首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Theory posits that selection on functionally interrelated characters will promote physical and genetic integration resulting in evolution of favourable trait-value combinations. The pygmy grasshopper Tetrix undulata (Orthoptera: Tetrigidae) displays a genetically encoded polymorphism for colour pattern. Colour morphs differ in several traits, including behaviours, thermal biology and body size. To examine if these size differences may reflect phenotypic plasticity of growth and development in response to temperature we used a split brood-design and reared hatchlings from mothers belonging to different morphs in different thermal environments (warm or cold) until maturity. We found that time to maturity was longer in the cold compared with the warm treatment. In the warm (but not in the cold) treatment time to maturity also varied among individuals born to mothers belonging to different colour morphs. Although low temperature and long development time are normally accompanied by increased body size in ectotherms, our results revealed no difference in size at maturity between individuals reared in the two temperature treatments. There was also an increase (not a decrease) in adult body size with shortened time to maturity across families within each treatment. Taken together, this suggests that body size is canalized against environmental perturbations, and that early maturation does not necessarily trade off against a size-mediated decrease in fecundity. Heritability of body size was moderate in magnitude. Moreover, body size at maturity varied among individuals belonging to different morphs and was influenced also by maternal colour morph, suggesting that a genetic correlation exists between colour pattern and body size. These findings suggest that different characters have evolved in concert and that the various colour morphs represent different evolutionary strategies, i.e., alternative peaks in a multi-modal adaptive landscape.  相似文献   

2.
Abstract 1. The female‐limited colour polymorphic damselfly Ischnura elegans has proven to be an interesting study organism both as an example of female sexual polymorphism, and in the context of the evolution of colour polymorphism, as a model of speciation processes. 2. Previous research suggests the existence of correlations between colour morph and other phenotypic traits, and the different female morphs in I. elegans may be pursuing alternative phenotypically integrated strategies. However, previous research on morphological differences in southern Swedish individuals of this species was only carried out on laboratory‐raised offspring from a single population, leaving open the question of how widespread such differences are. 3. The present study therefore analysed multi‐generational data from 12 populations, investigating morphological differences between the female morphs in the field, differences in the pattern of phenotypic integration between morphs, and quantified selection on morphological traits. 4. It was found that consistent morphological differences indeed existed between the morphs across populations, confirming that the previously observed differences were not simply a laboratory artefact. It was also found, somewhat surprisingly, that despite the existence of sexual dimorphism in body size and shape, patterns of phenotypic integration differed most between the morphs and not between the sexes. Finally, linear selection gradients showed that female morphology affected fecundity differently between the morphs. 5. We discuss the relevance of these results to the male mimicry hypothesis and to the existence of potential ecological differences between the morphs.  相似文献   

3.
1. In polymorphic species, two or more discrete phenotypes co‐occur simultaneously. Sex‐limited polymorphism is a particular case of polymorphism, in which several discrete morphs coexist within one of the two sexes only. Several hypotheses were proposed to explain the existence and the maintenance of sex‐limited polymorphism in insects: (i) the morphs have similar fitness, such as similar survival and expected fecundity, and their frequencies vary randomly (i.e. the null hypothesis); (ii) harassment by males is reduced towards the less common female morph, in this case andromorph females (i.e. the male mimicry and learned mate recognition hypotheses); (iii) morphs differ in predation risk (i.e. the predation hypothesis); or (iv) morphs differ in thermoregulation ability (i.e. the thermoregulation hypothesis). 2. Field observations and experiments were employed to compare the relative support of these hypotheses using dimorphic females of the bog fritillary butterfly. Differences were detected between morphs in survival, fecundity, harassment by males, predation pressure and thermal properties, thereby rejecting the null hypothesis. 3. The lifestyle of both morphs is associated with different costs and benefits, with advantages in daily survival and precocious emergence for the gynomorph females, and advantages in fecundity, predation and male harassment for the andromorph females. Besides, as the bog fritillary butterfly is protandrous (i.e. males emerge before females), the longer development of andromorph females puts them at risk of emerging when all the males are dead. The results raise the question as to which mechanisms control the ontogenetic pathways driving the production of the two morphs (i.e. genetic polymorphism or phenotypic plasticity).  相似文献   

