首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Type II transmembrane serine proteases (TTSPs) are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors.

Methodology/Principal Finding

To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS). Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin) to simultaneously determine sequence preferences on the N-terminal non-prime (P) and C-terminal prime (P’) sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1′ position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived.

Conclusions

Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1′ positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity.  相似文献   

2.
We generated a comprehensive picture of protease substrates in anti-Fas-treated apoptotic human Jurkat T lymphocytes. We used combined fractional diagonal chromatography (COFRADIC) sorting of protein amino-terminal peptides coupled to oxygen-16 or oxygen-18 differential labeling. We identified protease substrates and located the exact cleavage sites within processed proteins. Our analysis yielded 1,834 protein identifications and located 93 cleavage sites in 71 proteins. Indirect evidence of apoptosis-specific cleavage within 21 additional proteins increased the total number of processed proteins to 92. Most cleavages were at caspase consensus sites; however, other cleavage specificities suggest activation of other proteases. We validated several new processing events by immunodetection and by an in vitro assay using recombinant caspases and synthetic peptides containing presumed cleavage sites. The spliceosome complex appeared a preferred target, as 14 of its members were processed. Differential isotopic labeling further revealed specific release of nucleosomal components from apoptotic nuclei.  相似文献   

3.
A series of synthetic peptides representing authentic proteolytic cleavage sites of human rhinovirus type 14 were assayed as substrates for purified 3C protease. Competition cleavage assays were employed to determine the relative specificity constants (Kcat/Km) for substrates with sequences related to the viral 2C-3A cleavage site. Variable length peptides representing the 2C-3A cleavage site were cleaved with comparable efficiency. These studies defined a minimum substrate of 6 amino acids (TLFQ/GP), although retention of the residue at position P5 (ETLFQ/GP) resulted in a better substrate by an order of magnitude. Amino acid substitutions at position P5, P4, P1', or P2' indicated that the identity of the residue at position P5 was not critical, whereas substitutions at position P4, P1' or P2' resulted in substrates with Kcat/Km values varying over 2 orders of magnitude. In contrast to the 2C-3A cleavage site, small peptide derivatives representative of the 3A-3B cleavage site were relatively poor substrates, which suggested that residues flanking the minimum core sequence may influence susceptibility to cleavage. The 3C protease of rhinovirus type 14 was also capable of cleaving peptides representing comparable cleavage sites predicted for coxsackie B virus and poliovirus.  相似文献   

4.
Sapovirus is a positive-stranded RNA virus with a translational strategy based on processing of a polyprotein precursor by a chymotrypsin-like protease. So far, the molecular mechanisms regulating cleavage specificity of the viral protease are poorly understood. In this study, the catalytic activities and substrate specificities of the predicted forms of the viral protease, the 3C-like protease (NS6) and the 3CD-like protease-polymerase (NS6-7), were examined in vitro. The purified NS6 and NS6-7 were able to cleave synthetic peptides (15 to 17 residues) displaying the cleavage sites of the sapovirus polyprotein, both NS6 and NS6-7 proteins being active forms of the viral protease. High-performance liquid chromatography and subsequent mass spectrometry analysis of digested products showed a specific trans cleavage of peptides bearing Gln-Gly, Gln-Ala, Glu-Gly, Glu-Pro, or Glu-Lys at the scissile bond. In contrast, peptides bearing Glu-Ala or Gln-Asp at the scissile bond (NS4-NS5 and NS5-NS6, or NS6-NS7 junctions, respectively) were resistant to trans cleavage by NS6 or NS6-7 proteins, whereas cis cleavage of the Glu-Ala scissile bond of the NS5-NS6 junction was evidenced. Interestingly, the presence of a Phe at position P4 overruled the resistance to trans cleavage of the Glu-Ala junction (NS5-NS6), whereas substitutions at the P1 and P2′ positions altered the cleavage efficiency. The differential cleavage observed is supported by a model of the substrate-binding site of the sapovirus protease, indicating that the P4, P1, and P2′ positions in the substrate modulate the cleavage specificity and efficiency of the sapovirus chymotrypsin-like protease.  相似文献   

