首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mild acid degradation of the lipopolysaccharide (LPS) of Proteus mirabilis O20 resulted in depolymerisation of the O-polysaccharide to give a repeating-unit pentasaccharide. A polysaccharide was obtained by O-deacylation of the LPS followed by nitrous acid deamination. The derived pentasaccharide and polysaccharide were studied by NMR spectroscopy, including 2D 1H,1H COSY, TOCSY, ROESY, 1H,13C HMQC and HMQC-TOSCY experiments, along with chemical methods, and the following structure of the repeating unit of the O-polysaccharide was established: [Carbohydrate structure: see text]. As opposite to most other P. mirabilis O-polysaccharides studied, that of P. mirabilis O20 is neutral. A week serological cross-reactivity was observed between anti-P. mirabilis O20 serum and LPS of a number of Proteus serogroups with known O-polysaccharide structure. The ability of LPS of P. mirabilis O20 to activate the serine protease cascade was tested in Limulus amoebocyte lysate and in human blood plasma and compared with that of P. mirabilis O14a,14c having an acidic O-polysaccharide. The LPS of P. mirabilis O20 was found to be less active in both assays than the LPS of P. mirabilis O14a,14c and, therefore, the structurally variable O-polysaccharide may influenced the biological activity of the conserved lipid A moiety of the LPS.  相似文献   

2.
The acidic O-specific polysaccharide chain (O-antigen) of the lipopolysaccharide (LPS) of Proteus mirabilis strain D52 was studied using chemical analyses along with 1H-NMR and 13C-NMR spectroscopy, including 2D COSY, TOCSY, ROESY, H-detected 1H,13C and 1H,31P HMQC experiments. The polysaccharide was found to contain D-ribitol 5-phosphate (D-Rib-ol-5-P) and ethanolamine phosphate (Etn-P) and has the following structure: D-Rib-ol-5-P (3) approximately 75% EtnP(6)-->2)-beta-D-Galp-(1-->3)-alpha-D-GlcpNAc-(1-->3)-beta-D-Glcp-(1-->3)-beta-D-GlcpNAc-(1-->). This structure is identical with that of the O-polysaccharide of P. mirabilis O33 strain 59/57, and, hence, P. mirabilis D52 belongs to the same Proteus serogroup O33. Serological studies with O-antiserum against P. mirabilis D52 confirmed this but showed that the LPS species of P. mirabilis 59/57 and D52 are not identical, having different epitopes in the core region. A serological cross-reactivity of P. mirabilis D52 O-antiserum was observed with LPS of two other Proteus strains, P. mirabilis O16 and P. penneri 103, which have structurally different O-polysaccharides. The role of charged groups, Rib-ol-5-P and Etn-P in the immunospecificity is discussed.  相似文献   

3.
Kaca W  Amano K  Chernyak AY  Knirel YA 《Microbios》2000,103(406):151-161
In the Weil-Felix test, sera from patients infected with Orientia tsutsugamushi reacted with lipopolysaccharide (LPS) from Proteus mirabilis OXK strains. The O-polysaccharide of P. mirabilis OXK LPS consisted of pentasaccharide repeating units, with amidically-linked lysine residues. The lysine, linked to galacturonic residues, which plays an important role in the reaction with rabbit anti-OXK antibodies, was revealed with the aid of synthetic antigens. Using ELISA, immunoglobulin M antibodies from scrub typhus patients reacted with the O-specific polysaccharide of strain OXK LPS only. This reaction was inhibited by rabbit antibodies specific to the O-antigen of strain OXK LPS. Both human and rabbit antibodies may bind to similar epitopes on the O-polysaccharide part of P. mirabilis OXK LPS.  相似文献   

