首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nowadays, scientists may learn a lot about the organisms studied just by analyzing their genetic material. This requires the development of methods of reading genomes with high accuracy. It has become clear that the knowledge of the changes occurring within a viral genome is indispensable for effective fighting of the pathogen. A good example is SARS-CoV, which was a cause of death of many people and frightened the entire world with its fast and hard to prevent propagation. Rapid development of sequencing methods, like shotgun sequencing or sequencing by hybridization (SBH), gives scientists a good tool for reading genomes. However, since sequencing methods can read fragments of up to 1000 bp only, methods for sequence assembling are required in order to read whole genomes. In this paper a new assembling method, based on graph theoretical approach, is presented. The method was tested on SARS-CoV and the results were compared to the outcome of other widely known methods.  相似文献   

3.
七株昆虫核型多角体病毒基因组同源性的测定   总被引:3,自引:0,他引:3  
应用限制性内切酶图谱分析法,结合Southern印迹法和核酸杂交技术,对茶毛虫、棉蛉虫,油桐尺蠖、斜纹夜蛾以及蓖麻蚕等5种昆虫的7株核型多角体病毒DNA,进行了基因组同源性测定。结果表明,不同种昆虫多角体病毒DNA的酶切图谱不相同,DNA片段与不同源的DNA标记探针之间无杂交带出现。而同种昆虫病毒的不同分离株间,除少数DNA片段的电泳迁移率稍有不同,以及出现一些互不相同的亚克分子带之外,它们的DNA酶切图谱基本一致,並且几乎所有片段都可与同种的标记探钟杂交。对一些DNA片段迁移率的改变及亚克分子带出现的原因进行了讨论。  相似文献   

4.
Structural variations in genomes are commonly studied by (micro)array-based comparative genomic hybridization. The data analysis methods to infer copy number variation in model organisms (human, mouse) are established. In principle, the procedures are based on signal ratios between test and reference samples and the order of the probe targets in the genome. These procedures are less applicable to experiments with non-model organisms, which frequently comprise non-sequenced genomes with an unknown order of probe targets. We therefore present an additional analysis approach, which does not depend on the structural information of a reference genome, and quantifies the presence or absence of a probe target in an unknown genome. The principle is that intensity values of target probes are compared with the intensities of negative-control probes and positive-control probes from a control hybridization, to determine if a probe target is absent or present. In a test, analyzing the genome content of a known bacterial strain: Staphylococcus aureus MRSA252, this approach proved to be successful, demonstrated by receiver operating characteristic area under the curve values larger than 0.9995. We show its usability in various applications, such as comparing genome content and validating next-generation sequencing reads from eukaryotic non-model organisms.  相似文献   

5.
Hybridization methods for DNA sequencing.   总被引:6,自引:0,他引:6  
W Bains 《Genomics》1991,11(2):294-301
I have conducted a general analysis of the practicability of using oligonucleotide hybridization to sequence DNA. Any DNA sequence may be sequenced by hybridization with a complete panel of oligonucleotides. However, sequencing DNA segments over 2 kb long requires an unrealistic number of hybridization reactions. The optimal protocol is to hybridize 7-mer or 8-mer mixed oligonucleotide probes to immobilized DNA fragments 80 bp long: should this prove impractical, hybridization of labeled 270-bp fragments to immobilized mixed 10-mers is a potential alternative. Both protocols require no more experiments to sequence large regions of DNA than conventional m13-based sequencing and are much easier to automate, thus reducing the requirements for skilled personnel. In the ideal case, hybridization sequencing reduces the number of experiments required to sequence megabase DNA by 90%.  相似文献   

6.
Satellite DNA (satDNA) represent tens of percent of the vertebrate genome. However, no full set of satDNA fragments has been determined for even one species. It is known that some genera possess a satDNA characteristic for that genus with species-specific modifications. We found that the pattern of hybridization of Mus musculus satDNA probes with M. spicilegus metaphase chromosomes was similar to, with slight differences from, that of M. musculus. No hybridization signal was observed if Mus musculus satDNA probes were hybridized with representatives of Sylvaemus and Apodemus genera. The amount of Mus musculus satDNA in the genomes of various species was evaluated by dot-hybridization. We revealed that genomes of close murine species had cenromeric and pericentromeric repeats belonging to the same families and were not found in remote species.  相似文献   

