首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. The freshwater calanoid copepod Boeckella gibbosa is typical of high elevation lakes and ponds in Patagonia (Argentina). Previous studies have shown that this species is highly tolerant to short-term exposure to natural and artificial UVB radiation, and that its tolerance is due to photoreactivation by longer wavelength radiation. In this study, we investigate the potential sublethal effects of solar radiation after prolonged exposure.
2. We incubated B. gibbosa at 1 m depth in oligotrophic Lake Toncek for 24 days. The incubation chambers were 1.2 l acrylic cylinders covered with appropriate filters in order to obtain three radiation treatments: visible radiation only, visible radiation + UVA and visible radiation + UVA + UVB.
3. The three treatments did not differ significantly in variables considered as indicators of survival (number of individuals), reproduction (proportion of ovigerous females, clutch size) and development (instar composition). Although resistance to solar UVB radiation is certainly a requisite to live in transparent high elevation habitats, the fact of being effectively exposed to natural levels of UVB radiation does not seem to have measurable consequences on an already adapted species, such as B. gibbosa  相似文献   

2.
Photoinhibition and recovery kinetics after short exposure to solar radiation following three different irradiance treatments of irradiances (PAR, PAR+UVA and PAR+UVA+UVB) was assessed in two intertidal species of the genus Gelidium, Gelidium sesquipedale and G. latifolium, collected from Tarifa (southern Spain) using in vivo chlorophyll fluorescence (PAM fluorometry). After 3 h UV radiation exposure, optimal quantum efficiency (Fv/Fm) in G. sesquipedale decreased between 25 and 35% relative to the control. Under PAR alone, values decreased to 60%. In G. latifolium, photoinhibition did not exceed 40%. Similar results were found for the effective quantum yield (ΔF/Fm′), however, no marked differences in relation to light treatments were seen. When plants were shaded for recovery from stress, only in G. latifolium a significant increase in photosynthesis was observed (between 80 and 100% of control). In contrast, photosynthesis of G. sesquipedale suffered a chronic photoinhibition or photodamage under the three light irradiances. Full solar radiation (PAR+UVA+UVB) affected also the electron transport rate in both species. Here, initial slopes of electron transport vs. irradiance curves decreased up to 60% of controls. Although the recovery kinetic under PAR+UVA+UVB conditions was delayed in G. latifolium, after 24 h recovery this species reached significantly higher than G. sesquipedale. PAR impaired electron trasport only in G. sesquipedale. Overall, both species are characterized by different capacity to tolerate enhanced solar radiation. G. latifolium is a sun adapted plant, well suited to intertidal light conditions, whereas G. sesquipedale, growing at shaded sites in the intertidal zone, is more vulnerable to enhanced UV radiation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
SUMMARY 1. We tested the influence of ultraviolet radiation (UVR) and shallow stratification on phytoplankton and bacterioplankton from the surface and the base of the mixed layer in two boreal lakes in north-western Ontario, Canada.
2. We measured phytoplankton biomass and production, bacterioplankton production and plankton respiration after transplantation under three solar radiation treatments: ambient radiation (Photosynthetically active radiation (PAR) + ultraviolet-A (UVA) + ultraviolet-B (UVB)), minus UVB (PAR + UVA) and PAR only. We repeated this experiment on three occasions in each lake during the summer.
3. Solar stress (measured as reduced growth and photoinhibition) was generally only found in the 'base phytoplankton' (i.e. originating from the base of the mixed layer). No inhibition of photosynthesis by UVB exposure was found in near-surface phytoplankton. On the other hand, production of near-surface bacterioplankton was reduced following a 4-h UVR exposure but had increased after a 48-h exposure to both UVA and UVB compared with the PAR only treatment.
4. Negative effects of UVR on phytoplankton and bacterioplankton were not ubiquitous. We emphasise the importance of conducting experiments repeatedly, particularly those which test the effects of UVR on different community assemblages from different lakes.  相似文献   

