共查询到20条相似文献,搜索用时 15 毫秒
1.
For the first time, we have demonstrated in AR4-2J cells, an experimental model of azaserine-induced carcinoma in the rat exocrine pancreas, the co-expression of α1 subunit of dihydropyridine-sensitive Ca2+ channel and the α1 sub-unit of ω-conotoxin-sensitive Ca2+ channel RNA messengers which share homologous sequences with, respectively, rbC II and rbB I sub-types described in the rat brain. These two types of voltage-dependent Ca2+ channels which are functionally expressed, emphasize the acquisition during carcinogenesis of neuroendocrine features of AR4-2J cells. Additionally, using antisense phosphorothioate oligodeoxynucleotide, we demonstrated clearly the involvement of dihydropyridine-sensitive Ca2+ channels in the control of AR4-2J cell proliferation. 相似文献
2.
Synchronized oscillation of Ca2+ entry and Ca2+ release in agonist-stimulated AR42J cells 总被引:3,自引:0,他引:3
Oscillation in [Ca2+]i induced by agonists has been described in many cell types and is thought to reflect Ca2+ release from and uptake into internal stores. We measured [Ca2+]i and Mn2+ entry in single cells of the pancreatic acinar cell line AR42J loaded with Fura 2 to examine the behavior of Ca2+ influx across the plasma membrane (Ca2+ entry) during agonist-evoked [Ca2+]i oscillation. Addition of extracellular Ca2+ (Ca2+out) to agonist-stimulated cells bathed in Ca2(+)-free medium resulted in a marked [Ca2+]i increase blocked by La3+. The use of Mn2+ as a congener of Ca2+ to follow unidirectional Ca2+ movement reveals an oscillatory activation of Ca2+ entry by Ca2(+)-mobilizing agonists. The frequency at which Ca2+ entry oscillated matched the frequency of Ca2+ release from intracellular stores. Ca2+ entry is activated after completion of Ca2+ release and is inactivated within the time span of each [Ca2+]i spike. These studies reveal a new aspect of [Ca2+]i oscillation in agonist-stimulated cells, that is the oscillatory activation of [Ca2+]i entry during [Ca2+]i oscillation. 相似文献
3.
4.
Competitive inhibition binding studies on membranes from the rat pancreatic AR 4-2J cell line revealed the predominance (80%) of low selectivity CCK receptors (KD of 1 nM and 4 nM for, respectively, CCK-8 and gastrin-17I (G-17I] over selective receptors (20% with a KD of 1 nM and 1 microM for, respectively, CCK-8 and G-17I). Amylase secretion was stimulated by low concentrations of CCK-8, G-17I and CCK-4. G-17I-induced amylase secretion was unaffected by 100 nM of the selective peripheral CCK-A receptor antagonist L-364,718, suggesting that amylase hypersecretion followed non-selective CCK receptor activation, a function normally assumed by selective CCK-A receptors in rat pancreatic acini. Direct ultraviolet irradiation of AR 4-2J cell membranes preloaded with 125I-BH-CCK-33 or 125I(Leu)G(2-17)I resulted in covalent cross-linking with, respectively, a 90 kDa protein and a 106 kDa protein, both distinct from the 81 kDa CCK binding species revealed in normal rat pancreatic membranes. Gpp[NH]p increased the dissociation rate of CCK-8 and G-17I from AR 4-2J cell membranes, indicating a coupling of receptors with guanyl nucleotide regulatory protein(s) G. [32P]ADP-ribosylation of AR 4-2J cell membranes allowed to detect the presence of two Gs alpha (the 50 kDa form predominating over the 45 kDa form) and one Gi alpha (41 kDa). However, Gi and Gs may not be involved in gastrin stimulation of amylase secretion, as Bordetella pertussis toxin and cholera toxin pretreatment of cells did not suppress G-17I-dependent amylase secretion. 相似文献
5.
