共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cell-specific promoter in adenovirus vector for transgenic expression of SERCA1 ATPase in cardiac myocytes 总被引:2,自引:0,他引:2
Inesi G.; Lewis D.; Sumbilla C.; Nandi A.; Strock C.; Huff K. W.; Rogers T. B.; Johns D. C.; Kessler P. D.; Ordahl C. P. 《American journal of physiology. Cell physiology》1998,274(3):C645
Adenovirus-mediated transfer of cDNA encoding the chickenskeletal muscle sarco(endo)plasmic reticulumCa2+-ATPase (SERCA1) yieldedselective expression in cultured chick embryo cardiac myocytes undercontrol of a segment (268 base pair) of the cell-specificcardiac troponin T (cTnT) promoter or nonselective expression inmyocytes and fibroblasts under control of a constitutive viral[cytomegalovirus (CMV)] promoter. Under optimal conditions nearly all cardiac myocytes in culture were shown toexpress transgenic SERCA1 ATPase. Expression was targeted tointracellular membranes and was recovered in subcellular fractions witha pattern identical to that of the endogenous SERCA2a ATPase. Relativeto control myocytes, transgenic SERCA1 expression increased up to fourtimes the rates of ATP-dependent (and thapsigargin-sensitive) Ca2+ transport activity of cellhomogenates. Although the CMV promoter was more active than the cTnTpromoter, an upper limit for transgenic expression of functional enzymewas reached under control of either promoter by adjustment of theadenovirus plaque-forming unit titer of infection media. CytosolicCa2+ concentration transients andtension development of whole myocytes were also influenced to a similarlimit by transgenic expression of SERCA1 under control of eitherpromoter. Our experiments demonstrate that a cell-specific proteinpromoter in recombinant adenovirus vectors yields highly efficient andselective transgene expression of a membrane-bound and functionalenzyme in cardiac myocytes. 相似文献
3.
4.
A reduced activity of the sarcoplasmic reticulum Ca2+ pump SERCA2a is a hallmark of cardiac dysfunction in heart failure. In SERCA2b/b mice, the normal SERCA2a isoform is replaced by SERCA2b, displaying a higher Ca2+ affinity. This elicited decreased cardiac SERCA2 expression and cardiac hypertrophy. Here, the interplay was studied between the increased Ca2+ affinity and a reduced expression of the pump and its role in the cardiac remodeling was investigated. First, SERCA2b/b mice were crossed with SERCA2b transgenes to boost cardiac SERCA2b expression. However, the enforced expression of SERCA2b was spontaneously countered by an increased inhibition by phospholamban (PLB), reducing the pump's Ca2+ affinity. Moreover, the higher SERCA2 content did not prevent hypertrophy. Second, we studied heterozygous SERCA2b/WT mice, which also express lower SERCA2 levels compared to wild-type. Hypertrophy was not observed. In heterozygotes, SERCA2b expression was specifically suppressed, explaining the reduced SERCA2 content. The SERCA2b/WT model strikingly differs from the homozygote models because SERCA2a (not SERCA2b) is the major isoform and because the inhibition of the pump by PLB is decreased instead of being increased. Thus, a tight correlation exists between the SERCA2 levels and Ca2+ affinity (controlled by PLB). This compensatory response may be important to prevent cardiac remodeling. 相似文献
5.
Adult SERCA2(b/b) mice expressing the non-muscle Ca2+ transport ATPase isoform SERCA2b in the heart instead of the normally predominant sarcomeric SERCA2a isoform, develop mild concentric ventricular hypertrophy with impaired cardiac contractility and relaxation [Circ. Res. 89 (2001) 838]. Results from a separate study on transgenic mice overexpressing SERCA2b in the normal SERCA2a context were interpreted to show that SERCA2b and SERCA2a are differentially targeted within the cardiac sarcoplasmic reticulum (SR) [J. Biol. Chem. 275 (2000) 24722]. Since a different subcellular distribution of SERCA2b could underlie alterations in Ca2+ handling observed in SERCA2(b/b), we wanted to compare SERCA2b distribution in SERCA2(b/b) with that of SERCA2a in wild-type (WT). Using confocal microscopy on immunostained fixed myocytes and BODIPY-thapsigargin-stained living cells, we found that in SERCA2(b/b) mice SERCA2b is correctly targeted to cardiac SR and is present in the same SR regions as SERCA2a and SERCA2b in WT. We conclude that there is no differential targeting of SERCA2a and SERCA2b since both are found in the longitudinal SR and in the SR proximal to the Z-bands. Therefore, alterations in Ca2+ handling and the development of hypertrophy in adult SERCA2(b/b) mice do not result from different SERCA2b targeting. 相似文献
6.
