首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Gpr1 protein of the ascomycetous yeast Yarrowia lipolytica belongs to the poorly characterized Gpr1/Fun34/YaaH protein family, members of which have thus far only been found in prokaryotes and lower eukaryotes. Trans-dominant mutations in the GPR1 gene result in acetic acid sensitivity of cells at low pH. Moreover, Gpr1p is subjected to phosphorylation at serine-37 in a carbon source-dependent manner. Here we show that several mutations within the ORFs of the GPR1 orthologues of Saccharomyces cerevisiae, YCR010c (ATO1) and YNR002c (ATO2), also trans-dominantly induce acetic acid hypersensitivity in this yeast. We demonstrate that the C-termini of mutated Gpr1p, Ycr010cp and Ynr002cp are necessary for the triggering of acetic acid sensitivity. Phosphorylation of Y. lipolytica Gpr1p was also affected by several mutations. Data further suggest that Gpr1p exists in an oligomeric state.  相似文献   

2.
Beta-arrestin1 is an adapter/scaffold for many G protein-coupled receptors during mitogen-activated protein kinase signaling. Phosphorylation of beta-arrestin1 at position Ser-412 is a regulator of beta-arrestin1 function, and in the present study, we showed that insulin led to a time- and dose-dependent increase in beta-arrestin1 Ser-412 phosphorylation, which blocked isoproterenol- and lysophosphatidic acid-induced Ser-412 dephosphorylation and impaired ERK signaling by these G protein-coupled receptor ligands. Insulin treatment also led to accumulation of Ser-412-phosphorylated beta-arrestin1 at the insulin-like growth factor 1 receptor and prevented insulin-like growth factor 1/Src association. Insulin-induced Ser-412 phosphorylation was partially dependent on ERK as treatment with the MEK inhibitor PD98059 inhibited the insulin effect (62% reduction, p = 0.03). Inhibition of phosphatidylinositol 3-kinase by wortmannin did not have a significant effect (9% reduction, p = 0.41). We also found that the protein phosphatase 2A (PP2A) was in a molecular complex with beta-arrestin1 and that the PP2A inhibitor okadaic acid increased Ser-412 phosphorylation. Concomitant addition of insulin and okadaic acid did not produce an additive effect on Ser-412 phosphorylation, suggesting a common mechanism. Small t antigen specifically inhibited PP2A, and in HIRcB cells expressing small t antigen, beta-arrestin1 Ser-412 phosphorylation was increased, and insulin had no further effect. Insulin treatment caused increased beta-arrestin1 Ser-412 phosphorylation, which blocked mitogen-activated protein kinase signaling and internalization by beta-arrestin1-dependent receptors with no effect on beta-adrenergic receptor Gs-mediated cAMP production. These findings provide a new mechanism for insulin-induced desensitization of ERK activation by Galphai-coupled receptors.  相似文献   

3.
Summary Fed-batch fermentations with Penicillum chrysogenum, strain S 3723, were fed with glucose as carbon source or with a mixture of glucose and acetic acid. When 20% of the carbon source was acetic acid, yields of penicillin-V were 25% higher than in fermentations where glucose was the only carbon source in the feed. The increased yield was due to higher specific productivity and/or cell mass. The effect was seen in fermentations where the carbon source was fed at a constant rate and the pH kept automatically at 6.5 by addition of inorganic acid or base, as well as in fermentations where pH controlled the addition of feed.  相似文献   

4.
Phosphorylation of the light-harvesting chlorophyll protein (LHCP) by the thylakoid protein kinase has been examined in the reconstituted chloroplast system. The level of phosphorylation by [32P]Pi was maximal at high light intensity and in the absence of 3-phosphoglycerate; dephosphorylation resulted from a subsequent decrease in light intensity or from the addition of 3-phosphoglycerate. Addition of ribose 5-phosphate, which acts as an ATP 'sink', also caused dephosphorylation. It is concluded that the degree of phosphorylation is dependent on the redox state and energy state of the system, thereby providing a mechanism for adapting light harvesting to the demands of carbon assimilation.  相似文献   