5.
The nearly 600 proteases in the human genome regulate a diversity of biological processes, including programmed cell death. Comprehensive characterization of protease signaling in complex biological samples is limited by available proteomic methods. We have developed a general approach for global identification of proteolytic cleavage sites using an engineered enzyme to selectively biotinylate free protein N termini for positive enrichment of corresponding N-terminal peptides. Using this method to study apoptosis, we have sequenced 333 caspase-like cleavage sites distributed among 292 protein substrates. These sites are generally not predicted by in vitro caspase substrate specificity but can be used to predict other physiological caspase cleavage sites. Structural bioinformatic studies show that caspase cleavage sites often appear in surface-accessible loops and even occasionally in helical regions. Strikingly, we also find that a disproportionate number of caspase substrates physically interact, suggesting that these dimeric proteases target protein complexes and networks to elicit apoptosis.  相似文献   

6.
Processing of the human immunodeficiency virus type 1 (HIV-1) Gag precursor is highly regulated, with differential rates of cleavage at the five major processing sites to give characteristic processing intermediates. We examined the role of the P1 amino acid in determining the rate of cleavage at each of these five sites by using libraries of mutants generated by site-directed mutagenesis. Between 12 and 17 substitution mutants were tested at each P1 position in Gag, using recombinant HIV-1 protease (PR) in an in vitro processing reaction of radiolabeled Gag substrate. There were three sites in Gag (MA/CA, CA/p2, NC/p1) where one or more substitutions mediated enhanced rates of cleavage, with an enhancement greater than 60-fold in the case of NC/p1. For the other two sites (p2/NC, p1/p6), the wild-type amino acid conferred optimal cleavage. The order of the relative rates of cleavage with the P1 amino acids Tyr, Met, and Leu suggests that processing sites can be placed into two groups and that the two groups are defined by the size of the P1' amino acid. These results point to a trans effect between the P1 and P1' amino acids that is likely to be a major determinant of the rate of cleavage at the individual sites and therefore also a determinant of the ordered cleavage of the Gag precursor.  相似文献   

7.
Abstract Many peptidases are thought to require non-active site interaction surfaces, or exosites, to recognize and cleave physiological substrates with high specifi city and catalytic effi ciency. However, the existence and function of protease exosites remain obscure owing to a lack of effective methods to identify and characterize exosite-interacting substrates. To address this need, we modifi ed the cellular libraries of peptide substrates (CLiPS) methodology to enable the discovery of exosite-interacting peptide ligands. Invariant cleavage motifs recognized by the active sites of thrombin and caspase-7 were displayed on the outer surface of bacteria adjacent to a candidate exosite-interacting peptide. Exosite peptide libraries were then screened for ligands that accelerate cleavage of the active site recognition motif using two-color fl ow cytometry. Exosite CLiPS (eCLiPS) identifi ed exosite-binding peptides for thrombin that were highly similar to a critical exosite interaction motif in the thrombin substrate, proteaseactivated receptor 1. Protease activity probes incorporating exosite-binding peptides were cleaved ten-fold faster than substrates without exosite ligands, increasing their sensitivity to thrombin activity in vitro. For comparison, screening with caspase-7 yielded peptides that modestly enhanced (two-fold) substrate cleavage rates. The eCLiPS method provides a new tool to profi le the ligand specifi city of protease exosites and to develop improved substrates.  相似文献   

8.
Spumaviruses, or foamy viruses, express Gag proteins that are incompletely processed by the viral protease in cell cultures. To delineate the proteolytic cleavage sites between potential Gag subdomains, recombinant human spumaretrovirus (HSRV) Gag proteins of different lengths were expressed, purified by affinity chromatography, and subjected to HSRV protease assays. HSRV-specific proteolytic cleavage products were isolated and characterized by Western blotting. Peptides spanning potential cleavage sites, as deduced from the sizes of the proteolytic cleavage products, were chemically synthesized and assayed with HSRV protease. The cleaved peptides were then subjected to mass spectrometry. In control experiments, HSRV protease-deficient mutant proteins were used to rule out unspecific processing by nonviral proteases. The cleavage site junctions identified and the calculated sizes of the cleavage products were in agreement with those of the authentic cleavage products of the HSRV Gag proteins detectable in viral proteins from purified HSRV particles and in virus-infected cells. The biological significance of the data was confirmed by mutational analysis of the cleavage sites in a recombinant Gag protein and in the context of the infectious HSRV DNA provirus.  相似文献   