7.
8.
Dependence of exogenous SERCA gene expression on coxsackie adenovirus receptor levels in neonatal and adult cardiac myocytes 总被引:1,自引:0,他引:1
We demonstrate that the efficiency of adenovirus-assisted exogenous Ca(2+) ATPase (SERCA) and reporter (EGFP) gene expression is much higher in primary cultures of myocytes from neonatal rat hearts, than in primary cultures of myocytes from adult rat hearts. In this respect, the neonatal myocytes behave similarly to the established COS-1 cell line. This difference is related to the level of coxsackie adenovirus receptor (CAR) that affects cell penetration and expression level of exogenous genes, and explains variations in the observed consequences of exposure to adenovirus vector carrying SERCA cDNA. Awareness of these differences should be highly advantageous in complementary studies of exogenous gene expression in neonatal and adult myocytes. It should also be advantageous in evaluating conditions yielding optimal ratios of functional benefits over possible toxic effects upon exogenous SERCA gene delivery to cardiac muscle. 相似文献
9.
Recent studies have focused on developing transgenic mouse models to explore the physiological roles of sarcoplasmic reticulum (SR) calcium handling proteins. The goal of this study was to develop methodology to measure SR Ca2+ transport function and enzymatic properties of SR Ca2+ ATPase (SERCA) in individual mouse hearts. We describe here the procedures to specifically measure SR Ca2+ uptake, the formation and decomposition of SERCA phosphoenzyme intermediate (E-P) in mouse cardiac homogenates. The specificity of SERCA enzymatic activity in cardiac homogenates was established by (a) the selective inhibition of SERCA enzyme by inhibitor-thapsigargin, and (b) comparison of the kinetic parameters of SERCA activity between homogenates and isolated microsomes. Here we show that the apparent affinity of SERCA for Ca2+ and ATP, the time to reach steady-state levels of E-P, and the rate of E-P decomposition (turnover rate of SERCA enzyme) are similar in homogenates and microsomes. These studies demonstrate that SERCA Ca2+ transport and enzymatic properties can be accurately measured in mouse cardiac tissue homogenates. Additionally, we show that frozen cardiac homogenates can be used without significant loss of enzymatic activity. In conclusion, we have developed and established the methods to employ tissue homogenates to study SR Ca2+ transport function in individual mouse hearts. 相似文献
10.
Gene expression is controlled at several levels including mRNA decay. Sarco/endoplasmic reticulum Ca2+-Mg2+-ATPase isoform 2b (SERCA2b) is central to Ca2+ signalling and homeostasis in several tissues. SERCA2b mRNA decay involves interactions between cis-acting elements in its 3'-region and trans-acting nuclear protein factors. In the presence of the protein factors, the synthetic capped and polyadenylated RNA fragment 2b1 (3444-3753) decays faster than other SERCA2b 3'-region fragments. Here we determined the minimum cis-acting destabilizing element in the decay and its interactions with the nuclear protein factors. The in vitro decay required ATP hydrolysis and Mg2+ but not Ca2+. The decay was directional from 3' to 5', and involved a novel 35b GC rich domain designated 2b1-4 corresponding to 3521-3555. The decay of 2b1 RNA was decreased by (a) competition with 2b1-4, (b) mutation of 2b1 to delete 2b1-4, and (c) depleting the extracts of destabilizing trans-acting factors using immobilized 2b1-4. To determine the minimal destabilizing elements 2b1-4 was divided into 7b domains A-E. Deleting AB, BC, CD or DE inactivated the destabilizing cis-acting element but deleting A, B, C, D or E had no effect. In electrophoresis mobility shift assays the nuclear protein extracts retarded the mobility of labeled uncapped 2b1 RNA without a poly A+ tail. A positive co-operativity in the interactions was shown in protein concentration dependence of the shift and in the competition of 2b1-4 in inhibiting the mobility of 2b1 RNA. Based on further experiments, the domain CDE (3535-3555) was sufficient to compete with 2b1 RNA for the protein binding. Consistent with this competition, excess CDE RNA retarded the in vitro decay of 2b1 RNA. Thus the RNA decay required ATP hydrolysis and Mg2+ but not Ca2+, the minimum binding domain was in the sequence 3535-3555, and the decay may involve a multimeric protein complex. 相似文献
11.