Regimbald-Dumas Y Arguin G Fregeau MO Guillemette G 《Journal of cellular biochemistry》2007,101(3):609-618
In non-excitable cells, the inositol 1,4,5-trisphosphate receptor (IP(3)R), a ligand-gated Ca(2+) channel, plays an important role in the control of intracellular Ca(2+). There are three subtypes of IP(3)R that are differentially distributed among cell types. AR4-2J cells express almost exclusively the IP(3)R-2 subtype. The purpose of this study was to investigate the effect of cAMP-dependent protein kinase (PKA) on the activity of IP(3)R-2 in AR4-2J cells. We showed that immunoprecipitated IP(3)R-2 is a good substrate for PKA. Using a back-phosphorylation approach, we showed that endogenous PKA phosphorylates IP(3)R-2 in intact AR4-2J cells. Pretreatment with PKA enhanced IP(3)-induced Ca(2+) release in permeabilized AR4-2J cells. Pretreatment with the cAMP generating agent's forskolin and vasoactive intestinal peptide (VIP) enhanced carbachol (Cch)-induced and epidermal growth factor (EGF)-induced Ca(2+) responses in intact AR4-2J cells. Our results are consistent with an enhancing effect of PKA on IP(3)R-2 activity. This conclusion supports the emerging concept of crosstalk between Ca(2+) signaling and cAMP pathways and thus provides another way by which Ca(2+) signals are finely encoded within non-excitable cells. 相似文献
6.
H Zhao P A Loessberg G Sachs S Muallem 《The Journal of biological chemistry》1990,265(34):20856-20862
Recordings of [Ca2+]i in single AR42J cells loaded with Fura 2 were used to study regulation of [Ca2+]i oscillation. Continuous stimulation with the cholecystokinin analogue, (t-butyloxycarbonyl-Tyr-(SO3)-norleucine-Gly-Trp-Nle-Asp-2-phenylethyl ester) or carbachol evoked long lasting oscillation in [Ca2+]i. Removal of CCK-JMV-180 after brief stimulation did not abruptly stop the oscillation. Rather, removal of CCK-JMV-180 resulted in time-dependent reduction in amplitude with little change in frequency of oscillation. The patterns of [Ca2+]i oscillation were affected by activation of protein kinase C and protein kinase A. However, down-regulation of protein kinase C activity did not prevent stimulation of [Ca2+]i oscillation. Hence, we conclude that an active protein kinase C pathway is not crucial for [Ca2+]i oscillation in this cell line. Variation in extracellular Ca2+ concentration (Ca2+out) was used to further characterize the oscillation. Reducing Ca2+out to approximately 10 microM resulted in a time dependent inhibition of [Ca2+]i oscillation. Subsequent step increases in Ca2+out up to 2-3 mM resulted in increased amplitude and frequency of oscillation. Further increase in Ca2+out or an increase in plasma membrane permeability to Ca2+, brought about by an increase in pHo, resulted in increased amplitude, decreased frequency, and modified shape of the [Ca2+]i spikes. These observations point to the existence of regulatory mechanisms controlling the duration of Ca2+ release and entry during [Ca2+]i oscillation. 相似文献
7.
Characterization of putrescine- and spermidine-transport systems of a rat pancreatic acinar tumoral cell line (AR4-2J). 下载免费PDF全文
Polyamines are polycationic molecules essential for cell growth and differentiation. Recent work has focused on cell polyamine-transport systems as a way to regulate intracellular polyamine levels. In this study, we demonstrate the presence of two different active transporters for putrescine and spermidine in a rat tumoral cell line (AR4-2J). The first has a Km of 3.1 microM and a Vmax of 3.7 pmol/15 min per micrograms of DNA for putrescine and the second a Km of 0.42 microM and a Vmax of 4.7 pmol/15 min per micrograms of DNA for spermidine. Competition studies performed between the polyamines confirm the difference between these two carriers; one has an equal affinity for the three main polyamines, and the other has a lower affinity for putrescine. Amino acids do not share this transport system, which is Na(+)-independent. Choline chloride inhibits selectively and in a dose-responsive manner the uptake of putrescine without affecting that of spermidine. These data demonstrate that AR4-2J cells possess two polyamine transporters; one is specific for aminopropyl groups (spermidine and spermine), and the other is choline-sensitive, but cannot discriminate between aminobutyl (putrescine) and aminopropyl groups. 相似文献
8.