9.
Caspase-2 is considered an initiator caspase because its long prodomain contains a CARD domain that allows its recruitment and activation in several complexes by homotypic death domain-fold interactions. Because little is known about the function and specificity of caspase-2 and its physiological substrates, we compared the cleavage specificity profile of recombinant human caspase-2 with those of caspase-3 and -7 by analyzing cell lysates using N-terminal COmbined FRActional DIagonal Chromatography (COFRADIC). Substrate analysis of the 68 cleavage sites identified in 61 proteins revealed that the protease specificities of human caspases-2, -3, and -7 largely overlap, revealing the DEVD↓G consensus cleavage sequence. We confirmed that Asp563 in eukaryotic translation initiation factor 4B (eIF4B) is a cleavage site preferred by caspase-2 not only in COFRADIC setup but also upon co-expression in HEK 293T cells. These results demonstrate that activated human caspase-2 shares remarkably overlapping protease specificity with the prototype apoptotic executioner caspases-3 and -7, suggesting that caspase-2 could function as a proapoptotic caspase once released from the activating complex.  相似文献   

10.
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causative agent of three hyperproliferative disorders: Kaposi’s sarcoma, primary effusion lymphoma (PEL) and multicentric Castleman’s disease. During viral latency a small subset of viral genes are produced, including KSHV latency-associated nuclear antigen (LANA), which help the virus thwart cellular defense responses. We found that exposure of KSHV-infected cells to oxidative stress, or other inducers of apoptosis and caspase activation, led to processing of LANA and that this processing could be inhibited with the pan-caspase inhibitor Z-VAD-FMK. Using sequence, peptide, and mutational analysis, two caspase cleavage sites within LANA were identified: a site for caspase-3 type caspases at the N-terminus and a site for caspase-1 and-3 type caspases at the C-terminus. Using LANA expression plasmids, we demonstrated that mutation of these cleavage sites prevents caspase-1 and caspase-3 processing of LANA. This indicates that these are the principal sites that are susceptible to caspase cleavage. Using peptides spanning the identified LANA cleavage sites, we show that caspase activity can be inhibited in vitro and that a cell-permeable peptide spanning the C-terminal cleavage site could inhibit cleavage of poly (ADP-ribose) polymerase and increase viability in cells undergoing etoposide-induced apoptosis. The C-terminal peptide of LANA also inhibited interleukin-1beta (IL-1β) production from lipopolysaccharide-treated THP-1 cells by more than 50%. Furthermore, mutation of the two cleavage sites in LANA led to a significant increase in IL-1β production in transfected THP-1 cells; this provides evidence that these sites function to blunt the inflammasome, which is known to be activated in latently infected PEL cells. These results suggest that specific caspase cleavage sites in KSHV LANA function to blunt apoptosis as well as interfere with the caspase-1-mediated inflammasome, thus thwarting key cellular defense mechanisms.  相似文献   

11.
The protease domain of the hepatitis C virus (HCV) protein NS3 was expressed in Escherichia coli, purified to homogeneity, and shown to be active on peptides derived from the sequence of the NS4A-NS4B junction. Experiments were carried out to optimize protease activity. Buffer requirements included the presence of detergent, glycerol, and dithiothreitol, pH between 7.5 and 8.5, and low ionic strength. C- and N-terminal deletion experiments defined a peptide spanning from the P6 to the P4' residue as a suitable substrate. Cleavage kinetics were subsequently measured by using decamer P6-P4' peptides corresponding to all intermolecular cleavage sites of the HCV polyprotein. The following order of cleavage efficiency, in terms of kcat/Km, was determined: NS5A-NS5B > NS4A-NS4B >> NS4B-NS5A. A 14-mer peptide containing residues 21 to 34 of the protease cofactor NS4A (Pep4A 21-34), when added in stoichiometric amounts, was shown to increase cleavage rates of all peptides, the largest effect (100-fold) being observed on the hydrolysis of the NS4B-NS5A decamer. From the kinetic analysis of cleavage data, we conclude that (i) primary structure is an important determinant of the efficiency with which each site is cleaved during polyprotein processing, (ii) slow cleavage of the NS4B-NS5A site in the absence of NS4A is due to low binding affinity of the enzyme for this site, and (iii) formation of a 1:1 complex between the protease and Pep4A 21-34 is sufficient and required for maximum activation.  相似文献   