4.
Solar ultraviolet radiation (UVR, 280–400 nm) is known to affect macroalgal physiology negatively, while nutrient availability may affect UV‐absorbing compounds (UVACs) and sensitivity to UVR. However, little is known about the interactive effects of UVR and nitrate availability on macroalgal growth and photosynthesis. We investigated the growth and photosynthesis of the red alga Gracilaria lemaneiformis (Bory) Grev. at different levels of nitrate (natural or enriched nitrate levels of 41 or 300 and 600 μM) under different solar radiation treatments with or without UVR. Nitrate‐enrichment enhanced the growth, resulted in higher concentrations of UVACs, and led to negligible photoinhibition of photosynthesis even at noon in the presence of UVR. Net photosynthesis during the noon period was severely inhibited by both ultraviolet‐A radiation (UVA) and ultraviolet‐B radiation (UVB) in the thalli grown in seawater without enriched nitrate. The absorptivity of UVACs changed in response to changes in the PAR dose when the thalli were shifted back and forth from solar radiation to indoor low light, and exposure to UVR significantly induced the synthesis of UVACs. The thalli exposed to PAR alone exhibited higher growth rates than those that received PAR + UVA or PAR + UVA + UVB at the ambient or enriched nitrate concentrations. UVR inhibited growth approximately five times as much as it inhibited photosynthesis within a range of 60–120 μg UVACs · g?1 (fwt) when the thalli were grown under nitrate‐enriched conditions. Such differential inhibition implies that other metabolic processes are more sensitive to solar UVR than photosynthesis.  相似文献   

5.
Solar ultraviolet radiation may produce daily stress on marine and estuarine communities as cells are damaged and repair that damage. Reduction in the earth's stratospheric ozone layer has increased awareness of the potential effects that ultraviolet radiation may have in the environment, including how marine bacteria respond to changes in solar radiation. We examined the use of the bacterial RecA protein as an indicator of the potential of bacteria to repair DNA damage caused by solar UV irradiation using the marine bacterium Vibrio natriegens as a model. RecA is universally present in bacteria and is a regulator protein for the so-called Dark Repair Systems, which include excision repair, postreplication recombinational repair, and mutagenic or SOS repair. Solar UVB and UVA both reduced V. natriegens viability in seawater microcosms. After exposure to unfiltered solar radiation or radiation in which UVB was blocked, survival dropped below 1%, whereas visible light from which UVA and UVB had been filtered had no effect on survival. Using a RecA-specific antibody for detection, RecA protein was induced by solar radiation in a diel pattern in marine microcosms conducted in the Gulf of Mexico. Peak induction was observed at dusk each day. Although RecA expression was correlated with the formation of UVB-induced cyclobutyl pyrimidine dimers, longer wavelength UVA radiation also induced recA gene expression. Our results demonstrate that RecA-regulated, light-independent repair is an important component in the ability of marine bacteria to survive exposure to solar ultraviolet radiation and that RecA expression is a useful monitor of bacterial repair after exposure to solar UVR.  相似文献   

6.
Boreal tree species are excellent tools for studying tolerance to climate change. Bud phenology is a trait, which is highly sensitive to environmental fluctuations and thus useful for climate change investigations. However, experimental studies of bud phenology under simulated climate change outdoors are deficient. We conducted a multifactorial field experiment with single (T, UVA, UVB) and combined treatments (UVA+T, UVB+T) of elevated temperature (T, +2°C) and ultraviolet‐B radiation (+30% UVB) in order to examine their impact on both male and female genotypes of aspen (Populus tremula L.). This study focuses on the effect of the treatments in years 2 and 3 after planting (2013, 2014) and follows how bud phenology is adapting in year 4 (2015), when the treatments were discontinued. Moreover, the effect of bud removal was recorded. We found that elevated temperature played a key role in delaying bud set and forcing bud break in intact individuals, as well as slightly delaying bud break in bud‐removed individuals. UVB delayed the bud break in bud‐removed males. In addition, both UVA and UVB interacted with temperature in year 3 and even in year 4, when the treatments were off, but only in male individuals. Axillary bud removal forced both bud break and bud set under combined treatments (UVA+T, UVB+T) and delayed both under individual treatments (T, UVB). In conclusion, male aspens were more responsive to the treatments than females and that effect of elevated temperature and UV radiation on bud set and bud break of aspen is not disappearing over 4‐year study period.  相似文献   

