首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The roles of two conserved cysteine residues involved in the activation of the adenovirus proteinase (AVP) were investigated. AVP requires two cofactors for maximal activity, the 11-amino acid peptide pVIc (GVQSLKRRRCF) and the viral DNA. In the AVP-pVIc crystal structure, conserved Cys104 of AVP has formed a disulfide bond with conserved Cys10 of pVIc. In this work, pVIc formed a homodimer via disulfide bond formation with a second-order rate constant of 0.12 M(-1) s(-1), and half of the homodimer could covalently bind to AVP via thiol-disulfide exchange. Alternatively, monomeric pVIc could form a disulfide bond with AVP via oxidation. Regardless of the mechanism by which AVP becomes covalently bound to pVIc, the kinetic constants for substrate hydrolysis were the same. The equilibrium dissociation constant, K(d), for the reversible binding of pVIc to AVP was 4.4 microM. The K(d) for the binding of the mutant C10A-pVIc was at least 100-fold higher. Surprisingly, the K(d) for the binding of the C10A-pVIc mutant to AVP decreased at least 60-fold, to 6.93 microM, in the presence of 12mer ssDNA. Furthermore, once the mutant C10A-pVIc was bound to an AVP-DNA complex, the macroscopic kinetic constants for substrate hydrolysis were the same as those exhibited by wild-type pVIc. Although the cysteine in pVIc is important in the binding of pVIc to AVP, formation of a disulfide bond between pVIc and AVP was not required for maximal stimulation of enzyme activity by pVIc.  相似文献   

2.
Human adenovirus proteinase (AVP) requires two cofactors for maximal activity: pVIc, a peptide derived from the C terminus of adenovirus precursor protein pVI, and the viral DNA. Synchrotron protein footprinting was used to map the solvent accessible cofactor binding sites and to identify conformational changes associated with the binding of cofactors to AVP. The binding of pVIc alone or pVIc and DNA together to AVP triggered significant conformational changes adjacent to the active site cleft sandwiched between the two AVP subdomains. In addition, upon binding of DNA to AVP, it was observed that specific residues on each of the two major subdomains were significantly protected from hydroxyl radicals. Based on the locations of these protected side-chain residues and conserved aromatic and positively charged residues within AVP, a three-dimensional model of DNA binding was constructed. The model indicated that DNA binding can alter the relative orientation of the two AVP domains leading to the partial activation of AVP by DNA. In addition, both pVIc and DNA may independently alter the active site conformation as well as drive it cooperatively to fully activate AVP.  相似文献   

3.
The adenovirus proteinase (AVP), the first member of a new class of cysteine proteinases, is essential for the production of infectious virus, and here we report its structure at 0.98 Å resolution. AVP, initially synthesized as an inactive enzyme, requires two cofactors for maximal activity: pVIc, an 11-amino acid peptide, and the viral DNA. Comparison of the structure of AVP with that of an active form, the AVP-pVIc complex, reveals why AVP is inactive. Both forms have an α + β fold; the major structural differences between them lie in the β-sheet domain. In AVP-pVIc, the general base His-54 Nδ1 is 3.9 Å away from the Cys-122 Sγ, thereby rendering it nucleophilic. In AVP, however, His-54 Nδ1 is 7.0 Å away from Cys-122 Sγ, too far away to be able to abstract the proton from Cys-122. In AVP-pVIc, Tyr-84 forms a cation-π interaction with His-54 that should raise the pKa of His-54 and freeze the imidazole ring in the place optimal for forming an ion pair with Cys-122. In AVP, however, Tyr-84 is more than 11 Å away from its position in AVP-pVIc. Based on the structural differences between AVP and AVP-pVIc, we present a model that postulates that activation of AVP by pVIc occurs via a 62-amino acid-long activation pathway in which the binding of pVIc initiates contiguous conformational changes, analogous to falling dominos. There is a common pathway that branches into a pathway that leads to the repositioning of His-54 and another pathway that leads to the repositioning of Tyr-84.  相似文献   