4.
Ectothermic animals rely on external heat sources and behavioral thermoregulation to control body temperature, and are characterized by possessing physiological and behavioural traits which are temperature dependent. It has therefore been suggested that constraints on the range of body temperatures available to individuals imposed by phenotypic properties, such as coloration, may translate into differential fitness and selection against thermally inferior phenotypes. In this paper, I report an association between thermal preferences and thermal capacity (the ability to warm up when insolated) across different genetically coded color morphs of the pygmy grasshopper Tetrix subulata. Data on behavioral thermoregulation of individuals in a laboratory thermal gradient revealed a preference for higher body temperatures in females than in males, and significant variation among colour morphs in preferred body temperatures in females, but not in males. The variation in females was in perfect accordance with estimates of morph-specific differences in thermal capacity. Thus, dark morphs not only attain higher temperatures when exposed to augmented illumination, but also prefer higher body temperatures, compared to paler morphs. This intra-population divergence probably reflects an underlying variation among colour morphs in temperature optima, and is consistent with the notion that coloration, behaviour and physiology evolve in concert.  相似文献   

5.
Non-random female mating preferences may contribute to the maintenance of phenotypic variation in color polymorphic species. However, the effect of female preference depends on the types of male traits used as signals by receptive females. If preference signals derive from discrete male traits (i.e., morph-specific), female preferences may rapidly fix to a morph. However, female preference signals may also include condition-dependent male traits. In this scenario, female preference may differ depending on the social context (i.e., male morph availability). Male tree lizards (Urosaurus ornatus) exhibit a dewlap color polymorphism that covaries with mating behavior. Blue morph males are aggressive and defend territories, yellow males are less aggressive and defend smaller territories, and orange males are typically nomadic. Female U. ornatus are also polymorphic in dewlap color, but the covariation between dewlap color and female behavior is unknown. We performed an experiment to determine how female mate choice depends on the visual and chemical signals produced by males. We also tested whether female morphs differ in their preferences for these signals. Female preferences involved both male dewlap color and size of the ventral color patch. However, the female morphs responded to these signals differently and depended on the choice between the types of male morphs. Our experiment revealed that females may be capable of distinguishing among the male morphs using chemical signals alone. Yellow females exhibit preferences based on both chemical and visual signals, which may be a strategy to avoid ultra-dominant males. In contrast, orange females may prefer dominant males. We conclude that female U. ornatus morphs differ in mating behavior. Our findings also provide evidence for a chemical polymorphism among male lizards in femoral pore secretions.  相似文献   

6.
Coexistence of female colour morphs in animal populations is often considered the result of sexual conflict, where polymorphic females benefit from reduced male sexual harassment. Mate-searching males easily detect suitable partners when only one type of female is present, but become challenged when multiple female morphs coexist, which may result in frequency-dependent mate preferences. Intriguingly, in damselflies, one female morph often closely resembles the conspecific male in body coloration, which has lead to hypotheses regarding intra-specific male-mimicry. However, few studies have quantitatively evaluated the correspondence between colour reflectance spectra from males and male-like females, relying instead on qualitative visual assessments of coloration. Using colour analyses of reflectance spectra, we compared characteristics of the body coloration of ontogenetic male and female colour morphs of the damselfly Ischnura elegans. In addition, we evaluated whether males appear to (1) discriminate between immature and mature female colour morphs, and (2) whether male-like females experience reduced male mating attention and low mating frequencies as predicted from male-mimicry. Spectral reflectance data show that immature female morphs differ substantially in coloration from mature individuals. Mating frequencies were much lower for immature than mature female morphs. For the male-like female morph, measures of colour were statistically indistinguishable from that of both immature and mature conspecific males. Mating frequencies of male-like females were lower than those of other mature female morphs under field and experimental conditions. Together, our results indicate that males may use the observed spectral differences in mate choice decisions. Furthermore, male-like females may be regarded as functional mimics that have reduced attractiveness and lowered rates of sexual harassment by mate-searching males.  相似文献   