7.
The effects of solar UV radiation on mycosporine‐like amino acids (MAAs), growth, photosynthetic pigments (Chl a, phycobiliproteins), soluble proteins (SP), and C and N content of Mazzaella laminarioides tetrasporophytes and gametophytes were investigated. Apical segments of tetrasporophytes and gametophytes were exposed to solar radiation under three treatments (PAR [P], PAR+UVA [PA], and PAR+UVA+UVB [PAB]) during 18 d in spring 2009, Punta Arenas, Chile. Samples were taken after 2, 6, 12, and 18 d of solar radiation exposure. Most of the parameters assessed on M. laminarioides were significantly influenced by the radiation treatment, and both gametophytes and tetrasporophytes seemed to respond differently when exposed to high UV radiation. The two main effects promoted by UV radiation were: (i) higher synthesis of MAAs in gametophytes than tetrasporophytes at 2 d, and (ii) a decrease in phycoerythrin, phycocyanin, and SPs, but an increase in MAA content in tetrasporophytes at 6 and 12 d of culture. Despite some changes that were observed in biochemical parameters in both tetrasporophytes and gametophytes of M. laminarioides when exposed to UVB radiation, these changes did not promote deleterious effects that might interfere with the growth in the long term (18 d). The tolerance and resistance of M. laminarioides to higher UV irradiance were expected, as this intertidal species is exposed to variation in solar radiation, especially during low tide.  相似文献   

8.
The effect of solar ultraviolet radiation on the survival rate of Antarctic zooplankton was examined in February–March in 2002. We investigated survival rate of calyptopis larvae of Euphausia superba and late copepodite stages (IV and V) of large dominant calanoid species, Calanoides acutus and Calanus propinquus reared in quartz jars with three different radiation regimes (total radiation, exclusion of UVB, exclusion of UVA and UVB) and a dark control. The survival rates of the krill larvae decreased after 3 days from start of the experiment, being below 50% at 4 days in the treatments with total radiation and exclusion of UVB, although most individuals could survive until the end of the experiments in the treatments with exclusion of both UVA and UVB and dark control. The calanoid juveniles showed almost same pattern of survival curves as the krill larvae did, but survived slightly longer. Although >10% of surface UVA radiation at 340 and 380 nm penetrated down to 30 m, both C. acutus and C. propinquus were mostly distributed above 20 m. Surface swarm of the krill larvae can be often recognized in the previous studies. These results suggest that not only solar UVB but also UVA radiation potentially lower the survival rate of Antarctic zooplankton at depth less than 20 m.  相似文献   

9.
High-energy wavelengths in the ultraviolet-B (UVB, 280-315 nm) and the UVA (315-400-nm) portion of the spectrum are harmful to terrestrial and aquatic organisms. Interestingly, UVA is also involved in the repair of UV induced damage. Organisms living in shallow coral reef environments possess UV absorbing compounds, such as mycosporine-like amino acids, to protect them from UV radiation. While it has been demonstrated that exposure to UV (280-400 nm) affects the UV absorbance of fish mucus, whether the effects of UV exposure vary between UVB and UVA wavelengths is not known. Therefore, we investigated whether the UVB, UVA, or photosynthetically active radiation (PAR, 400-700 nm) portions of the spectrum affected the UV absorbance of epithelial mucus and Fulton’s body condition index of the cleaner fish Labroides dimidiatus. We also compared field-measured UV absorbance with laboratory based high-performance liquid chromatography measurements of mycosporine-like amino acid concentrations. After 1 week, we found that the UV absorbance of epithelial mucus was higher in the UVB+UVA+PAR treatment compared with the UVA+PAR and PAR only treatments; after 2 and 3 weeks, however, differences between treatments were not detected. After 3 weeks, Fulton’s body condition index was lower for fish in the UVB+UVA+PAR compared with PAR and UVA+PAR treatments; furthermore, all experimentally treated fish had a lower Fulton’s body condition index than did freshly caught fish. Finally, we found a decrease with depth in the UV absorbance of mucus of wild-caught fish. This study suggests that the increase in UV absorbance of fish mucus in response to increased overall UV levels is a function of the UVB portion of the spectrum. This has important implications for the ability of cleaner fish and other fishes to adjust their mucus UV protection in response to variations in environmental UV exposure.  相似文献   