4.
The interaction of the human adenovirus proteinase (AVP) with various DNAs was characterized. AVP requires two cofactors for maximal activity, the 11-amino acid residue peptide from the C-terminus of adenovirus precursor protein pVI (pVIc) and the viral DNA. DNA binding was monitored by changes in enzyme activity or by fluorescence anisotropy. The equilibrium dissociation constants for the binding of AVP and AVP-pVIc complexes to 12-mer double-stranded (ds) DNA were 63 and 2.9 nM, respectively. DNA binding was not sequence specific; the stoichiometry of binding was proportional to the length of the DNA. Three molecules of the AVP-pVIc complex bound to 18-mer dsDNA and six molecules to 36-mer dsDNA. When AVP-pVIc complexes bound to 12-mer dsDNA, two sodium ions were displaced from the DNA. A Delta of -4.6 kcal for the nonelectrostatic free energy of binding indicated that a substantial component of the binding free energy results from nonspecific interactions between the AVP-pVIc complex and DNA. The cofactors altered the interaction of the enzyme with the fluorogenic substrate (Leu-Arg-Gly-Gly-NH)2-rhodamine. In the absence of any cofactor, the Km was 94.8 microM and the kcat was 0.002 s(-1). In the presence of adenovirus DNA, the Km decreased 10-fold and the kcat increased 11-fold. In the presence of pVIc, the Km decreased 10-fold and the kcat increased 118-fold. With both cofactors present, the kcat/Km ratio increased 34000-fold, compared to that with AVP alone. Binding to DNA was coincident with stimulation of proteinase activity by DNA. Although other proteinases have been shown to bind to DNA, stimulation of proteinase activity by DNA is unprecedented. A model is presented suggesting that AVP moves along the viral DNA looking for precursor protein cleavage sites much like RNA polymerase moves along DNA looking for a promoter.  相似文献   

5.
J Ding  W J McGrath  R M Sweet    W F Mangel 《The EMBO journal》1996,15(8):1778-1783
The three-dimensional structure of the human adenovirus-2 proteinase complexed with its 11 amino acid cofactor, pVIc, was determined at 2.6 A resolution by X-ray crystallographic analysis. The fold of this protein has not been seen before. However, it represents an example of either subtly divergent or powerfully convergent evolution, because the active site contains a Cys-His-Glu triplet and oxyanion hole in an arrangement similar to that in papain. Thus, the adenovirus proteinase represents a new, fifth group of enzymes that contain catalytic triads. pVIc, which extends a beta-sheet in the main chain, is distant from the active site, yet its binding increases the catalytic rate constant 300-fold for substrate hydrolysis. The structure reveals several potential targets for antiviral therapy.  相似文献   

6.
Bajpayee NS  McGrath WJ  Mangel WF 《Biochemistry》2005,44(24):8721-8729
The interactions of the human adenovirus proteinase (AVP) with polymers with high negative charge densities were characterized. AVP utilizes two viral cofactors for maximal enzyme activity (k(cat)/K(m)), the 11-amino acid peptide from the C-terminus of virion precursor protein pVI (pVIc) and the viral DNA. The viral DNA stimulates covalent AVP-pVIc complexes (AVP-pVIc) as a polyanion with a high negative charge density. Here, the interactions of AVP-pVIc with different polymers with high negative charge densities, polymers of glutamic acid (polyE), were characterized. The rate of substrate hydrolysis by AVP-pVIc increased with increasing concentrations of polyE. At higher concentrations of polyE, the increase in the rate of substrate hydrolysis approached saturation. Although glutamic acid did not stimulate enzyme activity, glutamic acid and NaCl could displace DNA from AVP-pVIc.(DNA) complexes; the K(i) values were 230 and 329 nM, respectively. PolyE binds to the DNA binding site on AVP-pVIc as polyE and DNA compete for binding to AVP-pVIc. The equilibrium dissociation constant for 1.3 kDa polyE binding to AVP-pVIc was 56 nM. On average, one molecule of AVP-pVIc binds to 12 residues in polyE. Comparison of polyE and 12-mer single-stranded DNA interacting with AVP-pVIc revealed the binding constants are similar, as are the Michaelis-Menten constants for substrate hydrolysis. The number of ion pairs formed upon the binding of 1.3 kDa polyE to AVP-pVIc was 2, and the nonelectrostatic change in free energy upon binding was -6.5 kcal. These observations may be physiologically relevant as they infer that AVP may bind to proteins that have regions of negative charge density. This would restrict activation of the enzyme to the locus of the cofactor within the cell.  相似文献   