7.
Satellite DNA (satDNA) represent tens percent of any of the vertebrate genome. Still, a complete set of sat-DNA fragments is not determined for either species. It is known that some genus with species-specific modifications possess a satDNA characteristic for the genus. So, satDNA was used as a phylogenetic marker in some cases when precise satDNA fragment was cloned. We used the probe of the whole pericentromeric region and 4 cloned satDNA fragments of Mus musculus in order to consider probes value for phylogenesis of 3 Murinae genera. Fluorescent in situ hybridization (FISH) revealed similar pattern on metaphase spreads inside genus Mus, though some difference was noted. None of the satDNA fragment gave signal in the centromeric region on chromosomes from genera Sylvaemus and Apodemus. These data are in agreement with those on satDNA fragments in the genome determined by dot-blot hybridization: M musculus satDNA fragments are absent in the genomes of both remote genera while they are present in the genomes of the genera Mus, though in different amounts. SatDNA of each genera should be cloned for the phylogenetic purposes.  相似文献   

8.
Although recent technological advances in DNA sequencing and computational biology now allow scientists to compare entire microbial genomes, comparisons of closely related bacterial species and individual isolates by whole-genome sequencing approaches remains prohibitively expensive for most laboratories. Here we report the development and testing of a biochemical approach for targeted sequencing of only those chromosomal regions that differ between two DNA preparations. The method, designated GFE (genome fragment enrichment) uses competitive solution hybridization and positive selection to obtain genomic DNA fragments that are present in one pool of fragments but not another. Repeated comparisons of the genomes of Enterococcus faecalis and E. faecium led to the identification of 225 putative genome-specific DNA fragments. Species and strain variations within these fragments were confirmed by both experimental and bioinformatic analyses. The E. faecalis genome-specific sequences identified included both a preponderance of those predicted to encode surface-exposed proteins, as well as several previously described unique marker regions embedded within highly conserved rrn operons. The GFE strategy we describe efficiently identified genomic differences between two enterococcal genomes, and will be widely applicable for studying genetic variation among closely related bacterial species.  相似文献   

9.
We previously developed a three-dimensional microarray system, the Bio-Strand, which exhibits advantages in automated DNA analysis in combination with our Magtration Technology. In the current study, we have developed a compact system for the Bio-Strand, the Handy Bio-Strand, which consists of several tools for the preparation of Bio-Strand Tip, hybridization, and detection. Using the Handy Bio-Strand, we performed single nucleotide polymorphism (SNP) genotyping of OPRM1 (A118G) by allele-specific oligonucleotide competitive hybridization (ASOCH). DNA fragments containing SNP sites were amplified from genomic DNA by PCR and then were fixed on a microporous nylon thread. Thus, prepared Bio-Strand Tip was hybridized with allele-specific Cy5 probes (<15mer), on which the SNP site was designed to be located in the center. By optimizing the amount of competitors, the selectivity of Cy5 probes increased without a drastic signal decrease. OPRM1 (A118G) genotypes of 23 human genomes prepared from whole blood samples were determined by ASOCH using the Handy Bio-Strand. The results were perfectly consistent with those determined by PCR direct sequencing. ASOCH using the Handy Bio-Strand would be a very simple and reliable method for SNP genotyping for small laboratories and hospitals.  相似文献   

10.
Sequencing of megabase plus DNA by hybridization: theory of the method   总被引:42,自引:0,他引:42  
A mismatch-free hybridization of oligonucleotides containing from 11 to 20 monomers to unknown DNA represents, in essence, a sequencing of a complementary target. Realizing this, we have used probability calculations and, in part, computer simulations to estimate the types and numbers of oligonucleotides that would have to be synthesized in order to sequence a megabase plus segment of DNA. We estimate that 95,000 specific mixes of 11-mers, mainly of the 5'(A,T,C,G)(A,T,C,G)N8(A,T,C,G)3' type, hybridized consecutively to dot blots of cloned genomic DNA fragments would provide primary data for the sequence assembly. An optimal mixture of representative libraries in M13 vector, having inserts of (i) 7 kb, (ii) 0.5 kb genomic fragments randomly ligated in up to 10-kb inserts, and (iii) tandem "jumping" fragments 100 kb apart in the genome, will be needed. To sequence each million base pairs of DNA, one would need hybridization data from about 2100 separate hybridization sample dots. Inevitable gaps and uncertainties in alignment of sequenced fragments arising from nonrandom or repetitive sequence organization of complex genomes and difficulties in cloning "poisonous" sequences in Escherichia coli, inherent to large sequencing by any method, have been considered and minimized by choice of libraries and number of subclones used for hybridization. Because it is based on simpler biochemical procedures, our method is inherently easier to automate than existing sequencing methods. The sequence can be derived from simple primary data only by extensive computing. Phased experimental tests and computer simulations increasing in complexity are needed before accurate estimates can be made in terms of cost and speed of sequencing by the new approach. Nevertheless, sequencing by hybridization should show advantages over existing methods because of the inherent redundancy and parallelism in its data gathering.  相似文献   