10.
11.
The change in optimal quantum efficiency (F v/F m) of the Arctic species Laminaria saccharina and Palmaria palmata was investigated in a long-term experiment in situ under different radiation levels during the summer of 1997 in the Kongsfjord (Ny-Ålesund, Spitsbergen, Norway, 78°55.5′N, 11°56.0′E). Whole plants were incubated in an open box system made of UV-transparent Perspex and exposed to solar radiation (λ>295?nm), solar radiation excluding UVB (λ?>?320?nm) and solar radiation excluding UVA?+ UVB (λ?>?400?nm). Increasing radiation levels were simulated by transplantation of the pre-adapted algae from their growth depth at 2?m to a water depth of 1?m. Sensitivity to artificially increased UV radiation was determined by exposure of algae from the three treatments to 6?h of strong UV radiation. P. palmata was relatively insensitive to increasing UV radiation and recovered very fast and almost completely in 2?h. Even plants pre-cultured in ambient radiation levels excluding UVA?+?UVB or UVB only showed no photoinhibition after exposure to extra UV radiation in the laboratory. L. saccharina was, in comparison to P. palmata, more sensitive and showed photoinhibition under solar radiation and solar minus UVB radiation after transplantation from 2 to 1?m water depth. However, after 3?weeks at 1?m depth, F v/F m of L. saccharina was equal in all treatments and restored to the original values at the start of the experiment. Sensitivity to extra UV radiation in the laboratory increased in time, although recovery was also fast and occurred within 20?h.  相似文献   

12.
The effect of solar UVB radiation on the growth and speciescomposition of phytoplankton from a high-mountain lake (2417m a.s.l.) was studied in situ for 16 days in two enclosuresof 1 m receiving either full sunlight or sunlight without UVB.A total of 20 species were identified in both enclosures, consistingmainly of dinoflagellates, chrysophytes and diatoms. Duringthe experiment, there were no significant differences in phytoplanktonspecies composition between the two enclos ures. In both treatments,the abundance of phytoplankton increased continuously, and chlorophylla changed by -5-fold. We observed high fluctuations in the abundanceof several species. However, these fluctuations occurred inboth enclosures, and hence they were not related to UVB radiation.Some species were affected by daily fluctuations of radiation(UVA + photosynthetically active radi ation). Cyclotella aff.gordonensis showed a robust positive correlation, whereas speciesof Gymno dinium were negatively correlated. For most species,the sensitivity to radiation found during the experiment wasconsistent with their diurnal vertical distribution in the lake.Our findings suggest that the phytoplankton from this very clearlake (10% of the surface UVB radiation at 305 nm reached 9.6m depth) were well adapted to the high UVB radiation charactensticof high-elevation sites.  相似文献   

13.
The molecular response mechanisms and signalling pathways activated upon exposure to ultraviolet (UV) radiation have been extensively studied within the last two decades. Although many signalling pathways can be activated by both UVA as well as UVB, there are several distinctions indicating wavelength-specific response patterns accommodated by the terms UVA response and UVB response. Given that human skin is primarily exposed to UV light from solar radiation consisting of both UVA and UVB, we sought to explore a potential interaction between the distinct UVA and UVB responses at the level of MAPK. Our results indicate that the two distinct stress responses elicited by UVA or UVB interact with each other, producing a "third" response that is different from either alone and cannot be explained by a simple addition of effects.  相似文献   

14.
Mycosporine‐like amino acids (MAAs) are regarded as powerful sunscreens protecting the algae against harmful UV radiation. The MAA protection efficiency was tested in algal samples by measuring the optimum quantum yield of photosynthesis using photosystem II fluorescence. It could be demonstrated that the recovery of photosynthesis after exposure to enhanced UV radiation is faster in individuals with high MAA content. MAAs can be synthesized in several polar macroalgae in response to different radiation conditions. Although MAA induction patterns are very species‐specific, some similarities can be found. Field studies indicate that plants from different growth habitats providing distinct radiation climate can be grouped into three physiological categories depending on their MAA content. The first group (I) includes mainly deep‐water species, typically lacking MAAs. The second group (II), algal species found in a broad range of water depths (eu‐ and sublittoral), which are able to flexibly synthesize and accumulate MAAs. The third group (III) includes supra‐ and eulittoral taxa, which always contain high MAA concentrations. In laboratory studies, we showed that taxa of group II and III responded in three different ways based on MAA accumulation when exposed to different radiation conditions (PAR, PAR + UVA, PAR + UVA + UVB). Either they: (a) exhibit highest total MAA concentration under the full artificial spectrum; (b) increase their MAA concentration after exposure to PAR and PAR + UVA or (c) MAA concentration declines after exposure to the full spectrum. Our studies have indicated that when coupled with UVR, exposure to temperature fluctuations ranging from 0 to 10 °C also affect MAA biosynthesis.  相似文献   