7.
A major goal in evolutionary biology is to determine how phenotypic variation arises and is maintained in natural populations. Recent studies examining the morphological, physiological and behavioural differences among discrete colour morphotypes (morphs) have revealed several mechanisms that maintain discrete variation within populations, including frequency‐dependence, density‐dependence and correlational selection. For example, trade‐offs over resource allocation to morphological, physiological and behavioural traits can drive correlational selection for morph‐specific phenotypic optima. Here, we describe a ventral colour polymorphism in the wall lizard (Podarcis muralis) and test the hypothesis that morphs differ along multivariate axes defined by trade‐offs in morphological, physiological, and immunological traits. We show that ventral colour is a discrete trait and that morphs differ in body size, prevalence of infection by parasites and infection intensity. We also find that morphs differ along multivariate phenotypic axes and experience different multivariate selection pressures. Our results suggest that multivariate selection pressures may favour alternative optimal morph‐specific phenotypes in P. muralis.  相似文献   

8.
In this study we investigated the developmental basis of adult phenotypes in a non-model organism, a polymorphic damselfly (Ischnura elegans) with three female colour morphs. This polymorphic species presents an ideal opportunity to study intraspecific variation in growth trajectories, morphological variation in size and shape during the course of ontogeny, and to relate these juvenile differences to the phenotypic differences of the discrete adult phenotypes; the two sexes and the three female morphs. We raised larvae of different families in individual enclosures in the laboratory, and traced morphological changes during the course of ontogeny. We used principal components analysis to examine the effects of Sex, Maternal morph, and Own morph on body size and body shape. We also investigated the larval fitness consequences of variation in size and shape by relating these factors to emergence success. Females grew faster than males and were larger as adults, and there was sexual dimorphism in body shape in both larval and adult stages. There were also significant effects of both maternal morph and own morph on growth rate and body shape in the larval stage. There were significant differences in body shape, but not body size, between the adult female morphs, indicating phenotypic integration between colour, melanin patterning, and body shape. Individuals that emerged successfully grew faster and had different body shape in the larval stage, indicating internal (non-ecological) selection on larval morphology. Overall, morphological differences between individuals at the larval stage carried over to the adult stage. Thus, selection in the larval stage can potentially result in correlated responses in adult phenotypes and vice versa.  相似文献   

9.
Females of Lampropholis delicata are dimorphic for colour pattern, the difference between morphs being the presence or absence of a distinct white mid-lateral stripe. A less distinct striped morph occurs also in males. We evaluated alternative hypotheses for the maintenance of this polymorphism by examining temporal and spatial variation in morph frequency, testing for differential selection among morphs using data on body size and reproductive traits from preserved specimens, and experimentally manipulating colour pattern in free-ranging lizards of both sexes, to assess the influence of the lateral stripe on survival rates. We found that the relative frequency of striped individuals varied among populations and decreased from north to south in both sexes, coincident with an increasing incidence of regenerated tails. Morph frequencies did not change through time within a population. Striped gravid females appeared to survive better and produced larger clutches than did non-striped females. In our experimental study, the relationship between survival and colour morph differed between the two sexes; males painted with a white lateral stripe had lower survival than control (brown stripe) males, but survival did not differ between striped and control females. The different response in the two sexes may be due partly to differences in temperature and microhabitat selection. We propose that the white lateral stripe decreases susceptibility to predators in gravid females but increases risk of predation in males, especially in combination with low temperatures. The polymorphism might be maintained by: (1) opposing fitness consequences of the stripe in males and females; (2) sex-specific habitat selection; and (3) gene flow in combination with spatial variation in relative fitness of the two morphs.  相似文献   

10.
Damselflies provide a classic example of female colour polymorphism. Usually, one female morph resembles the blue male colour (andromorph) while one, or more, female morphs are seen as typically female (gynomorph). Damselfly species fall in two distinct groups with respect to recent developments in mimicry theory: in some species females are perfect, they match male colouration and black patterning, and in other species they are supposed to be imperfect mimics, only matching male colouration. However, the underlying assumption of one female morph looking male-like is mostly based on human vision. Therefore we investigated the black patterning and colour of the three female morphs in Coenagrion puella, an imperfect mimic, using image analysis. In C. puella the blue female morph is perceived as male-like. We found that the black patterning of such females cannot be distinguished from the other female morphs, and is clearly different from males. Furthermore, the blue colour of andromorph females differs from the blue colour of males. Intriguingly, however, the red content did not differ between blue males and females.  相似文献   