11.
12.
To estimate the possibility of plant genome mapping using human genome probes, the probes fluorescent in situ hybridization (FISH) of human 18S-28S rDNA (clon 22F9 from the LA-13NCO1 library) was carried out on chromosomes of the spring barley Hordeum vulgare L. As a control, wheat rDNA probe (clon pTa71) was taken. Hybridization of the wheat DNA probe revealed two major labelling sites on mitotic barley chromosomes 5I (7H) and 6I (6H), as well as several minor sites. With the human DNA probe, signals were detected in the major sites of the ribosomal genes on chromosomes 5I (7H) and 6I (6H) only when the chromosome preparations were obtained using an optimized technique with obligatory pepsin treatment followed by hybridization. Thus, this study demonstrates that physical mapping of plant chromosomes with human DNA probes that are 60 to 75% homologous to the plant genes is possible. It suggests principal opportunity for the FISH mapping of plant genomes using probes from human genome libraries, obtained in the course of the total sequencing of the human genomes and corresponding to the coding regions of genes with known functions.  相似文献   

13.
Genetic linkage mapping based on RFLPs is a valuable genomics tool for studying organisms with no genome sequence information. However, the generally used Southern hybridization method based on the radioisotope32P is not ideal for genotyping large mapping populations. We have overcome limitations of the alternative chemiluminescent detection system and developed a high-throughput RFLP genotyping method suitable for large-scale mapping studies of large genomes. Important elements in our process are PCR labeling of probes, complete removal of post-PCR unincorporated nucleotides via column-based purification methods, use of a 1:4 DIG-[11]-dUTP:dTTP ratio, and using a rocker instead of an orbital shaker during hybridization and post-hybridization processing of membranes. Using this method, we mapped the large genome of the homosporous fern speciesCeratopteris richardii by genotyping a mapping population of 513 doubled haploid line (DHL) progeny of a cross between two completely homozygous parental lines. Our genotyping method can robustly detect sub-picogram quantities of DNA fragments from a large number of samples and can be applied to linkage mapping studies of other organisms with large genomes.  相似文献   

14.
制备丙型肝炎病毒(HCV) 1b亚型诊断芯片并进行初步验证评价.采用cDNA文库法制备探针,用限制性内切酶Sau3AⅠ消化HCV 1b全长cDNA ,所得的酶切片段72℃补平加A ,AT克隆,PCR初步鉴定,并测序.将筛选出的片段打印在氨基修饰的玻片上制备成检测芯片并进行杂交验证分析.运用cDNA文库法,得到2 2个大小相对一致(2 5 0~75 0bp)的基因片段.序列分析表明,均属于HCV 1b基因,可以作为诊断芯片探针;样品标记采用限制性显示(restrictiondisplay ,RD)技术,标记后进行杂交.杂交结果显示,样品和诊断基因芯片杂交的敏感性和特异性均佳.批内和批间精密度CV值分别为5 4 %和6 8% ,表明用cDNA文库法收集片段是一种快速、简便制备芯片探针的实用方法.  相似文献   

15.
To estimate the possibility of plant genome mapping using human genome probes, the probes fluorescent in situ hybridization (FISH) of human 18S–28S rDNA (clon 22F9 from the LA-13NCO1 library) was carried out on chromosomes of the spring barleyHordeum vulgareL. As a control, wheat rDNA probe (clon pTa71) was taken. Hybridization of the wheat DNA probe revealed two major labelling sites on mitotic barley chromosomes 5I (7H) and 6I (6H), as well as several minor sites. With the human DNA probe, signals were detected in the major sites of the ribosomal genes on chromosomes 5I (7H) and 6I (6H) only when the chromosome preparations were obtained using an optimized technique with obligatory pepsin treatment followed by hybridization. Thus, this study demonstrates that physical mapping of plant chromosomes with human DNA probes that are 60 to 70% homologous to the plant genes is possible. It suggests principal opportunity for the FISH mapping of plant genomes using probes from human genome libraries, obtained in the course of the total sequencing of the human genomes and corresponding to the coding regions of genes with known functions.  相似文献   

16.
The utility of chemically synthesized deoxyoligonucleotides as hybridization probes for the detection of tRNA genes has been examined. Chloroplast tRNA genes were chosen for this study. Deoxyoligonucleotides complementary to highly conserved regions of chloroplast tRNA genes of both higher plants and Euglena gracilis were chemically synthesized. These synthetic probes have been used to detect tRNA genes by Southern hybridizations to restriction fragments of chloroplast DNAs. This new method of tRNA gene mapping and the oligonucleotides synthesized may be of general application to many chloroplast genomes. This is illustrated by the detection of known and unknown tRNA genes of Euglena gracilis and spinach, and unknown tRNA genes of maize and cucumber chloroplast DNAs. The precise locus and polarity of the Euglena gracilis chloroplast tRNAPhe gene has been determined. We also describe experiments which relate to the effects of the time of hybridization, the stringency of washing, and of base pair mismatches on the hybridization signal.  相似文献   