15.
The sensitivity of different life stages of the eulittoral green alga Urospora penicilliformis (Roth) Aresch. to ultraviolet radiation (UVR) was examined in the laboratory. Gametophytic filaments and propagules (zoospores and gametes) released from filaments were separately exposed to different fluence of radiation treatments consisting of PAR (P = 400–700 nm), PAR + ultraviolet A (UVA) (PA, UVA = 320–400 nm), and PAR + UVA + ultraviolet B (UVB) (PAB, UVB = 280–320 nm). Photophysiological indices (ETRmax, Ek, and α) derived from rapid light curves were measured in controls, while photosynthetic efficiency and amount of DNA lesions in terms of cyclobutane pyrimidine dimers (CPDs) were measured after exposure to radiation treatments and after recovery in low PAR; pigments of propagules were quantified after exposure treatment only. The photosynthetic conversion efficiency (α) and photosynthetic capacity (rETRmax) were higher in gametophytes compared with the propagules. The propagules were slightly more sensitive to UVB‐induced DNA damage; however, both life stages of the eulittoral inhabiting turf alga were not severely affected by the negative impacts of UVR. Exposure to a maximum of 8 h UVR caused mild effects on the photochemical efficiency of PSII and induced minimal DNA lesions in both the gametophytes and propagules. Pigment concentrations were not significantly different between PAR‐exposed and PAR + UVR–exposed propagules. Our data showed that U. penicilliformis from the Antarctic is rather insensitive to the applied UVR. This amphi‐equatorial species possesses different protective mechanisms that can cope with high UVR in cold‐temperate waters of both hemispheres and in polar regions under conditions of increasing UVR as a consequence of further reduction of stratospheric ozone.  相似文献   

16.
During the course of a day human skin is exposed to solar UV radiation that fluctuates in fluence rate within the UVA (290-315 nm) and UVB (315-400 nm) spectrum. Variables affecting the fluence rate reaching skin cells include differences in UVA and UVB penetrating ability, presence or absence of sunscreens, atmospheric conditions, and season and geographical location where the exposure occurs. Our study determined the effect of UVA fluence rate in solar-simulated (SSR) and tanning-bed radiation (TBR) on four indicators of oxidative stress---protein oxidation, glutathione, heme oxygenase-1, and reactive oxygen species--in human dermal fibroblasts after receiving equivalent UVA and UVB doses. Our results show that the higher UVA fluence rate in TBR increases the level of all four indicators of oxidative stress. In sequential exposures when cells are exposed first to SSR, the lower UVA fluence rate in SSR induces a protective response that protects against oxidative stress following a second exposure to a higher UVA fluence rate. Our studies underscore the important role of UVA fluence rate in determining how human skin cells respond to a given dose of radiation containing both UVA and UVB radiation.  相似文献   

17.
Exposure to enhanced levels of ambient ultraviolet (UV) radiation (UVR) can have adverse effects on aquatic organisms including damage at the cellular and molecular level and impairment of development, fecundity and survival. Much research has been conducted on the role of the harmful UVB radiation. However, due to its greater penetration in water the more abundant UVA radiation can also act as an environmental stressor. Little is known about UVR effects on sperm characteristics although sperm cells should be especially prone to UV-induced oxidative stress. Moreover, UV-related changes in oxidative status may affect the phenotypic expression of energetically costly sexual ornaments. We investigated the effects of long-term exposure to ecologically relevant levels of simulated UVA radiation on sperm quality and sexual ornamentation in three-spined sticklebacks (Gasterosteus aculeatus). Males were assigned to three spectral exposure treatments differing in the UV spectral part so that they received either enhanced, moderate or no UVA radiation. The results reveal that exposure to enhanced ambient UVA levels had detrimental effects on both male breeding coloration and sperm velocity providing evidence that UVR affects traits targeted by pre- and post-copulatory sexual selection. By highlighting the role of UVA as a factor influencing fitness-relevant traits, our findings may contribute to a better understanding of the consequences of current and future levels of solar UVR for mating systems and life history.  相似文献   