7.
The serine and cysteine proteinases represent two important classes of enzymes that use a catalytic triad to hydrolyze peptides and esters. The active site of the serine proteinases consists of three key residues, Asp...His...Ser. The hydroxyl group of serine functions as a nucleophile and the imidazole ring of histidine functions as a general acid/general base during catalysis. Similarly, the active site of the cysteine proteinases also involves three key residues: Asn, His, and Cys. The active site of the cysteine proteinases is generally believed to exist as a zwitterion (Asn...His+...Cys-) with the thiolate anion of the cysteine functioning as a nucleophile during the initial stages of catalysis. Curiously, the mutant serine proteinases, thiol subtilisin and thiol trypsin, which have the hybrid Asp...His...Cys triad, are almost catalytically inert. In this study, ab initio Hartree-Fock calculations have been performed on the active sites of papain and the mutant serine proteinase S195C rat trypsin. These calculations predict that the active site of papain exists predominately as a zwitterion (Cys-...His+...Asn). However, similar calculations on S195C rat trypsin demonstrate that the thiol mutant is unable to form a reactive thiolate anion prior to catalysis. Furthermore, structural comparisons between native papain and S195C rat trypsin have demonstrated that the spatial juxtapositions of the triad residues have been inverted in the serine and cysteine proteinases and, on this basis, I argue that it is impossible to convert a serine proteinase to a cysteine proteinase by site-directed mutagenesis.  相似文献   

8.
The interaction of the human adenovirus proteinase (AVP) and AVP-DNA complexes with the 11-amino acid cofactor pVIc was characterized. The equilibrium dissociation constant for the binding of pVIc to AVP was 4.4 microM. The binding of AVP to 12-mer single-stranded DNA decreased the K(d) for the binding of pVIc to AVP to 0.09 microM. The pVIc-AVP complex hydrolyzed the substrate with a Michaelis constant (K(m)) of 3.7 microM and a catalytic rate constant (k(cat)) of 1.1 s(-1). In the presence of DNA, the K(m) increased less than 2-fold, and the k(cat) increased 3-fold. Alanine-scanning mutagenesis was performed to determine the contribution of individual pVIc side chains in the binding and stimulation of AVP. Two amino acid residues, Gly1' and Phe11', were the major determinants in the binding of pVIc to AVP, while Val2' and Phe11' were the major determinants in stimulating enzyme activity. Binding of AVP to DNA greatly suppressed the effects of the alanine substitutions on the binding of mutant pVIcs to AVP. Binding of either or both of the cofactors, pVIc or the viral DNA, to AVP did not dramatically alter its secondary structure as determined by vacuum ultraviolet circular dichroism. pVIc, when added to Hep-2 cells infected with adenovirus serotype 5, inhibited the synthesis of infectious virus, presumably by prematurely activating the proteinase so that it cleaved virion precursor proteins before virion assembly, thereby aborting the infection.  相似文献   

9.
Brown MT  Mangel WF 《FEBS letters》2004,563(1-3):213-218
Actin bound to the adenovirus proteinase (AVP) with a lower equilibrium dissociation constant, 4.2 nM, than those exhibited by two viral, nuclear cofactors for AVP, the 11-amino acid peptide pVIc and the viral DNA. The k(cat)/K(m) ratio for substrate hydrolysis by AVP increased 150,000-fold in the presence of actin. The 11-amino acid residue peptide corresponding to the C-terminus of actin, which is highly homologous to pVIc, bound to AVP and stimulated its activity in the presence of DNA. As a cellular cofactor for AVP, AVP(actin) complexes may facilitate the cleavage of cytoskeletal proteins, preparing the infected cell for lysis and release of nascent virions.  相似文献   