11.
Colour polymorphisms can be maintained in a population if all morphs have equal fitness on average, if fitness is frequency dependent or if fitness functions cross for some environmental or social variable. We studied female-limited colour polymorphism in the Rambur's forktail damselfly, Ischnura ramburi, in which one female morph looks like the male. The most commonly cited hypotheses to explain this polymorphism involve an advantage to andromorphs of avoiding costly matings through male mimicry. An alternative hypothesis argues that males learn the most common morph and that the polymorphism is maintained by a rare-morph advantage of mating avoidance, irrespective of male mimicry. We tested predictions of the male mimicry hypothesis, learned mate recognition hypothesis (LMR) and two new hypotheses. We used censuses and a mark-resight study to estimate density, sex ratio, morph frequency and mating frequencies. We observed interactions to test for male mimicry and female competition and to evaluate the frequency of mating attempts. Andromorphs were less likely than gynomorphs to receive mating attempts in encounters with males, but did not mate less frequently, or attack males or interrupt oviposition by other females more frequently. Contrary to the LMR hypothesis, the rarer morph was more likely to receive mating attempts. Andromorph frequency was greater in older females than in younger females, suggesting higher mortality or dispersal of gynomorphs. Our results support a modification of the male mimicry hypothesis, the signal detection hypothesis. Together with past studies, our results suggest that the female morphs may be alternative mating avoidance strategies.  相似文献   

12.
Alternative behavioural strategies of colour morphs are expected to associate with endocrine differences and to correspond to differences in physical performance (e.g. movement speed, bite force in lizards); yet the nature of correlated physiological and performance traits in colour polymorphic species varies widely. Colour morphs of male tawny dragon lizards Ctenophorus decresii have previously been found to differ in aggressive and anti-predator behaviours. We tested whether known behavioural differences correspond to differences in circulating baseline and post-capture stress levels of androgen and corticosterone, as well as bite force (an indicator of aggressive performance) and field body temperature. Immediately after capture, the aggressive orange morph had higher circulating androgen than the grey morph or the yellow morph. Furthermore, the orange morph maintained high androgen following acute stress (30 min of capture); whereas androgen increased in the grey and yellow morphs. This may reflect the previously defined behavioural differences among morphs as the aggressive response of the yellow morph is conditional on the colour of the competitor and the grey morph shows consistently low aggression. In contrast, all morphs showed an increase in corticosterone concentration after capture stress and morphs did not differ in levels of corticosterone stress magnitude (CSM). Morphs did not differ in size- and temperature-corrected bite force but did in body temperature at capture. Differences in circulating androgen and body temperature are consistent with morph-specific behavioural strategies in C. decresii but our results indicate a complex relationship between hormones, behaviour, temperature and bite force within and between colour morphs.  相似文献   

13.
Populations of pygmy grasshoppers, Tetrix subulata, display genetically coded discrete variation in colour pattern and there are differences among morphs in the capacity to achieve body heating. To determine whether colour morphs differ in thermal physiology, I assessed reaction distance and jumping performance of individuals belonging to different morphs at two different temperatures. Individuals allowed a potential predator to approach less closely and jumped longer distances at high than at low temperature. My analyses also uncovered variation among morphs in average reaction distance and jumping capacity, as well as in thermal sensitivity of these two traits. Matrix correlation analysis further revealed that pair-wise differences between morphs in thermal sensitivity of jumping performance (but not reaction distance) could be accurately predicted by differences in body temperatures preferred in a laboratory thermal gradient. These results support the view that morphology, behaviour and thermal physiology of ectotherms may evolve in concert. The relationship between reaction distance and jumping performance varied among colour morphs at high temperature, and the common within-morph relationship between these two traits deviated from the corresponding among-morph relationship. This suggests that the variation among morphs has partially arisen through active divergence, with selection having influenced both traits and modifications having occurred to different degrees in different morphs. My data further suggest that pale colour morphs, with a limited capacity to attain high body temperatures, may not necessarily be at a selective disadvantage, because their physiology may be adapted to lower body temperatures.  相似文献   