4.
The following structure of the O-polysaccharide (O-antigen) of the lipopolysaccharide of Proteus mirabilis O-9 was determined by NMR spectroscopy, including 2D 1H,(1)H COSY, TOCSY, ROESY, and 1H,(13)C HMQC experiments, along with chemical methods: [chemical structure: see text] where the degree of O-acetylation is approximately 70%. Immunochemical studies using rabbit polyclonal anti-Proteus mirabilis O-9 serum showed the importance of the O-acetyl groups in manifesting the serological specificity of the O-9 antigen. Anti-P. mirabilis O-9 cross-reacted with the lipopolysaccharides (LPS) of P. vulgaris O-25 and Proteus penneri 14, which could be accounted for by a structural similarity of their O-polysaccharides.  相似文献   

5.
The O-chain polysaccharide of the lipopolysaccharide (LPS) of a previously nonclassified strain of Proteus mirabilis termed G1 was studied by sugar analysis and 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, rotating-frame NOE (ROESY), H-detected 1H,13C HMQC, and heteronuclear multiple-bond correlation (HMBC) experiments. The following structure of the polysaccharide was established: [carbohydrate structure: see text] where D-GalA6(L-Lys) stands for N(alpha)-(D-galacturonoyl)-L-lysine. The structure of the O-polysaccharide of P. mirabilis G1 is similar, but not identical, to that of P. mirabilis S1959 and OXK belonging to serogroup O3. Immunochemical studies with P. mirabilis G1 and S1959 anti-(O-polysaccharide) sera revealed close LPS-based serological relatedness of P. mirabilis G1 and S1959, and therefore it was suggested to classify P. mirabilis G1 in serogroup O3 as a subgroup. P. mirabilis G1 and S1959 anti-(O-polysaccharide) sera also cross-reacted with LPS of P. mirabilis strains from two other serogroups containing D-GalA6(L-Lys) in the O-polysaccharide or in the core region.  相似文献   

6.
An O-specific polysaccharide was obtained by mild acid degradation of Proteus mirabilis O14 lipopolysaccharide (LPS) and found to contain D-galactose, 2-acetamido-2-deoxy-D-glalactose, phosphate, N-(2-hydroxyethyl)-D-alanine (D-AlaEtn), and O-acetyl groups. Studies of the initial and O-deacetylated polysaccharides using one- and two-dimensional 1H- and 13C-NMR spectroscopy, including COSY, TOCSY, NOESY, H-detected 1H,13C heteronuclear multiple-quantum coherence, and heteronuclear multiple-bond correlation experiments, demonstrated the following structure of the repeating unit: [equation: see text] This is the second bacterial polysaccharide reported to contain alpha-D-Galp6PAlaEtn, whereas the first one was the O-antigen of P. mirabilis EU313 taken erroneously as strain PrK 6/57 from the O3 serogroup [Vinogradov, E. V., Kaca, W., Shashkov, A.S., Krajewska-Pietrasik, D., Rozalski, A., Knirel, Y.A. & Kochetkov, N.K. (1990) Eur. J. Biochem., 188, 645-651]. Anti-(P. mirabilis O14) serum cross-reacted with LPS of P. mirabilis EU313 and vice versa in passive hemolysis and ELISA. Absorption of both O-antisera with the heterologous LPS decreased markedly but did not abolish the reaction with the homologous LPS. These and chemical data indicated that both strains have similar but not identical O-antigens. Therefore, we propose that P. mirabilis EU313 should belong to a new subgroup of the O14 serogroup.  相似文献   

7.
A phosphorylated, choline-containing polysaccharide was obtained by O-deacylation of the lipopolysaccharide (LPS) of Proteus mirabilis O18 by treatment with aqueous 12% ammonia, whereas hydrolysis with dilute acetic acid resulted in depolymerisation of the polysaccharide chain by the glycosyl phosphate linkage. Treatment of the O-deacylated LPS with aqueous 48% hydrofluoric acid cleaved the glycosyl phosphate group but, unexpectedly, did not affect the choline phosphate group. The polysaccharide and the derived oligosaccharides were studied by NMR spectroscopy, including 2D 1H,1H COSY, TOCSY, ROESY, 1H,13C HMQC and HMQC-TOSCY experiments, along with chemical methods, and the following structure of the pentasaccharide phosphate repeating unit was established: [carbohydrate structure in text] Where ChoP=Phosphocoline Immunochemical studies of the LPS, O-deacylated LPS and partially dephosphorylated pentasaccharide using rabbit polyclonal anti-P. mirabilis O18 serum showed the importance of the glycosyl phosphate group in manifesting the serological specificity of the O18-antigen.  相似文献   