10.
Ubiquitin C-terminal hydrolases catalyze the removal of adducts from the C-terminus of ubiquitin. We have determined the crystal structure of the recombinant human Ubiquitin C-terminal Hydrolase (UCH-L3) by X-ray crystallography at 1.8 A resolution. The structure is comprised of a central antiparallel beta-sheet flanked on both sides by alpha-helices. The beta-sheet and one of the helices resemble the well-known papain-like cysteine proteases, with the greatest similarity to cathepsin B. This similarity includes the UCH-L3 active site catalytic triad of Cys95, His169 and Asp184, and the oxyanion hole residue Gln89. Papain and UCH-L3 differ, however, in strand and helix connectivity, which in the UCH-L3 structure includes a disordered 20 residue loop (residues 147-166) that is positioned over the active site and may function in the definition of substrate specificity. Based upon analogy with inhibitor complexes of the papain-like enzymes, we propose a model describing the binding of ubiquitin to UCH-L3. The UCH-L3 active site cleft appears to be masked in the unliganded structure by two different segments of the enzyme (residues 9-12 and 90-94), thus implying a conformational change upon substrate binding and suggesting a mechanism to limit non-specific hydrolysis.  相似文献   

11.
Mature human adenovirus particles contain four minor capsid proteins, in addition to the three major capsid proteins (penton base, hexon and fiber) and several proteins associated with the genomic core of the virion. Of the minor capsid proteins, VI plays several crucial roles in the infection cycle of the virus, including hexon nuclear targeting during assembly, activation of the adenovirus proteinase (AVP) during maturation and endosome escape following cell entry. VI is translated as a precursor (pVI) that is cleaved at both N- and C-termini by AVP. Whereas the role of the C-terminal fragment of pVI, pVIc, is well established as an important co-factor of AVP, the role of the N-terminal fragment, pVIn, is currently elusive. In fact, the fate of pVIn following proteolytic cleavage is completely unknown. Here, we use a combination of proteomics-based peptide identification, native mass spectrometry and hydrogen–deuterium exchange mass spectrometry to show that pVIn is associated with mature human adenovirus, where it binds at the base of peripentonal hexons in a pH-dependent manner. Our findings suggest a possible role for pVIn in targeting pVI to hexons for proper assembly of the virion and timely release of the membrane lytic mature VI molecule.  相似文献   

12.
PSI domains are cysteine-rich modules found in extracellular fragments of hundreds of signaling proteins, including plexins, semaphorins, integrins, and attractins. Here, we report the solution structure of the PSI domain from the human Met receptor, a receptor tyrosine kinase critical for proliferation, motility, and differentiation. The structure represents a cysteine knot with short regions of secondary structure including a three-stranded antiparallel beta-sheet and two alpha-helices. All eight cysteines are involved in disulfide bonds with the pattern consistent with that for the PSI domain from Sema4D. Comparison with the Sema4D structure identifies a structurally conserved core comprising the N-terminal half of the PSI domain. Interestingly, this part links adjacent SEMA and immunoglobulin domains in the Sema4D structure, suggesting that the PSI domain serves as a wedge between propeller and immunoglobulin domains and is responsible for the correct positioning of the ligand-binding site of the receptor.  相似文献   

13.
The leader protease of foot-and-mouth disease virus, as well as cleaving itself from the nascent viral polyprotein, disables host cell protein synthesis by specific proteolysis of a cellular protein: the eukaryotic initiation factor 4G (eIF4G). The crystal structure of the leader protease presented here comprises a globular catalytic domain reminiscent of that of cysteine proteases of the papain superfamily, and a flexible C-terminal extension found intruding into the substrate-binding site of an adjacent molecule. Nevertheless, the relative disposition of this extension and the globular domain to each other supports intramolecular self-processing. The different sequences of the two substrates cleaved during viral replication, the viral polyprotein (at LysLeuLys/GlyAlaGly) and eIF4G (at AsnLeuGly/ArgThrThr), appear to be recognized by distinct features in a narrow, negatively charged groove traversing the active centre. The structure illustrates how the prototype papain fold has been adapted to the requirements of an RNA virus. Thus, the protein scaffold has been reduced to a minimum core domain, with the active site being modified to increase specificity. Furthermore, surface features have been developed which enable C-terminal self-processing from the viral polyprotein.  相似文献   