12.
Regulated proteolysis by the two-component NS2B/NS3 protease of dengue virus is essential for virus replication and the maturation of infectious virions. The functional similarity between the NS2B/NS3 proteases from the four genetically and antigenically distinct serotypes was addressed by characterizing the differences in their substrate specificity using tetrapeptide and octapeptide libraries in a positional scanning format, each containing 130,321 substrates. The proteases from different serotypes were shown to be functionally homologous based on the similarity of their substrate cleavage preferences. A strong preference for basic amino acid residues (Arg/Lys) at the P1 positions was observed, whereas the preferences for the P2-4 sites were in the order of Arg > Thr > Gln/Asn/Lys for P2, Lys > Arg > Asn for P3, and Nle > Leu > Lys > Xaa for P4. The prime site substrate specificity was for small and polar amino acids in P1' and P3'. In contrast, the P2' and P4' substrate positions showed minimal activity. The influence of the P2 and P3 amino acids on ground state binding and the P4 position for transition state stabilization was identified through single substrate kinetics with optimal and suboptimal substrate sequences. The specificities observed for dengue NS2B/NS3 have features in common with the physiological cleavage sites in the dengue polyprotein; however, all sites reveal previously unrecognized suboptimal sequences.  相似文献   

13.
ADAMTS-4 and ADAMTS-5 are aggrecanases responsible for the breakdown of cartilage aggrecan in osteoarthritis. Multiple ADAMTS-4 cleavage sites have been described in several matrix proteins including aggrecan, versican, and brevican, but no concise predictive cleavage motif has been identified for this protease. By screening a 13-mer peptide library with a diversity of 10(8), we have identified the ADAMTS-4 cleavage motif E-(AFVLMY)-X(0,1)-(RK)-X(2,3)-(ST)-(VYIFWMLA), with Glu representing P1. Several 13-mer peptides containing this motif, including DVQEFRGVTAVIR and HNEFRQRETYMVF, were shown to be substrates for ADAMTS-4. These peptides were found to be specific substrates for ADAMTS-4 as they were not cleaved by ADAMTS-5. Modification of these peptides with donor (6-FAM) and acceptor (QSY-9) molecules resulted in the development of fluorescence-based substrates with a Km of approximately 35 microM. Furthermore, the role of Glu at P1 and Phe at P1' in binding and catalysis was studied by exploring substitution of these amino acids with the D-isomeric forms. Substitution of P1 with dGlu was tolerable for binding, but not catalysis, whereas substitution of P1' with dPhe precluded both binding and catalysis. Similarly, replacement of Glu with Asp at P1 abolished recognition and cleavage of the peptide. Finally, BLAST results of the ADAMTS-4 cleavage motif identified matrilin-3 as a new substrate for ADAMTS-4. When tested, recombinant ADAMTS-4 effectively cleaved intact matrilin-3 at the predicted motif at Glu435/Ala436 generating two species of 45 and 5 kDa.  相似文献   