8.
The O-specific polysaccharide (OPS) isolated from the lipopolysaccharide of Proteus mirabilis O36 was found to have a pentasaccharide repeating unit of the following structure: -->2)-beta-D-Ribf-(1-->4)-beta-D-Galp-(1-->4)-alpha-D-GlcpNAc6Ac-(1-->4)-beta-D-Galp-(1-->3)-alpha-D-GlcpNAc-(1-->. The structure is unique among Proteus OPS, which is in agreement with the classification of this strain into a separate Proteus O-serogroup. Remarkably, the P. mirabilis O36-polysaccharide has the same structure as the OPS of Escherichia coli O153, except that the latter is devoid of O-acetyl groups. The cross-reaction of anti-O36 antibodies with the O-part of E. coli O153 lipopolysaccharide is observed. In the present study, two steps of serotyping Proteus strains are proposed: screening of dry mass with enzyme-linked immunosorbent assay and immunoblot with the crude lipopolysaccharides. This method allowed serotyping of 99 P. mirabilis strains infecting the human urinary tract. Three strains were classified into serogroup O36. The migration pattern of these lipopolysaccharides fraction with long O-specific PSs was similar to the standard laboratory P. mirabilis O36 (Prk 62/57) lipopolysaccharide. The relatively low number of clinical strains belonging to serogroup O36 did not correspond to the presence of anti-P. mirabilis O36 antibodies in the blood donors' sera. Twenty-five percent of tested sera contained a statistically significant elevated level of antibodies reacting with thermostable surface antigens of P. mirabilis O36. The presence and amount of antibodies correlated with Thr399Ile TLR4 polymorphism types (P=0.044).  相似文献   

9.
A neutral O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Proteus mirabilis OC (CCUG 10702) and studied by sugar and methylation analyses and (1)H and (13)C NMR spectroscopy. The following structure of the tetrasaccharide repeating unit of the polysaccharide was established: [structure: see text]. Based on the unique structure of the O-polysaccharide and serological data, we propose classifying P. mirabilis OC (CCUG 10702) into a new separate Proteus serogroup O75. A weak cross-reaction of O-antiserum against P. mirabilis OC with the lipopolysaccharide of P. mirabilis O49 was accounted for by a similarity in the O-polysaccharide structures.  相似文献   

10.
An O-polysaccharide was isolated by mild acid hydrolysis from the lipopolysaccharide of Proteus mirabilis O40 and studied by NMR spectroscopy, including 2D 1H, 1H COSY, TOCSY, ROESY, and 1H, 13C HMQC experiments, along with chemical methods. The polysaccharide was found to contain an ether of GlcNAc with lactic acid and glycerol phosphate in the main chain and to have the following structure: --> 3)-beta-D-GlcpNAc4(R-Lac)-(1 --> 3)-alpha-D-Galp-(1 --> 3)-D-Gro-1-P-(O --> 3)-beta-D-GlcpNAc-(1 --> where D-GlcpNAc4(R-Lac) stands for 2-acetamido-4-O-[(R)-1-carboxyethyl]-2-deoxy-D-glucose. This structure is unique among the known structures of the Proteus O-polysaccharides, which is in agreement with the classification of the strain studied into a separate O-serogroup. A serological relatedness of P. mirabilis O40 with some other Proteus strains was revealed and discussed in view of the O-polysaccharide structures.  相似文献   

11.
The following structure of core-lipid A region of the lipopolysaccharide (LPS) from Proteus mirabilis strain 1959 (serotype O3) and its rough mutant R110/1959 (Proteus type II core) was determined using NMR and chemical analysis of the core oligosaccharide, obtained by mild acid hydrolysis of LPS, and of the products of alkaline deacylation of the LPS: Incomplete substitutions are indicated by italics. All sugars are in pyranose form, alpha-Hep is the residue Lglycero-alpha-Dmanno-Hep, alpha-DD-Hep is the residue Dglycero-alpha-Dmanno-Hep. The differences with the previously reported structures are discussed.  相似文献   