We have investigated the role of intracellular Ca2+ in the opening of capacitative Ca2+ entry (CCE) channels formed with rat TRP4 (rTRP4) using Xenopus oocytes. In rTRP4-expressing oocytes pretreated with thapsigargin, perfusion with A23187, a Ca2+ ionophore, significantly potentiated the delayed phase of the CCE-mediated Cl- current response evoked by extracellular perfusion with Ca2+, without affecting the transient phase of CCE response. In control oocytes, the potentiation of delayed CCE response by A23187 was not significant. Using cut-open recording in combination with artificial intracellular perfusion of oocytes, CCE-mediated Cl- response was recorded at controlled cytosolic Ca2+ concentrations. Intracellular perfusion with a Ca2+ free solution containing 10 mM EGTA abolished most of the CCE responses of both non-injected and rTRP4-expressing oocytes. The native CCE response was not fully recovered by subsequent increases in the intracellular Ca2+ concentration up to 300 nM. However, CCE response of the rTRP4-expressing oocytes was restored at an internal Ca2+ concentration of 110 nM. Blockade of endogenous Cl- channels with anion channel blocker isolated Ca2+ current flowing through CCE channels and clarified the difference in the sensitivity to an internal Ca2+ concentration. These findings indicate that recombinant CCE channels formed with rTRP4 are positively regulated by cytosolic Ca2+ at higher sensitivity compared to oocyte-endogenous CCE channels. 相似文献
9.
Capacitative Ca2+ entry exists in rat glioma C6 cells; however, how the information of depletion of Ca2+ in intracellular stores transmits to the plasma membrane is unknown. In the present study, we examined whether Ca2+ influx factor (CIF) causes capacitative Ca2+ entry in C6 cells. CIF was extracted from non-treated (Non-CIF), bombesin-treated (BBS-CIF) and thapsigargin-treated (TG-CIF) C6 cells by a reverse-phase silica cartridge. The addition of BBS-CIF and TG-CIF gradually increased cytoplasmic Ca2+ concentration ([Ca2+]i) but Non-CIF did not increase [Ca2+]i. Neither BBS-CIF nor TG-CIF elevated [Ca2+]i in the absence of extracellular Ca2+. Gd3+ inhibited the increase in [Ca2+]i induced by BBS-CIF and TG-CIF. Genistein abolished an elevation of [Ca2+]i induced by BBS-CIF and TG-CIF. BBS-CIF and TG-CIF did not increase inositol 1,4,5-trisphosphate accumulation. The results suggest that capacitative Ca2+ entry is caused by CIF in rat glioma C6 cells. 相似文献
10.
The Ca2+ signal observed in individual fura-2-loaded hepatocytes stimulated with the alpha 1-adrenergic agonist phenylephrine consisted of a variable latency period, a rapid biphasic increase in the cytosolic free Ca2+, followed by a period of maintained elevated cytosolic Ca2+ (plateau phase) that depended on the continued presence of both agonist and external Ca2+. Microinjection of guanosine-5'-O-(3-thiophosphate) elicited a Ca2+ transient with the same basic features. The Ca2+ transient resulting from microinjecting inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) occurred with essentially no latency period and consisted of a rapid spike that decayed back to preinjection levels within 15 s. Microinjection of inositol 1,4,5-trisphosphorothioate (thio-IP3), a nonmetabolizable analog of Ins-1,4,5-P3, elicited a Ca2+ transient that was initially identical to that observed with Ins-1,4,5-P3, except that the cytosolic Ca2+ remained elevated. The maintained thio-IP3-induced Ca2+ increase was dependent on the presence of external Ca2+, suggesting an activation of Ca2+ influx. Reintroduction of external Ca2+ in the presence of 5 microM phenylephrine to Ca(2+)-depleted cells resulted in a 2-fold greater rate of rise in the cytosolic Ca2+ compared to the rate observed upon Ca2+ addition to cells Ca(2+)-depleted by preatement with thapsigargin. The rate of Ca2+ rise upon Ca2+ addition to cells microinjected with thio-IP3 was similar to that observed with phenylephrine. Coinjection of the cells with thio-IP3 plus heparin reduced the rate of Ca2+ rise upon Ca2+ addition to that observed in thapsigargin-treated cells. These data indicate that the mechanism responsible for receptor-mediated stimulation of Ca2+ entry into hepatocytes involves not only capacitative Ca2+ entry but also an additional component mediated directly by Ins-1,4,5-P3. 相似文献
11.