14.
The enzymatic mechanisms for insulin breakdown by hepatocytes have not been established, nor have the degradation products been identified. Several lines of evidence have suggested that the enzyme insulin protease is involved in insulin degradation by hepatocytes. To identify the products of insulin generated by insulin protease and to compare them with those produced by hepatocytes, we have incubated insulin specifically iodinated at either the B-16 or the B-26 tyrosines with insulin protease and with isolated hepatocytes, separated the products on high performance liquid chromatography (HPLC), and identified the B-chain cleavages. Insulin-sized products were obtained by Sephadex G-50 filtration. These insulin-sized products were injected on reverse-phase HPLC, and the peaks of radioactivity were identified. The product patterns generated by the enzyme and by hepatocytes were essentially identical with both isomers. The products were also sulfitolized to prepare the S-sulfonate derivatives of the B-chain and B-chain peptides. Again, the patterns on HPLC generated by the enzyme and by hepatocytes with both isomers were identical. Each of the original product peaks was also sulfitolized and injected separately on HPLC to relate B-chain peptides with product peaks. Again, the peptide compositions of the product peaks for both enzyme and hepatocytes were essentially identical. To identify the cleavage sites in the B-chain of insulin produced by insulin protease, the peptides from the degradation of [125I]iodo(B-26)insulin were purified and submitted to automated Edman degradation to identify the cycle in which radioactivity appeared. Seven peptides with cleavages on the amino side of the B26 residue were identified, and the cleavage sites were determined. Cleavages were found between B-9 and B-10 (Ser-His), B-10 and B-11 (His-Leu), B-14 and B-15 (Ala-Leu), B-13 and B-14 (Glu-Ala), B-16 and B-17 (Tyr-Leu), B-24 and B-25 (Phe-Phe), and B-25 and B-26 (Phe-Tyr). Peptides were also isolated from [125I]iodoinsulin incubated with isolated hepatocytes, and the cleavage sites in several of these were determined. These agreed exactly with the cleavage sites identified generated by the enzyme. The major peptides generated by the degradation of [125I]iodo(B-16)insulin were also isolated and sequenced, again showing identical cleavage sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The NS3 serine protease of dengue virus is required for the maturation of the viral polyprotein and consequently represents a promising target for the development of antiviral inhibitors. However, the substrate specificity of this enzyme has been characterized only to a limited extent. In this study, we have investigated product inhibition of the NS3 protease by synthetic peptides derived from the P6-P1 and the P1'-P5' regions of the natural polyprotein substrate. N-terminal cleavage site peptides corresponding to the P6-P1 region of the polyprotein were found to act as competitive inhibitors of the enzyme with K(i) values ranging from 67 to 12 microM. The lowest K(i) value was found for the peptide representing the NS2A/NS2B cleavage site, RTSKKR. Inhibition by this cleavage site sequence was analyzed by using shorter peptides, SKKR, KKR, KR, AGRR, and GKR. With the exception of the peptide AGRR which did not inhibit the protease at a concentration of 1mM, all other peptides displayed K(i) values in the range from 188 to 22 microM. Peptides corresponding to the P1'-P5' region of the polyprotein cleavage sites had no effect on enzymatic activity at a concentration of 1mM. Molecular docking data of peptide inhibitors to a homology-based model of the dengue virus type 2 NS2B(H)-NS3p co-complex indicate that binding of the non-prime site product inhibitors is similar to ground-state binding of the corresponding substrates.  相似文献   