14.
Recent investigations of mate choice indicate that the genetic effect of sires on offspring fitness may depend on the interaction between maternal and paternal genotypes and the environmental conditions experienced by the offspring. Alternative colour morphs of the pygmy grasshopper, Tetrix subulata , represent ecological strategies that differ in body size, life history, thermoregulatory behaviour, and habitat selection. The hypothesis that selection promotes behaviours maintaining coadapted gene complexes predicts individuals to mate assortatively with respect to colour morph. On the other hand, the bet-hedging hypothesis predicts that the temporal variability of the environment inhabited by these animals may select for disassortative mating behaviour resulting in heterogeneous offspring. To distinguish between these competing hypotheses, we investigated mating behaviours using dual-choice experiments. Our results were not in agreement with the prediction of assortative mating but suggest instead that matings were random with regard to colour morph. Polyandry was common, and females mated with the second male regardless of whether the first mating was assortative or disassortative. Polyandry also was equally frequent among females in triads in which the two males belonged to different colour morphs as in triads where both males belonged to the same colour morph. A field experiment confirmed that polyandry occurred also among free-ranging individuals, and uncovered variation in mating success among male colour morphs, probably due to indirect effects of coloration on activity or habitat use. The consequences of this random and polyandrous mating strategy for the evolutionary dynamics of the colour polymorphism remain to be explored.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 491–499.  相似文献   

15.
Local populations of the adder, Vipera berus, are polymorphic for dorsal colour pattern, containing both melanistic (black) and zig-zag patterned individuals. Colour patterns in snakes influence crypsis and thermoregulatory capacity and therefore may be subjected to natural selection. To find an explanation for the maintenance of this polymorphism I examined temporal and spatial variation in morph frequency, and tested for differential selection among morphs using data from a six year capture-mark-recapture study. The data derive from six groups of islands in the Baltic Sea off the Swedish east coast, two mainland localities near the coast, and one inland locality. Morph frequency did not change over time within a population but varied among populations: melanistic individuals were not found at the inland locality, but comprised from 17 to 62% of the coastal and island populations. Adders frequently moved between islands within a group, but the tendency to disperse was independent of morph. These results suggest that the polymorphism is stable and maintained by a deterministic process. Scar frequency was twice as high among melanistic as among zig-zag snakes, and melanistic individuals were easier to capture, indicating that predation may be higher on the melanistic morph. Colour morphs did not differ in body size, but analysis of recapture data shows evidence for differential survival among morphs. Zig-zag males survived better than melanistic males, but the relative survival rates of morphs were reversed in females. This difference was consistent through time and may be due to sexual differences in behaviour, with melanism increasing predation intensity when associated with male but not with female behaviour. Opposing fitness consequences of colour pattern in the two sexes may help maintain colour polymorphism within populations of Vipera berus.  相似文献   

16.
Wong A  Smith ML  Forbes MR 《Molecular ecology》2003,12(12):3505-3513
The damselfly, Nehalennia irene (Hagen), has two distinct female colour morphs. Individuals of one morph have male-like colouration and pattern (androchromes), whereas gynochromes are different from males and androchromes in these respects. In several damselflies, such female-limited polychromatism is attributable to a single genetic locus. We developed six polymorphic genetic markers, which were codominant, to test for genetic differentiation in N. irene, collected from two sites located 8 km from one another in eastern Ontario, Canada. Based on three censuses spanning a 10 year period (1992-2001), morph ratios differed consistently and significantly between these two sites. However, subpopulations at these sites were not genetically differentiated with respect to the putatively neutral markers. Our results suggest that site differences in morph ratios of female N. irene cannot be explained by genetic drift, but are consistent with spatially variable selection operating on different morphs, perhaps mediated by male density. Alternatively, morph type may be a plastic trait and cues for induction may differ between sites.  相似文献   

17.

Background

In eastern North America two common colour morphs exist in most populations of redback salamanders (Plethodon cinereus). Previous studies have indicated that the different morphs may be adapted to different thermal niches and the morphological variation has been linked to standard metabolic rate at 15°C in one population of P. cinereus. It has therefore been hypothesized that a correlated response to selection on metabolic rate across thermal niches maintains the colour polymorphism in P. cinereus. This study tests that hypothesis.