18.
The evolution of dark human skin colors in tropical areas is possibly related to photoprotection of folates. However, natural folates absorb mainly UVB radiation, and too little UVB can penetrate down to folates in dermal vessels to cause serious damage. However, endogenous photosensitizers, like riboflavin and uroporphyrin, absorbing UVA and visible light, can cause photosensitization of folates. Immediate pigment darkening (IPD), generated by UVA, has an absorption spectrum covering those of the endogenous photosensitizers. IPD is most prominent for darker skin types, which were typical for populations living under tropical solar fluences. We here propose that the biological role of IPD is protection of folates against photodegradation, which would be of large evolutionary importance for early hominids.  相似文献   

19.
UV-induced changes in phytoplankton cells and its effects on grazers   总被引:5,自引:0,他引:5  
1. This review addresses the effects of UV-radiation on the morphology and biochemistry of phytoplankton and the potential effects on grazers.
2. UVA and UVB radiation inhibit the uptake of inorganic nutrients in phytoplankton. Reduced rates of ammonium and nitrate uptake in marine diatoms, and reduced uptake of phosphorus in freshwater flagellates are reported. The effects on cell stoichiometry are not settled.
3. UVA and UVB radiation promote increased cell volumes owing to a decoupling between the photosynthetic processes and cell division. Loss or inactivation of flagellae and loss of motility are also reported for a number of phytoplankton species.
4. UVA and UVB radiation may affect major biochemical constituents. Accumulation of intracellular, photosynthetic products (lipids or carbohydrates) is a common, although not unique, property of UV-stressed algae. Fatty acid (FA) profiles seem susceptible to UV radiation. A relative increase of short-chained, and a decrease in polyunsaturated FA (PUFA) are reported. The important membrane FA like eicosapentaenoic acid (EPA, 20 : 5ω3) and docosahexaenoic acid (DHA, 22 : 6ω3) seem particularly susceptible, owing to lipid peroxidation or reduced biosynthesis.
5. UV-related responses are highly dependent on taxonomy, cell-cycle stage, nutrient-limitation and the UV : PAR (photosynthetic active radiation)-ratio.
6. Nutrient deficiency, cell size, cell wall properties and FA can all have significant impacts on grazers. Thus the reported effects on cell morphology and biochemical constituents could have profound effects on grazers and energy transfer in aquatic foodwebs.  相似文献   

20.
1. The effects of solar radiation on bacterial and fungal growth on aquatic macrophyte detritus were studied in a microcosm experiment. Senescent leaves of Phragmites australis were incubated for 63 days in shallow water in the shade under photosynthetically active radiation (PAR) together with ultraviolet radiation, or under filters removing either ultraviolet B (UVB) or both UVB and ultraviolet A (UVA). 2. Bacterial abundance and bacterial 3H-leucine incorporation in the water were measured, together with α- and β-D-glucosidase activity. In addition, bacterial abundance and fungal biomass associated with the litter were measured. 3. The results indicate that both PAR and UVA affect the micro-organisms involved in the decomposition of leaf litter. The α/β-D-glucosidase activity ratio was less than one in irradiated and more than one in shaded microcosms, suggesting a change in the substrate dissolved organic matter composition towards more β- than α-glycosidic linkages as a result of solar radiation. 4. Microcosms receiving UVB displayed a significantly higher β-D-glucosidase activity than shaded microcosms, and those exposed to PAR or PAR + UVA, demonstrating the potential importance of UVB radiation. 5. The free-living bacteria tended to be dominated by filamentous forms in microcosms subject to solar radiation, especially PAR, and attached microbial communities showed a greater tendency to be dominated by bacteria in irradiated microcosms than in shaded microcosms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号