12.
Lipopolysaccharide (LPS, endotoxin) is an important structural constituent of the membrane of gram-negative bacteria with a wide range of biological effects. It can activate blood platelets. The purpose of present study was to determine the direct effect of endotoxins from Proteus mirabilis, differing significantly in their composition, on the generation of superoxide radicals and thiobarbituric acid reactive substances (TBARS) in blood platelets. Superoxide radicals were measured by means of superoxide dismutase-inhibitable reduction of cytochrome C. The TBARS determination (malonyldialdehyde) was used as a marker of endogenous arachidonate metabolism and thromboxane A2 synthesis. Results demonstrate that three endotoxins (LPS S1959, LPS R110, LPS R45) after 2 min of action, even at the lowest concentration (0.03 microg/10(8) platelets) stimulated the generation of TBARS and release of superoxide radicals. All LPS contain lipid A as a component but differ in their chemical composition in the polysaccharide part. It is suggested that the observed effects of LPS on blood platelets are attributable to their lipid A portion.  相似文献   

13.
The O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Proteus mirabilis TG 332 strain. The following structure of the O-polysaccharide was determined by chemical methods along with NMR spectroscopy, including 2D COSY, TOCSY, ROESY and 1H, 13C HMQC experiments: [see equation in text]. The O-polysaccharide studied has a unique structure among Proteus O-antigens. Accordingly, P. mirabilis TG 332 is serologically separate, and we propose to classify this strain into a new Proteus serogroup, O50. The nature of minor epitopes that provide a cross-reactivity of P. mirabilis TG 332 O-antiserum with the LPS of P. mirabilis O30 and Proteus penneri 34 (O60) is discussed.  相似文献   

14.
A neutral O-specific polysaccharide (O-antigen) was isolated from the lipopolysaccharide (LPS) of the bacterium Proteus penneri 71. On the basis of sugar analysis and 1H- and 13C-NMR spectroscopic studies, including two-dimensional COSY, 13C,1H heteronuclear COSY and ROESY, the following structure of the trisaccharide repeating unit of the polysaccharide was established: -->3)-beta-D-GlcpNAc-(1-->4)-beta-D-GlcpNAc-(1-->3)-alpha-D-Galp-(1-- > The polysaccharide has the same carbohydrate backbone as the O-specific polysaccharide of P. penneri 19 and both are similar to that of P. penneri 62 studied by us previously. A cross-reactivity of anti-P. penneri 71, 19 and 62 O-antisera with 11 P. penneri strains was revealed and substantiated at the level of the O-antigen structures. These strains could be divided into three subgroups within a new proposed Proteus O64 serogroup containing P. penneri strains only.  相似文献   

15.
O-Polysaccharides were obtained from the lipopolysaccharides of Proteus mirabilis CCUG 10704 (OE) and Proteus vulgaris TG 103 and studied by chemical analyses and one- and two-dimensional (1)H and (13)C nuclear magnetic resonance spectroscopy, including rotating-frame nuclear Overhauser effect spectroscopy, H-detected (1)H,(13)C heteronuclear single-quantum spectroscopy and (1)H,(31)P heteronuclear multiple-quantum spectroscopy experiments. The Proteus mirabilis OE polysaccharide was found to have a trisaccharide repeating unit with a lateral glycerol phosphate group. The Proteus vulgaris TG 103 produces a similar O-polysaccharide, which differs in incomplete substitution with glycerol phosphate (c. 50% of the stoichiometric amount) and the presence of an O-acetyl group at position 6 of the 2-acetamido-2-deoxygalactose (GalNAc) residue. These structures are unique among the known bacterial polysaccharide structures. Based on the structural and serological data of the lipopolysaccharides, it is proposed to classify both strains studied into a new Proteus serogroup, O54, as two subgroups, O54a,54b and O54a,54c. The serological relatedness of the Proteus O54 and some other Proteus lipopolysaccharides is discussed.  相似文献   