16.
Post-translational modifications of proteins regulate diverse cellular functions, with mounting evidence suggesting that hierarchical cross-talk between distinct modifications may fine-tune cellular responses. For example, in apoptosis, caspases promote cell death via cleavage of key structural and enzymatic proteins that in some instances is inhibited by phosphorylation near the scissile bond. In this study, we systematically investigated how protein phosphorylation affects susceptibility to caspase cleavage using an N-terminomic strategy, namely, a modified terminal amino isotopic labeling of substrates (TAILS) workflow, to identify proteins for which caspase-catalyzed cleavage is modulated by phosphatase treatment. We validated the effects of phosphorylation on three of the identified proteins and found that Yap1 and Golgin-160 exhibit decreased cleavage when phosphorylated, whereas cleavage of MST3 was promoted by phosphorylation. Furthermore, using synthetic peptides we systematically examined the influence of phosphoserine throughout the entirety of caspase-3, -7, and -8 recognition motifs and observed a general inhibitory effect of phosphorylation even at residues considered outside the classical consensus motif. Overall, our work demonstrates a role for phosphorylation in controlling caspase-mediated cleavage and shows that N-terminomic strategies can be tailored to study cross-talk between phosphorylation and proteolysis.Apoptosis is a cell death program integral to various biological processes such as tissue homeostasis and development (1). The ability of cancer cells to evade apoptosis is considered a driving feature that imparts a selective cellular advantage allowing cells to persist inappropriately (2). A major component of apoptotic evasion in cancer arises from the misregulation of two enzyme classes, protein kinases and caspases. Kinases transfer the γ-phosphate from ATP to proteins to alter substrate function, and caspases act as executioners of the apoptotic program by facilitating the demolition of cellular constituents by cleaving key structural and enzymatic proteins (3, 4). Attenuation of caspase activity arising through kinase-mediated post-translational modifications or genetic mutations or deletions can contribute to malignant phenotypes by blocking apoptotic progression (5, 6).Interestingly, numerous examples have implicated cross-talk between caspases and kinases as a major apoptotic regulatory mechanism, and anecdotal examples have been identified in which phosphorylation at P4, P2, and P1′ (see Fig. 1A for cleavage site nomenclature) has been shown to block cleavage and affect cellular phenotypes (612). Accordingly, phosphorylation-dependent regulation of caspase-mediated cleavage has been hypothesized as a global regulator of apoptotic progression, especially in the context of cancer, where hyperactive, oncogenic kinases may act to increase phosphosite occupancy within caspase cleavage motifs (7). Indeed, we previously tested this hypothesis using predictive peptide match programs and identified CK2 phosphorylation sites on caspase-3 that regulated its activation by caspase-8 and -9 (13).Open in a separate windowFig. 1.Workflow for the global, unbiased analysis of the integration of phosphorylation and caspase-mediated degradation. A, illustration of the cleavage site nomenclature for proteases. Caspases cleave the scissile bond between a P1 aspartic acid and the P1′ residue. B, HeLa cell lysates were treated with or without λ phosphatase and subjected to caspase treatment followed by dephosphorylation of the sample previously left phosphorylated. Primary amines on protein N termini and lysine residues were dimethylated using heavy (+34, open circles) or light (+28, black circles) formaldehyde. Samples were pooled and trypsinized, which exposed an amine on the N terminus of the internal tryptic peptide. These peptides are captured through reaction with an ∼80-kDa aldehyde-substituted polymer. Importantly, native protein N termini and neo-N termini generated by caspase cleavage are resistant to reaction with the polymer because their reactive amines have been blocked by dimethylation. Enrichment of the N-terminome then occurs via negative selection when the reacted polymer is filtered away using a 10-kDa cut-off spin column. LC-MS/MS analysis of isotopically dimethylated peptides then allows comparative analysis between caspase degradomes of phosphorylated and dephosphorylated lysates. Caspase substrates will be inferred through identification of those peptides with a P1 aspartic acid. In the event that there is no difference in caspase substrate proteolysis between phosphorylated and dephosphorylated samples, a peptide ratio of ∼1:1 will be observed in MS1 [1]. Of interest are those peptide pairs that deviate from a 1:1 ratio [2].To build on our predictive strategy, we devised an unbiased, proteomic methodology to identify novel proteins for which phosphorylation regulates cleavage via caspases. We measured the caspase degradome in the context of a native phosphoproteome and compared it to the caspase degradome generated from lysates formerly dephosphorylated with λ bacteriophage phosphatase. To identify these events, we utilized the N-terminomic workflow TAILS1 (terminal amino isotopic labeling of substrates) (14). Comparative analysis of the caspase degradomes from phosphorylated and dephosphorylated lysates revealed Yap1 and Golgin-160 as caspase substrates negatively regulated by phosphorylation.Surprisingly, we also identified a number of caspase substrates for which cleavage is promoted by phosphorylation, and during the course of our study, Dix et al. (15) demonstrated that phosphorylation at P3 can promote the cleavage of caspase peptide substrates. Our proteomic screen highlighted MST3 as a caspase substrate positively regulated by phosphorylation; however, in contrast to results obtained for MST3 protein in lysates, phosphorylation exerted a negative influence on the cleavage of an MST3 peptide, as was the case for other peptides modeled after Yap1 and Golgin-160. Collectively, these data suggest that although inhibitory effects of phosphorylation can arise through phosphorylation of residues proximal to the cleavage site, the positive effect of phosphorylation may stem from determinants other than those near the scissile bond. Subsequently, to test the effect of phosphorylation throughout the entirety of the caspase motif, we systematically walked phosphoserine through the length of model caspase-3, -7, and -8 substrate peptides and found that phosphorylation was generally inhibitory to caspase cleavage. Again, these observations suggest that positive effects of phosphorylation on the caspase cleavage of proteins observed in lysates likely arise through modulated ternary protein structure. Overall, our studies demonstrate that N-terminomics approaches can be tailored to identify novel, hierarchical events controlling the cleavage of caspase substrates.  相似文献   

