‐purified anti‐NGF into cell bodies results in apoptosis of neurons. Taken together, our results support a model in which NGF internalization and retrograde transport and retrograde TrkA signalling are necessary for survival of sympathetic neurons. This work is supported by the NIH and HHMI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号