16.
The structure of the O-polysaccharide of Proteus mirabilis CCUG 10705 (OF) was determined by chemical analyses along with one- and two-dimensional (1)H and (13)C NMR spectroscopy. The polysaccharide was found to contain an amide of D-galacturonic acid with L-alanine and based on the uniqueness of the O-polysaccharide structure and serological data, it was suggested to classify P. mirabilis OF into a new separate Proteus serogroup, O74. A weak cross-reactivity of P. mirabilis OF and P. mirabilis O5 was observed and accounted for by a similarity of their O-repeating units. The following structure of the polysaccharide of P. mirabilis OF was established: [chemical structure: see text]  相似文献   

17.
The O-specific polysaccharide (O-antigen) of the lipopolysaccharide (LPS) of Proteus vulgaris O37 was studied by (1)H and (13)C nuclear magnetic resonance spectroscopy before and after O-deacetylation and found to be structurally similar to that of P. vulgaris O46 studied earlier. The two polysaccharides have the same carbohydrate backbone and differ in the position and number of the O-acetyl groups only. Studies with O-antisera against the two strains using passive hemolysis test, enzyme immunosorbent assay, and Western blot revealed close serological relatedness of the LPSs of P. vulgaris O37 and O46. The O-acetyl groups were found to be of little importance for manifesting the O-specificity but to interfere with binding of anti-P. vulgaris O37 serum to P. vulgaris O46 antigen. Based on the data obtained, it was proposed to combine the strains studied in one Proteus serogroup O37 as subgroups O37a,37b and O37a,37c. A cross-reactivity of O-antisera against P. vulgaris O37 and O46 was observed with LPSs of three more Proteus strains, which could be substantiated by the presence of a common disaccharide fragment in the O-antigens.  相似文献   

18.
An acidic O-specific polysaccharide was obtained by mild acid degradation of the Proteus penneri 8 lipopolysaccharide and found to contain D-glucose, D-galacturonic acid, 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-galactose, 2-acetamido-2,6-dideoxy-L-galactose (L-FucNAc) and 2-aminoethyl phosphate (PEtn) in the ratios 2 : 1 : 1 : 1 : 1 : 1. 1H and 13C NMR spectroscopy was applied to the intact and dephosphorylated polysaccharides, and the following structure of the hexasaccharide repeating unit was established: The O-specific polysaccharide has a unique structure, and, accordingly, we propose for P. penneri 8 a new Proteus O67 serogroup, in which this strain is at present the single representative. The nature of epitopes on LPS of P. penneri 34, P. mirabilis O16, P. mirabilis O23 and P. vulgaris O22, which cross-react with O-antiserum against P. penneri 8, is discussed.  相似文献   

19.
The structure of the O-polysaccharide of the lipopolysaccharide of Proteus mirabilis 2002 was elucidated by chemical methods and 1H and 13C NMR spectroscopy. It was found that the polysaccharide consists of branched pentasaccharide repeating units having the following structure: [structure in text]. The O-polysaccharide of P. mirabilis 2002 has a common tetrasaccharide fragment with that of P. mirabilis 52/57 from serogroup O29, and the lipopolysaccharides of the two strains are serologically related. Therefore, based on the structural and serological data, we propose to classify P. mirabilis 2002 into the Proteus O29 serogroup as a subgroup O29a,29b.  相似文献   

20.
The effects of polymyxins (Pmx) B and E on smooth and rough Proteus mirabilis strains were investigated. P. mirabilis mutant R4/028 which completely lacked 4-amino-4-deoxy-L-arabinose was sensitive towards both polymyxins, and the other P. mirabilis strains investigated were resistant. Lipopolysaccharide (LPS) from Pmx-sensitive R4/028 strain, binds 50% more Pmx B than LPS derived from resistant P. mirabilis strains. The presence of iodoacetamide, N-ethylmaleimide and chloramphenicol rendered the Pmx-resistant P. mirabilis strains sensitive towards both polymyxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号