5.
We investigated whether the assembly/disassembly of the 26S proteasome is regulated by phosphorylation/dephosphorylation. The regulatory complex disassembled from the 26S proteasome was capable of phosphorylating the p45/Sug1/Rpt6 subunit, suggesting that the protein kinase is activated upon dissociation of the 26S proteasome or that the phosphorylation site of p45 becomes susceptible to the protein kinase. In addition, the p45-phosphorylated regulatory complex was found to be incorporated into the 26S proteasome. When the 26S proteasome was treated with alkaline phosphatase, it was dissociated into the 20S proteasome and the regulatory complex. Furthermore, the p45 subunit and the C3/alpha2 subunit were cross-linked with DTBP, whereas these subunits were not cross-linked by dephosphorylating the 26S proteasome. These results indicate that the 26S proteasome is disassembled into the constituent subcomplexes by dephosphorylation and that it is assembled by phosphorylation of p45 by a protein kinase, which is tightly associated with the regulatory complex. It was also revealed that the p45 subunit is directly associated with the 20S proteasome alpha-subunit C3 in a phosphorylation-dependent manner.  相似文献   

6.
To understand how enzymatic pathways respond to changing external conditions, the fluxes through the tricarboxylic acid cycle and ancillary reactions were determined under three different growth conditions in Escherichia coli. The velocities through the major steps in each pathway were measured (a) for growth on acetate alone, (b) for growth on acetate plus glucose, and (c) during the transition caused by addition of glucose to cells growing on acetate. During the transition, the carbon flow through the Krebs cycle decreased by a factor of 5 despite an increase in the growth rate of the culture. Under these conditions, the dephosphorylation of isocitrate dehydrogenase caused a 4-fold increase in its activity. This, together with the decreased rate of substrate production and the kinetic parameters of the branch point enzymes, led to a cessation of the flux through the glyoxylate shunt. The decreased rate of acetyl-CoA turnover, not an inhibition of acetate transport, caused a slower rate of acetate uptake in the presence of glucose. The modulation of protein phosphorylation and metabolite levels is one of the regulatory mechanisms which enables the bacterium to make dramatic shifts between metabolic pathways within a fraction of a doubling time.  相似文献   

7.
Guerreiro JF  Mira NP  Sá-Correia I 《Proteomics》2012,12(14):2303-2318
Zygosaccharomyces bailii is the most tolerant yeast species to acetic acid-induced toxicity, being able to grow in the presence of concentrations of this food preservative close to the legal limits. For this reason, Z. bailii is the most important microbial contaminant of acidic food products but the mechanisms behind this intrinsic resistance to acetic acid are very poorly characterized. To gain insights into the adaptive response and tolerance to acetic acid in Z. bailii, we explored an expression proteomics approach, based on quantitative 2DE, to identify alterations occurring in the protein content in response to sudden exposure or balanced growth in the presence of an inhibitory but nonlethal concentration of this weak acid. A coordinate increase in the content of proteins involved in cellular metabolism, in particular, in carbohydrate metabolism (Mdh1p, Aco1p, Cit1p, Idh2p, and Lpd1p) and energy generation (Atp1p and Atp2p), as well as in general and oxidative stress response (Sod2p, Dak2p, Omp2p) was registered. Results reinforce the concept that glucose and acetic acid are coconsumed in Z. bailii, with acetate being channeled into the tricarboxylic acid cycle. When acetic acid is the sole carbon source, results suggest the activation of gluconeogenic and pentose phosphate pathways, based on the increased content of several proteins of these pathways after glucose exhaustion.  相似文献   

8.
In Escherichia coli, the branch point between the Krebs cycle and the glyoxylate bypass is regulated by the phosphorylation of isocitrate dehydrogenase (IDH). Phosphorylation inactivates IDH, forcing isocitrate through the bypass. This bypass is essential for growth on acetate but does not serve a useful function when alternative carbon sources, such as glucose or pyruvate, are also present. When pyruvate or glucose is added to a culture growing on acetate, the cells responded by dephosphorylating IDH and thus inhibiting the flow of isocitrate through the glyoxylate bypass. In an effort to identify the primary rate-limiting step in the response of IDH phosphorylation to alternative carbon sources, we have examined the response rates of congenic strains of E. coli which express different levels of IDH kinase/phosphatase, the bifunctional protein which catalyzes this phosphorylation cycle. The rate of the pyruvate-induced dephosphorylation of IDH was proportional to the level of IDH kinase/phosphatase, indicating that IDH kinase/phosphatase was primarily rate-limiting for dephosphorylation. However, the identity of the primary rate-limiting step appears to depend on the stimulus, since the rate of dephosphorylation of IDH in response to glucose was independent of the level of IDH kinase/phosphatase.  相似文献   