17.
Secreted and membrane tethered matrix metalloproteinases (MMPs) are key homeostatic proteases regulating the extracellular signaling and structural matrix environment of cells and tissues. For drug targeting of proteases, selectivity for individual molecules is highly desired and can be met by high yield active site specificity profiling. Using the high throughput Proteomic Identification of protease Cleavage Sites (PICS) method to simultaneously profile both the prime and non-prime sides of the cleavage sites of nine human MMPs, we identified more than 4300 cleavages from P6 to P6′ in biologically diverse human peptide libraries. MMP specificity and kinetic efficiency were mainly guided by aliphatic and aromatic residues in P1′ (with a ~ 32–93% preference for leucine depending on the MMP), and basic and small residues in P2′ and P3′, respectively. A wide differential preference for the hallmark P3 proline was found between MMPs ranging from 15 to 46%, yet when combined in the same peptide with the universally preferred P1′ leucine, an unexpected negative cooperativity emerged. This was not observed in previous studies, probably due to the paucity of approaches that profile both the prime and non-prime sides together, and the masking of subsite cooperativity effects by global heat maps and iceLogos. These caveats make it critical to check for these biologically highly important effects by fixing all 20 amino acids one-by-one in the respective subsites and thorough assessing of the inferred specificity logo changes. Indeed an analysis of bona fide MEROPS physiological substrate cleavage data revealed that of the 37 natural substrates with either a P3-Pro or a P1′-Leu only 5 shared both features, confirming the PICS data. Upon probing with several new quenched-fluorescent peptides, rationally designed on our specificity data, the negative cooperativity was explained by reduced non-prime side flexibility constraining accommodation of the rigidifying P3 proline with leucine locked in S1′. Similar negative cooperativity between P3 proline and the novel preference for asparagine in P1 cements our conclusion that non-prime side flexibility greatly impacts MMP binding affinity and cleavage efficiency. Thus, unexpected sequence cooperativity consequences were revealed by PICS that uniquely encompasses both the non-prime and prime sides flanking the proteomic-pinpointed scissile bond.  相似文献   