14.
The C-terminal 222 residues of human liver aldehyde dehydrogenase can be aligned with the C-terminal 226 residues of a thiol protease from Dictyostelium discoideum to yield 47 residue identities, including matching active site cysteine residues. A multiple alignment with three more aldehyde dehydrogenases and three more thiol proteases yields three regions with clustered residue similarities. In the tertiary structure of papain, these three regions are in close proximity although widely separated in primary structure, and many conserved residues are located in the active site groove. The three-dimensional relationships, the common thiol ester mechanisms of the enzymes, the locations of exon boundaries in the dehydrogenase and protease genes, and the conservation of internal salt-bridging and disulfide-paired residues in papain, all appear compatible with the hypothesis of an ancestral relationship between thiol proteases and aldehyde dehydrogenases.  相似文献   

15.
Thioredoxin constitutes the prototype of the thiol-disulfide oxidoreductase family. These enzymes contain an active-site disulfide bridge with the consensus sequence Cys-Xaa-Xaa-Cys. The more N-terminal active-site cysteine is generally a strong nucleophile with an abnormal low pK(a) value. In contrast, the more C-terminal cysteine is buried and only little is known about its effective pK(a) during catalysis of disulfide exchange reactions. Here we have analyzed the pK(a) values of the active-site thiols in wild type thioredoxin and a 400-fold more oxidizing thioredoxin variant by NMR spectroscopy, using selectively (13)C(beta)-Cys-labeled proteins. We find that the effective pK(a) of the buried cysteine (pK(b)) of the variant is increased, while the pK(a) of the more N-terminal cysteine (pK(N)) is decreased relative to the corresponding pK(a) values in the wild type. We propose two empirical models which exclusively require the knowledge of pK(N) to predict the redox properties of thiol-disulfide oxidoreductases with reasonable accuracy.  相似文献   

16.
AcpA is a respiratory burst-inhibiting acid phosphatase from the Centers for Disease Control and Prevention Category A bioterrorism agent Francisella tularensis and prototype of a superfamily of acid phosphatases and phospholipases C. We report the 1.75-A resolution crystal structure of AcpA complexed with the inhibitor orthovanadate, which is the first structure of any F. tularensis protein and the first for any member of this superfamily. The core domain is a twisted 8-stranded beta-sheet flanked by three alpha-helices on either side, with the active site located above the carboxyl-terminal edge of the beta-sheet. This architecture is unique among acid phosphatases and resembles that of alkaline phosphatase. Unexpectedly, the active site features a serine nucleophile and metal ion with octahedral coordination. Structure-based sequence analysis of the AcpA superfamily predicts that the hydroxyl nucleophile and metal center are also present in AcpA-like phospholipases C. These results imply a phospholipase C catalytic mechanism that is radically different from that of zinc metallophospholipases.  相似文献   

17.
Asparagine synthetase B catalyzes the assembly of asparagine from aspartate, Mg(2+)ATP, and glutamine. Here, we describe the three-dimensional structure of the enzyme from Escherichia colidetermined and refined to 2.0 A resolution. Protein employed for this study was that of a site-directed mutant protein, Cys1Ala. Large crystals were grown in the presence of both glutamine and AMP. Each subunit of the dimeric protein folds into two distinct domains. The N-terminal region contains two layers of antiparallel beta-sheet with each layer containing six strands. Wedged between these layers of sheet is the active site responsible for the hydrolysis of glutamine. Key side chains employed for positioning the glutamine substrate within the binding pocket include Arg 49, Asn 74, Glu 76, and Asp 98. The C-terminal domain, responsible for the binding of both Mg(2+)ATP and aspartate, is dominated by a five-stranded parallel beta-sheet flanked on either side by alpha-helices. The AMP moiety is anchored to the protein via hydrogen bonds with O(gamma) of Ser 346 and the backbone carbonyl and amide groups of Val 272, Leu 232, and Gly 347. As observed for other amidotransferases, the two active sites are connected by a tunnel lined primarily with backbone atoms and hydrophobic and nonpolar amino acid residues. Strikingly, the three-dimensional architecture of the N-terminal domain of asparagine synthetase B is similar to that observed for glutamine phosphoribosylpyrophosphate amidotransferase while the molecular motif of the C-domain is reminiscent to that observed for GMP synthetase.  相似文献   