9.
When glucose-repressed, Saccharomyces cerevisiae cannot use acetic acid as a carbon source and is inhibited in growth by high levels of this compound, especially at low pH. Cultures exposed to a 100 mM acetate stress activate both the Hog1p and Slt2p stress-activated MAP kinases. Nevertheless, only active Hog1p, not Slt2p, is needed for the acquisition of acetate resistance. Hog1p undergoes more rapid activation by acetate in pH 4.5, than in pH 6.8 cultures, an indication that the acid may have to enter the cells in order to generate the Hog1p activatory signal. Acetate activation of Hog1p is absent in the ssk1Delta and pbs2Delta mutants, but is present in sho1Delta and ste11Delta, showing that it involves the Sln1p branch of the high-osmolarity glycerol (HOG) pathway signaling to Pbs2p. In low-pH (pH 4.5) cultures, the acetate-activated Hog1p, although conferring acetate resistance, does not generate the GPD1 gene or intracellular glycerol inductions that are hallmarks of activation of the HOG pathway by hyperosmotic stress.  相似文献   

10.
11.
In the cilia of vertebrate olfactory sensory neurons, cytoplasmic Ca(2+) concentration increases in response to odorant stimulation, and this increase has been implicated to have important roles in the regulation of olfactory responses. Since protein phosphorylation is often a regulatory mechanism of biological reactions, we explored the effect of Ca(2+) on phosphorylation reactions in the frog olfactory cilia. First, we found that a 45-kDa phosphoprotein (p45) is predominantly phosphorylated in vitro in the isolated cilia in a Ca(2+)-dependent manner. However, later studies showed that the phosphorylation level of p45 is controlled by a dynamic equilibrium between phosphorylation and dephosphorylation. Although both activities are enhanced at high Ca(2+) concentrations (K(1/2) = approximately 2 microM in both reactions), the enhancement of dephosphorylation is relatively greater than that of phosphorylation. As a result, the steady phosphorylation level of p45 is lower at high than at low Ca(2+) concentration. The phosphorylation/dephosphorylation equilibrium was founed to involve protein kinases sensitive to zinc and heparin, and an unknown phosphatase(s). The present result suggests the presence of a novel Ca(2+)-signaling pathway that involves phosphorylation of p45 in the olfactory cilia.  相似文献   

12.
We examined the dephosphorylation of p36, a protein ofD. discoideum that has previously been shown to be phosphorylated in a GDP-dependent manner (Anschutzet al., 1989). Specific dephosphorylation of p36 was found to occur in cell preparations but the activity responsible was strongly dependent upon the concentration of proteins in those extracts. When preparations were diluted, this activity was no longert detectable and the radiolabeled phosphate incorporated into p36 was stable. In contrast, p36 phosphorylation was seemingly unaffected by this treatment. Under the conditions where endogenous dephosphorylating activity was not detectable, the addition of GDP to the reaction resulted in substantial dephosphorylation of p36. The stimulation of this dephosphorylation process occurred at concentrations of GDP that were distinct from those that led to an increased p36 phosphorylation due to the previously reported stimulation of p36 protein kinase activity. Characterization of the dephosphorylation of p36 indicates that the same enzyme is responsible for the endogenous and GDP-stimulated activities. Additionally, these activities are identical when assayed with p36 that had been phosphortylated with ATP or GTP. In contrast to p36 kinase activity, the dephosphorylation of p36 did not display any developmental changes with respect to its regulatory features.  相似文献   

13.
We examined the dephosphorylation of p36, a protein ofD. discoideum that has previously been shown to be phosphorylated in a GDP-dependent manner (Anschutzet al., 1989). Specific dephosphorylation of p36 was found to occur in cell preparations but the activity responsible was strongly dependent upon the concentration of proteins in those extracts. When preparations were diluted, this activity was no longert detectable and the radiolabeled phosphate incorporated into p36 was stable. In contrast, p36 phosphorylation was seemingly unaffected by this treatment. Under the conditions where endogenous dephosphorylating activity was not detectable, the addition of GDP to the reaction resulted in substantial dephosphorylation of p36. The stimulation of this dephosphorylation process occurred at concentrations of GDP that were distinct from those that led to an increased p36 phosphorylation due to the previously reported stimulation of p36 protein kinase activity. Characterization of the dephosphorylation of p36 indicates that the same enzyme is responsible for the endogenous and GDP-stimulated activities. Additionally, these activities are identical when assayed with p36 that had been phosphortylated with ATP or GTP. In contrast to p36 kinase activity, the dephosphorylation of p36 did not display any developmental changes with respect to its regulatory features.  相似文献   