Protection of the Ca2+ATPase (SERCA) from proteinase K digestion has been observed following the addition of Ca2+, Mg2+, and nucleotide and interpreted as a substrate-dependent conformational change (1). The protected digestion site is located on the loop connecting the A domain and the M3 transmembrane helix. We studied by mutational analysis the protective effect of AMP-PCP, an ATP analog that is not utilized for enzyme phosphorylation. We found that the nucleotide protective effect is interfered with by single mutations of Arg-560 and Glu-439 in the N domain and Lys-352, Lys-684, Thr-353, Asp-703, and Asp-707 in the P domain. This is consistent with a transition from the open to the compact configuration of the ATPase headpiece and approximation of the N and P domains by interactions with the nucleotide adenosine and phosphate moieties, respectively. The A domain-M3 loop is consequently involved. Protection by nucleotide substrate increased following the mutations of Asp-351 (the residue undergoing phosphorylation by ATP) and neighboring Asn-706 to Ala, underlying the importance of side chain specificity in positioning the nucleotide terminal phosphate and limiting the stability of the substrate-enzyme complex. Protection is not observed when AMP-PCP is added in the absence of Ca2+ or following mutations (E771Q or N796A) that interfere with Ca2+ binding. Therefore, nucleotide binds to the Ca2+-activated enzyme in the open headpiece conformation and the consequent approximation of the N and P domains occurs while the transmembrane domain is still in the Ca2+-bound conformation. Mg2+ is not required for the protective effect of nucleotide, even though it is specifically required for the subsequent catalytic reactions. 相似文献
12.
13.
The patterning of cardiac myocytes on a micron scale ( approximately 5 microm) was achieved by microcontact printing of fibronectin onto a hydrophobically pretreated glass substrate. The patterned cardiac myocytes conjugated with each other by forming a gap junction, as judged from the synchronized Ca(2+) transition over the pattern, and thus simultaneously contracted. The dynamic change of the Ca(2+) concentration within the patterned tissue was analyzed quantitatively during successive contraction and relaxation using a Nipkow-type high-speed confocal microscope. 相似文献
14.
Talukder MA Kalyanasundaram A Zhao X Zuo L Bhupathy P Babu GJ Cardounel AJ Periasamy M Zweier JL 《American journal of physiology. Heart and circulatory physiology》2007,293(4):H2418-H2428
Myocardial ischemia-reperfusion (I/R) injury is associated with contractile dysfunction, arrhythmias, and myocyte death. Intracellular Ca(2+) overload with reduced activity of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) is a critical mechanism of this injury. Although upregulation of SERCA function is well documented to improve postischemic cardiac function, there are conflicting reports where pharmacological inhibition of SERCA improved postischemic function. SERCA2a is the primary cardiac isoform regulating intracellular Ca(2+) homeostasis; however, SERCA1a has been shown to substitute SERCA2a with faster Ca(2+) transport kinetics. Therefore, to further address this issue and to evaluate whether SERCA1a expression could improve postischemic cardiac function and myocardial salvage, in vitro and in vivo myocardial I/R studies were performed on SERCA1a transgenic (SERCA1a(+/+)) and nontransgenic (NTG) mice. Langendorff-perfused hearts were subjected to 30 min of global ischemia followed by reperfusion. Baseline preischemic coronary flow and left ventricular developed pressure were significantly greater in SERCA1a(+/+) mice compared with NTG mice. Independent of reperfusion-induced oxidative stress, SERCA1a(+/+) hearts demonstrated greatly improved postischemic (45 min) contractile recovery with less persistent arrhythmias compared with NTG hearts. Morphometry showed better-preserved myocardial structure with less infarction, and electron microscopy demonstrated better-preserved myofibrillar and mitochondrial ultrastructure in SERCA1a(+/+) hearts. Importantly, intraischemic Ca(2+) levels were significantly lower in SERCA1a(+/+) hearts. The cardioprotective effect of SERCA1a was also observed during in vivo regional I/R with reduced myocardial infarct size after 24 h of reperfusion. Thus SERCA1a(+/+) hearts were markedly protected against I/R injury, suggesting that expression of SERCA 1a isoform reduces postischemic Ca(2+) overload and thus provides potent myocardial protection. 相似文献
15.