18.
Highly purified, recombinant preparations of the virally encoded proteases from human immunodeficiency viruses (HIV) 1 and 2 have been compared relative to 1) their specificities toward non-viral protein and synthetic peptide substrates, and 2) their inhibition by several P1-P1' pseudodipeptidyl-modified substrate analogs. Hydrolysis of the Leu-Leu and Leu-Ala bonds in the Pseudomonas exotoxin derivative, Lys-PE40, is qualitatively the same for HIV-2 protease as published earlier for the HIV-1 enzyme (Tomasselli, A. G., Hui, J. O., Sawyer, T. K., Staples, D. J., FitzGerald, D. J., Chaudhary, V. K., Pastan, I., and Heinrikson, R. L. (1990) J. Biol. Chem. 265, 408-413). However, the rates of cleavage at these two sites are reversed for the HIV-2 protease which prefers the Leu-Ala bond. The kinetics of hydrolysis of this protein substrate by both enzymes are mirrored by those obtained from cleavage of model peptides. Hydrolysis by the two proteases of other synthetic peptides modeled after processing sites in HIV-1 and HIV-2 gag polyproteins and selected analogs thereof demonstrated differences, as well as similarities, in selectivity. For example, while the two proteases were nearly identical in their rates of cleavage of the Tyr-Pro bond in the HIV-1 gag fragment, Val-Ser-Gln-Asn-Tyr-Pro-Ile-Val, the HIV-1 protease showed a 64-fold enhancement over the HIV-2 enzyme in hydrolysis of a Tyr-Val bond in the same template. Accordingly, the HIV-2 protease appears to have a different specificity than the HIV-1 enzyme; it is better able to hydrolyze substrates with small amino acids in P1 and P1', but is variable in its rate of hydrolysis of peptides with bulky substituents in these positions. In addition to these comparisons of the two proteases with respect to substrate specificity, we present inhibitor structure-activity data for the HIV-2 protease. Relative to P1-P1' statine or Phe psi [CH2N]Pro-modified pseudopeptidyl inhibitors, compounds having Xaa psi[CH(OH)CH2]Yaa inserts were found to show significantly higher affinities to both enzymes, generally binding from 10 to 100 times stronger to HIV-1 protease than to the HIV-2 enzyme. Molecular modeling comparisons based upon the sequence homology of the two enzymes and x-ray crystal structures of HIV-1 protease suggest that most of the nonconservative amino acid replacements occur in regions well outside the catalytic cleft, while only subtle structural differences exist within the active site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Caspases, cysteine proteases with aspartate specificity, are key players in programmed cell death across the metazoan lineage. Hundreds of apoptotic caspase substrates have been identified in human cells. Some have been extensively characterized, revealing key functional nodes for apoptosis signaling and important drug targets in cancer. But the functional significance of most cuts remains mysterious. We set out to better understand the importance of caspase cleavage specificity in apoptosis by asking which cleavage events are conserved across metazoan model species. Using N-terminal labeling followed by mass spectrometry, we identified 257 caspase cleavage sites in mouse, 130 in Drosophila, and 50 in Caenorhabditis elegans. The large majority of the caspase cut sites identified in mouse proteins were found conserved in human orthologs. However, while many of the same proteins targeted in the more distantly related species were cleaved in human orthologs, the exact sites were often different. Furthermore, similar functional pathways are targeted by caspases in all four species. Our data suggest a model for the evolution of apoptotic caspase specificity that highlights the hierarchical importance of functional pathways over specific proteins, and proteins over their specific cleavage site motifs.  相似文献   

20.
The human cytomegalovirus (HCMV) protease is a potential target for antiviral chemotherapeutics; however, autoprocessing at internal sites, particularly at positions 143 and 209, hinders the production of large quantities of stable enzyme for either screening or structural studies. Using peptides encompassing the sequence of the natural M-site substrate (P5-P5', GVVNA/SCRLA), we previously demonstrated that substitution of glycine for valine at the P3 position in the substrate abrogates processing by the recombinant protease in vitro. We now demonstrate that introduction of the V-to-G substitution in the P3 positions of the two major internal processing sites, positions 143 and 209, in the mature HCMV protease renders the enzyme stable to autoprocessing. When expressed in Escherichia coli, the doubly substituted protease was produced almost exclusively as the 30-kDa full-length protein. The full-length V141G, V207G (V-to-G changes at positions 141 and 207) protease was purified as a soluble protein by a simple two-step procedure, ammonium sulfate precipitation followed by DEAE ion-exchange chromatography, resulting in 10 to 15 mg of greater than 95% pure enzyme per liter. The stabilized enzyme was characterized kinetically and was indistinguishable from the wild-type recombinant protease, exhibiting Km and catalytic constant values of 0.578 mM and 13.18/min, respectively, for the maturation site (M-site) peptide substrate, GVVNASCRLARR (underlined residues indicate additions to or substitutions from peptides derived from the wild-type substrate). This enzyme was also used to perform inhibition studies with a series of truncated and/or substituted maturation site peptides. Short nonsubstrate M-site-derived peptides were demonstrated to be competitive inhibitors of cleavage in vitro, and these analyses defined amino acids VVNA, P4 through P1 in the substrate, as the minimal substrate binding and recognition sequence for the HCMV protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号