14.
The strain Saccharomyces cerevisiae W303-1a, able to grow in a medium containing acetic acid as the sole carbon and energy source, was subjected to mutagenesis in order to obtain mutants deficient in monocarboxylate permeases. Two mutant clones exhibiting growth in ethanol, but unable to grow in a medium with acetic acid as the sole carbon and energy source, were isolated (mutants Ace12 and Ace8). In both mutants, the activity for the acetate carrier was strongly affected. The mutant Ace8 revealed not to be affected in the transport of lactate, while the mutant Ace12 did not display activity for that carrier. These results reinforced those previously found in the strain IGC 4072, where two distinct transport systems for monocarboxylates have been described, depending on the growth carbon source. It is tempting to postulate that the Ace8 mutant seems to be affected in the gene coding for an acetate permease. In contrast, the absence of activity for both monocarboxylate permeases in mutant Ace12 could be attributed to a mutation in a gene coding for a regulatory protein not detected before.  相似文献   

15.
The HXK2 gene is required for a variety of regulatory effects leading to an adaptation for fermentative metabolism in Saccharomyces cerevisiae. However, the molecular basis of the specific role of Hxk2p in these effects is still unclear. One important feature in order to understand the physiological function of hexokinase PII is that it is a phosphoprotein, since protein phosphorylation is essential in most metabolic signal transductions in eukaryotic cells. Here we show that Hxk2p exists in vivo in a dimeric-monomeric equilibrium which is affected by phosphorylation. Only the monomeric form appears phosphorylated, whereas the dimer does not. The reversible phosphorylation of Hxk2p is carbon source dependent, being more extensive on poor carbon sources such as galactose, raffinose, and ethanol. In vivo dephosphorylation of Hxk2p is promoted after addition of glucose. This effect is absent in glucose repression mutants cat80/grr1, hex2/reg1, and cid1/glc7. Treatment of a glucose crude extract from cid1-226 (glc7-T152K) mutant cells with λ-phosphatase drastically reduces the presence of phosphoprotein, suggesting that CID1/GLC7 phosphatase together with its regulatory HEX2/REG1 subunit are involved in the dephosphorylation of the Hxk2p monomer. An HXK2 mutation encoding a serine-to-alanine change at position 15 [HXK2 (S15A)] was to clarify the in vivo function of the phosphorylation of hexokinase PII. In this mutant, where the Hxk2 protein is unable to undergo phosphorylation, the cells could not provide glucose repression of invertase. Glucose induction of HXT gene expression is also affected in cells expressing the mutated enzyme. Although we cannot rule out a defect in the metabolic state of the cell as the origin of these phenomena, our results suggest that the phosphorylation of hexokinase is essential in vivo for glucose signal transduction.  相似文献   

16.
Yeast cells growing in the presence of glucose or a related rapidly-fermented sugar differ strongly in a variety of physiological properties compared to cells growing in the absence of glucose. Part of these differences appear to be caused by the protein kinase A (PKA) and related signal transduction pathways. Addition of glucose to cells previously deprived of glucose triggers cAMP accumulation, which is apparently mediated by the Gpr1-Gpa2 G-protein coupled receptor system. However, the resulting effect on PKA-controlled properties is only transient when there is no complete growth medium present. When an essential nutrient is lacking, the cells arrest in the stationary phase G0. At the same time they acquire all characteristics of cells with low PKA activity, even if there is ample glucose present. When the essential nutrient is added again, a similar PKA-dependent protein phosphorylation cascade is triggered as observed after addition of glucose to glucose-deprived cells, but which is not cAMP-mediated. Because the pathway involved requires a fermentable carbon source and a complete growth medium, at least for its sustained activation, it has been called “fermentable growth medium (FGM)-induced pathway.”  相似文献   