Results

We found that the two colour morphs do sometimes differ in their maintenance metabolic rate (MMR) profiles, but that the pattern is not consistent across populations or seasons. We also found that when MMR profiles differ between morphs those differences do not indicate that distinct niches exist. Field censuses showed that the two colour morphs are sometimes found at different substrate temperatures and that this difference is also dependent on census location and season.

Conclusion

While these morphs sometimes differ in their maintenance energy expenditures, the differences in MMR profile in this study are not consistent with maintenance of the polymorphism via a simple correlated response to selection across multiple niches. When present, differences in MMR profile do not indicate the existence of multiple thermal niches that consistently mirror colour polymorphism. We suggest that while a relationship between colour morph and thermal niche selection appears to exist it is neither simple nor consistent.  相似文献   

18.
Sex‐specific colour polymorphisms have been extensively documented in many different taxa. When polymorphism in colour pattern is restricted to females, the condition is known as female‐limited pattern polymorphism (FPP), which has been less commonly addressed in vertebrates. FPP is present in several lizard species, although most research on lizards has focused on carotenoid‐ and pteridine‐based coloration and not on melanin‐based polymorphisms. In the present study, we focus on Iberian wall lizards, Podarcis hispanicus, where two female melanin‐based dorsal patterns can be clearly distinguished: striped and reticulated‐blotched. We indirectly tested the hypothesis that selection acts differentially among P. hispanicus female morphs to create alternative morph‐specific phenotypic optima at different levels by investigating whether morphs differ in fitness proxies. We specifically examined whether the two female dorsal pattern morphs differed in adult morphology, dorsal coloration, immune response, reproductive investment, and growth. We did not find a relationship between melanin‐based coloration and hatchling growth and immune response, despite a correlation between these traits possibly being expected as a result of pleiotropy in the melanocortin system. However, our results show that female dorsal morphs in P. hispanicus differ in terms of adult morphology, dorsal coloration, and reproductive investment. Reticulated‐blotched P. hispanicus females had deeper heads and longer femora, less melanin, and more brownish coloration, and also had larger and heavier hatchlings than striped females.  相似文献   

19.
The role of parasites in explaining maintenance of polymorphism is an unexplored research avenue. In odonates, female-limited color polymorphism (one female morph mimicking the conspecific male and one or more gynochromatic morphs) is widespread. Here we investigated whether parasitism contributes to color polymorphism maintenance by studying six species of female dimorphic damselflies using large databases of field-collected animals. We predicted that androchrome females (male mimics) would be more intensively parasitized than gynochrome females which is, according to previous studies, counterbalanced by the advantages of the former when evading male harassment compared to gynochrome females. Here we show that in Ischnura denticollis and Enallagma novahispaniae, androchrome females suffer from a higher degree of parasitism than gynochromatic females, and contrary to prediction, than males. Thus, our study has detected a correlation between color polymorphism and parasitic burden in odonates. This leads us to hypothesize that natural selection, via parasite pressure, can explain in part how androchrome and gynochrome female color morphs can be maintained. Both morphs may cope with parasites in a different way: given that androchrome females are more heavily parasitized, they may pay a higher fecundity costs, in comparison to gynochrome females.  相似文献   

20.
Persistent colour polymorphisms can result from natural and/or sexual selection, and may occur in males, females, or both sexes. Contrary to conspicuous patterns frequently observed in courtship colouration, differences in cryptic colouration are not always perceived by the human sensory system. In sexually dimorphic sailfin silversides fishes, males show conspicuous colour polymorphisms whereas females appear monomorphic and cryptic. We measured the spectral composition of body, fin and peduncle colouration in male and female Telmatherina antoniae ‘small’, a sailfin silverside species endemic to ancient Lake Matano, and found evidence for a colour polymorphism in both sexes. The three colour morphs distinguished by spectral data correspond to those commonly reported for males, and are also present in the visually (to a human eye) cryptic females. Females show hue value patterns similar to those present in males, but differ from males substantially in chroma and brightness. This is, to the best of our knowledge, the first example of a cryptic colour polymorphism in fishes; however, its significance for the mating system remains unknown. The present finding highlights the need for incorporating female spectral data into analyses of colour patterns, and suggests that colour analyses should include cryptic sexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号