Vascular smooth muscle cells (VSMC) express three isoforms of the sarcoplasmic or endoplasmic reticulum Ca2+-ATPase (SERCA) pump; SERCA2b predominates (91%), whereas SERCA2a (6%) and SERCA3 (3%) are present in much smaller amounts. Treatment with thapsigargin (Tg) or A-23187 increased the level of mRNA encoding SERCA2b four- to fivefold; SERCA3 increased about 10-fold, whereas SERCA2a was unchanged. Ca2+ chelation prevented the Tg-induced SERCA2b increase, whereas Ca2+ elevation itself increased SERCA2b expression. These responses were discordant with those of 78-kDa glucose-regulated protein/immunoglobulin-binding protein (grp78/BiP), an endoplasmic reticulum stress-response protein. SERCA2b mRNA elevation was much larger than could be accounted for by the observed increase in message stability. The induction of SERCA2b by Tg did not require protein synthesis, nor was it affected by inhibitors of calcineurin, protein kinase C, Ca2+/calmodulin-dependent protein kinase, or tyrosine protein kinases. Treatment with the nonselective protein kinase inhibitor H-7 prevented Tg-induced SERCA2b expression from occurring, whereas another nonselective inhibitor, staurosporine, was without effect. We conclude that changes in cytosolic Ca2+ control the expression of SERCA2b in VSMC via a mechanism involving a currently uncharacterized, H-7-sensitive but staurosporine-insensitive, protein kinase. 相似文献
16.
In resting muscle, cytoplasmic Ca2+ concentration is maintained at a low level by active Ca2+ transport mediated by the Ca2+ ATPase from sarcoplasmic reticulum. The region of the protein that contains the catalytic site faces the cytoplasmic side of the membrane, while the transmembrane helices form a channel-like structure that allows Ca2+ translocation across the membrane. When the coupling between the catalytic and transport domains is lost, the ATPase mediates Ca2+ efflux as a Ca2+ channel. The Ca2+ efflux through the ATPase channel is activated by different hydrophobic drugs and is arrested by ligands and substrates of the ATPase at physiological pH. At acid pH, the inhibitory effect of cations is no longer observed. It is concluded that the Ca2+ efflux through the ATPase may be sufficiently fast to support physiological Ca2+ oscillations in skeletal muscle, that occur mainly in conditions of intracellular acidosis. 相似文献
17.
18.
Xu C Ma H Inesi G Al-Shawi MK Toyoshima C 《The Journal of biological chemistry》2004,279(17):17973-17979
Mutational analysis of amino acid residues lining the thapsigargin (TG) binding cavity at the interface of the membrane surface and cytosolic headpiece was performed in the Ca(2+) ATPase (SERCA-1). Specific mutations such as F256V, I765A, and Y837A reduce not only the apparent affinity of the ATPase for TG but also the maximal inhibitory effect. The effect of mutations is dependent on the type and size of the substitute side chain, indicating that hydrophobic partitioning of TG and complementary molecular shapes are involved not only in binding but also in the inhibitory mechanism. A major factor determining the inhibitory effect of bound TG is its interference with conformational changes that are required for the progress of the ATPase cycle. Most prominent and specific is the TG interference with a wide displacement of the Phe-256 side chain that is associated with the E2 to E1.2Ca(2+) transition. The specificity of the TG inhibitory mechanism is emphasized by the finding that the F256V mutation does not interfere at all with the effect of 2,5-di-(t-butyl)-hydroquinone, which is another SERCA inhibitor bound by hydrophobic partitioning. The specificity of the inhibitory mechanism is also emphasized by the observation that within the concentration range producing total inhibition of wild-type SERCA-1, TG produces a 4-fold stimulation of the P-glycoprotein (multidrug transporter) ATPase. 相似文献
19.
20.
Cardiac muscle excitation-contraction coupling is controlled by the Ca(2+)-induced Ca2+ release mechanism. The present study examines the effects of a calmodulin antagonist W-7 on Ca2+ current (ICa)-induced Ca2+ release in whole cell-clamped rat ventricular myocytes. Exposure of cells to W-7 suppressed ICa, but the intracellular Ca(2+)-transients showed a lesser degree of reduction, suggesting possible enhancement of Ca(2+)-induced Ca2+ release. The effects of W-7 on the efficacy of Ca2+ release were most prominent at negative potentials. At test potentials of -30 mV, 20 microM W-7 almost completely blocked ICa, but significant Ca(2+)-transients remained, thus causing a four to six-fold increase in the efficacy of Ca(2+)-induced Ca2+ release. The depolarization-dependent Ca(2+)-transients were eliminated in absence of extracellular Ca2+, blocked by Cd2+, and were absent when the sarcoplasmic reticulum was depleted of Ca2+, implicating dependency on Ca(2+)-signaling between the L-type channel and the ryanodine receptor. W-7 mediated increase in the efficacy of Ca(2+)-induced Ca2+ release was eliminated when myocytes were dialyzed with the internal solution containing gluathione (5 mM), suggesting the possible role of cellular redox state in the regulation of Ca2+ release by the calmodulin antagonist. 相似文献