17.
18.
The function of the retinoblastoma protein (pRB) in controlling the G(1) to S transition is regulated by phosphorylation and dephosphorylation on serine and threonine residues. While the roles of cyclin-dependent kinases in phosphorylating and inactivating pRB have been characterized in detail, the roles of protein phosphatases in regulating the G(1)/S transition are not as well understood. We used cell-permeable inhibitors of protein phosphatases 1 and 2A to assess the contributions of these phosphatases in regulating cyclin-dependent kinase activity and pRB phosphorylation. Treating asynchronously growing Balb/c 3T3 cells with PP2A-selective concentrations of either okadaic acid or calyculin A caused a time- and dose-dependent decrease in pRB phosphorylation. Okadaic acid and calyculin A had no effect on pRB phosphatase activity even though PP2A was completely inhibited. The decrease in pRB phosphorylation correlated with inhibitor-induced suppression of G(1) cyclin-dependent kinases including CDK2, CDK4, and CDK6. The inhibitors also caused decreases in the levels of cyclin D2 and cyclin E, and induction of the cyclin-dependent kinase inhibitors p21(Cip1) and p27(Kip1). The decrease in cyclin-dependent kinase activities were not dependent on induction of cyclin-dependent kinase inhibitors since CDK inhibition still occurred in the presence of actinomycin D or cycloheximide. In contrast, selective inhibition of protein phosphatase 1 with tautomycin inhibited pRB phosphatase activity and maintained pRB in a highly phosphorylated state. The results show that protein phosphatase 1 and protein phosphatase 2A, or 2A-like phosphatases, play distinct roles in regulating pRB function. Protein phosphatase 1 is associated with the direct dephosphorylation of pRB while protein phosphatase 2A is involved in pathways regulating G(1) cyclin-dependent kinase activity.  相似文献   

19.
Endothelial cells are subjected to hemodynamic shear stress, which regulates multiple vascular functions partially by the caveolin-1-dependent mechanisms. Caveolin-1 is a principal protein in the plasma membrane microdomains called caveolae and interacts with various signaling molecules. Recently, caveolin-1 was elucidated to be phosphorylated on tyrosine 14. However, it is not known how phosphorylation of caveolin-1 is controlled in endothelium. In this study, we found that caveolin-1 is phosphorylated by p38 mitogen-activated protein kinase (MAPK) under a static condition. When endothelial cells were exposed to shear stress, caveolin-1 was transiently dephosphorylated. Since the activity of p38 MAPK was not affected by shear stress, the shear-dependent dephosphorylation of caveolin-1 was not mediated by p38 MAPK. Of interest, sodium orthovanadate, an inhibitor for phosphatases, blocked the shear-dependent dephosphorylation of caveolin-1. We also observed that protein tyrosine phosphatase mu was transiently activated by shear stress, suggesting its role in the dephosphorylation of caveolin-1.  相似文献   

20.
Abundant, sustained expression of prosurvival Mcl-1 is an important determinant of viability and drug resistance in cancer cells. The Mcl-1 protein contains PEST sequences (enriched in proline, glutamic acid, serine, and threonine) and is normally subject to rapid turnover via multiple different pathways. One of these pathways involves a phosphodegron in the PEST region, where Thr-163 phosphorylation primes for Ser-159 phosphorylation by glycogen synthase kinase-3. Turnover via this phosphodegron-targeted pathway is reduced in Mcl-1-overexpressing BL41-3 Burkitt lymphoma and other cancer cells; turnover is further slowed in the presence of phorbol ester-induced ERK activation, resulting in Mcl-1 stabilization and an exacerbation of chemoresistance. The present studies focused on Mcl-1 dephosphorylation, which was also found to profoundly influence turnover. Exposure of BL41-3 cells to an inhibitor of protein phosphatase 2A (PP2A), okadaic acid, resulted in a rapid increase in phosphorylation at Thr-163 and Ser-159, along with a precipitous decrease in Mcl-1 expression. The decline in Mcl-1 expression preceded the appearance of cell death markers and was not slowed in the presence of phorbol ester. Upon exposure to calyculin A, which also potently inhibits PP2A, versus tautomycin, which does not, only the former increased Thr-163/Ser-159 phosphorylation and decreased Mcl-1 expression. Mcl-1 co-immunoprecipitated with PP2A upon transfection into CHO cells, and PP2A/Aα knockdown recapitulated the increase in Mcl-1 phosphorylation and decrease in expression. In sum, inhibition of PP2A prevents Mcl-1 dephosphorylation and results in rapid loss of this prosurvival protein in chemoresistant cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号