17.
Sun Z  Ma W  Wei M  Wang S  Zheng W 《Current microbiology》2007,55(3):211-216
A rapid and sensitive microarray assay for the detection of HCV-1b was developed in our laboratory and a cDNA fragment library for HCV-1b cDNA microarray probes was constructed. The full-length cDNAs of HCV-1b were digested with restriction endonuclease Sau3A I and the fragments were cloned with the pMD18-T vectors. Positive clones were isolated and identified by sequencing. The cDNA microarray was prepared by spotting the gene fragment on the surface of an amido-modified glass slide using the robotics system and samples were fluorescent labeled by the restriction display PCR (RD-PCR) technique, In the present study, modified protocols were used for probe selection and hybridization temperature. The detection of a microarray was validated by the hybridization and the sequence analysis. A total of 22 different specific gene fragments of HCV-1b ranging from 250 to 750 bp were isolated and sequenced, and these fragments were further used as probes in the microarray preparation. The diagnostic validity of the microarray method was evaluated after the washing and scanning process. The results of hybridization and sequence data analysis showed a significant specificity and sensitivity in the detection of HCV-1b RNA. The method of preparing microarray probes by construction of cDNA fragments library was effective, rapid, and simple; the optimized microarray was sensitive in the clinical detection of HCV-1b. The RD-PCR technique for the sample labeling was useful for significantly increasing the sensitivity of the assay. The cDNA microarray assay can be widely used in the clinical diagnosis of HCV-1b.  相似文献   

18.
Characterization and application of soybean YACs to molecular cytogenetics   总被引:3,自引:0,他引:3  
Yeast artificial chromosomes (YACs) are widely used in the physical analysis of complex genomes. In addition to their value in chromosome walking for map-based cloning, YACs represent excellent probes for chromosome mapping using fluorescence in situ hybridization (FISH). We have screened such a library for low-copy-number clones by hybridization to total genomic DNA. Four clones were chosen for chromosome tagging based upon their low or moderate signal. By using degenerate oligonucleotide-primed PCR (DOP-PCR), we were able to use relatively small amounts of soybean YAC DNA, isolated directly by preparative pulsed-field gel electrophoresis, as FISH probes for both metaphase chromosome spreads and interphase nuclei. FISH chromosomal analysis using the three of the clones as probes resulted in relatively simple hybridization patterns consistent with a single homologous locus or two homoeologous loci. The fourth YAC probe resulted in a diffuse hybridization pattern with signal on all metaphase chromosomes. We conclude that YACs represent a valuable source of probes for chromosomal analysis in soybean.  相似文献   

19.
The DNA molecules that can be extracted from archaeological and palaeontological remains are often degraded and massively contaminated with environmental microbial material. This reduces the efficacy of shotgun approaches for sequencing ancient genomes, despite the decreasing sequencing costs of high‐throughput sequencing (HTS). Improving the recovery of endogenous molecules from the DNA extraction and purification steps could, thus, help advance the characterization of ancient genomes. Here, we apply the three most commonly used DNA extraction methods to five ancient bone samples spanning a ~30 thousand year temporal range and originating from a diversity of environments, from South America to Alaska. We show that methods based on the purification of DNA fragments using silica columns are more advantageous than in solution methods and increase not only the total amount of DNA molecules retrieved but also the relative importance of endogenous DNA fragments and their molecular diversity. Therefore, these methods provide a cost‐effective solution for downstream applications, including DNA sequencing on HTS platforms.  相似文献   

20.
We report a method called SSH array which combines the suppression subtraction hybridization (SSH) and DNA array techniques to find species-specific DNA probes from genomic DNA (gDNA) for species identification. The method first obtains the differential gDNA fragments between two species by SSH and then hybridizes the differential gDNA fragments with arrays made of multiple whole genomes from several species to screen the unique gDNA fragments for one species. The screened unique gDNA fragments can be used as species-specific probes to differentiate the species they represent from all other species. We used five species of the genus Dendrobrium, D.aurantiacum Kerr, D.officinale Kimura et Migo, D.nobile Lindl., D.chrysotoxum Lindl. and D.fimbriatum Hook., as experimental materials to study the feasibility of the method. The results showed that the method could efficiently obtain different species-specific probes for each of the five species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号