18.
1. The proteinase papaya peptidase A, one of the major components of the latex of Carica papaya L., was shown to contain 1 thiol group per molecule; this thiol group is essential for catalytic activity and is part of the catalytic site. 2. The usefulness of two-protonic-state reactivity probes coupled with modification/activity-loss data in assigning a thiol group as an integral part of the catalytic site as against merely 'essential' for activity is discussed. 3. The active centre of papaya peptidase A was investigated by using 2,2'-dipyridyl disulphide and 4-chloro-7-nitrobenzofurazan as reactivity probes. The presence in the enzyme in weakly acidic media of an interactive system containing a nucleophile S atom (pKI3.9,pKII7.9) was demonstrated. 5. Papaya peptidase A resembles ficin (EC 3.4.22.3) and actinidin (the cysteine proteinase from Actinidin chinenis) in that it does not appear to possess a carboxy group able to influence the reactivity of the thiol group by change of ionization state at pH values of about 4, a situation that contrasts markedly with that which obtains in papain. 6. Implications of the results for possible variations in cysteine proteinase mechanism are discussed.  相似文献   

19.
The dependence on thiol pK of the second-order rate constant (kS) for reaction of thiolate anions with MMTS was shown to follow the Br?nsted equation log kS = log G + beta pK with log G = 1.44 and 3.54 and beta = 0.635 and 0.309 for aryl and alkyl thiols, respectively. The reactivity toward MMTS of the protonated thiol group was found to be negligible in comparison to that of the thiolate anion. For 2-mercaptoethanol the reactivity toward MMTS of the protonated form of the thiol group was shown to be at least 5 X 10(9) smaller than that of the thiolate anion. The pH dependence of the second-order rate constant for reaction of the thiolate group of Cys-25 at the active site of papain was determined and shown to be consistent with the previously determined low pK for Cys-25 and its electrostatic interaction with His-159. The small dependence of the reactivity of Cys-25 on thiol pK (beta approximately 0.09) suggested that the charge-charge interactions that act through space to perturb the pK of the nucleophile at the active site of papain and perhaps other enzymes may serve to increase the fraction of nucleophile present in the reactive basic form without introducing the decrease in nucleophilic reactivity seen in model systems where pK's are lowered primarily by charge-dipole interactions.  相似文献   

20.
Nelson KJ  Parsonage D  Hall A  Karplus PA  Poole LB 《Biochemistry》2008,47(48):12860-12868
Salmonella typhimurium AhpC is a founding member of the peroxiredoxin family, a ubiquitous group of cysteine-based peroxidases with high reactivity toward hydrogen peroxide, organic hydroperoxides, and peroxynitrite. For all of the peroxiredoxins, the catalytic cysteine, referred to as the peroxidatic cysteine (C(P)), acts as a nucleophile in attacking the peroxide substrate, forming a cysteine sulfenic acid at the active site. Because thiolates are far stronger nucleophiles than thiol groups, it is generally accepted that cysteine-based peroxidases should exhibit pK(a) values lower than an unperturbed value of 8.3-8.5. In this investigation, several independent approaches were used to assess the pK(a) of the two cysteinyl residues of AhpC. Methods using two different iodoacetamide derivatives yielded unperturbed pK(a) values (7.9-8.7) for both cysteines, apparently due to reactivity with the wrong conformation of C(P) (i.e., locally unfolded and flipped out of the active site), as supported by X-ray crystallographic analyses. A functional pK(a) of 5.94 +/- 0.10 presumably reflecting the titration of C(P) within the fully folded active site was obtained by measuring AhpC competition with horseradish peroxidase for hydrogen peroxide; this value is quite similar to that obtained by analyzing the pH dependence of the epsilon(240) of wild-type AhpC (5.84 +/- 0.02) and similar to those obtained for two typical 2-cysteine peroxiredoxins from Saccharomyces cerevisiae (5.4 and 6.0). Thus, the pK(a) value of AhpC balances the need for a deprotonated thiol (at pH 7, approximately 90% of the C(P) would be deprotonated) with the fact that thiolates with higher pK(a) values are stronger nucleophiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号