Using alpha-linolenic acid (ALA), one of several polyunsaturated fatty acids (PUFAs) that have previously been shown to both mobilize intracellular Ca2+ from the inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pool independently of IP3 production and inhibit Ca2+ influx, the relationship between Ca2+ mobilization from intracellular stores and Ca2+ influx in T cells (JURKAT) was studied. JURKAT cells were treated with 30 microM ALA to deplete the IP3-sensitive Ca2+ pool. When the intracellular free Ca2+ concentration [( Ca2+]i) returned to basal level, fatty acid free bovine serum albumin (BSA) was added to remove extracellular and membrane bound ALA. This resulted in a sustained increase in [Ca2+]i in the absence of inositol phosphates' formation. This sustained increase in [Ca2+]i was insensitive to protein kinase C activation but was inhibited by Ni2+ ions. The extent of Ca2+ influx was found to be correlated to the amount of Ca2+ initially discharged from the IP3-sensitive Ca2+ pool by sub-optimal concentrations of ALA. Ligation of the CD3 complex of the T cell antigen receptor with an anti-CD3 antibody (OKT3) during the sustained [Ca2+]i increased (induced by a sub-optimal concentration of ALA), produced a greater response. No increase in the sustained response was observed when the CD3 complex was activated in cells pretreated with an optimal concentration of ALA. In summary, Ca2+ entry in T cells is activated by emptying of the IP3-sensitive Ca2+ pool which can be dissociated from inositol phosphate production. The rate of Ca2+ influx appears to be closely correlated to the initial discharge of Ca2+ from the IP3-sensitive Ca2+ pool, suggesting that Ca2+ may first enter the depleted pool and then is released into the cytosol. 相似文献
12.
《Channels (Austin, Tex.)》2013,7(2):129-139
Ca2+ signaling plays a central role in microglial activation, and several studies have demonstrated a store-operated Ca2+ entry (SOCE) pathway to supply this ion. Due to the rapid pace of discovery of novel Ca2+ permeable channels, and limited electrophysiological analyses of Ca2+ currents in microglia, characterization of the SOCE channels remains incomplete. At present, the prime candidates are ‘transient receptor potential’ (TRP) channels and the recently cloned Orai1, which produces a Ca2+-release-activated Ca2+ (CRAC) current. We used cultured rat microglia and real-time RT-PCR to compare expression levels of Orai1, Orai2, Orai3, TRPM2, TRPM7, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6 and TRPC7 channel genes. Next, we used Fura-2 imaging to identify a store-operated Ca2+ entry (SOCE) pathway that was reduced by depolarization and blocked by Gd3+, SKF-96365, diethylstilbestrol (DES), and a high concentration of 2-aminoethoxydiphenyl borate (50 μM 2-APB). The Fura-2 signal was increased by hyperpolarization, and by a low concentration of 2-APB (5 μM), and exhibited Ca2+-dependent potentiation. These properties are entirely consistent with Orai1/CRAC, rather than any known TRP channel and this conclusion was supported by patch-clamp electrophysiological analysis. We identified a store-operated Ca2+ current with the same properties, including high selectivity for Ca2+ over monovalent cations, pronounced inward rectification and a very positive reversal potential, Ca2+-dependent current potentiation, and block by SKF-96365, DES and 50 μM 2-APB. Determining the contribution of Orai1/CRAC in different cell types is crucial to future mechanistic and therapeutic studies; this comprehensive multi-strategy analysis demonstrates that Orai1/CRAC channels are responsible for SOCE in primary microglia. 相似文献
13.
Rosado JA Rosenzweig I Harding S Sage SO 《American journal of physiology. Cell physiology》2001,280(6):C1636-C1644
Tumor necrosis factor-alpha (TNF-alpha) is an important component of the early signaling pathways leading to liver regeneration and proliferation, but it is also responsible for several hepatotoxic effects. We have investigated the effect of TNF-alpha on thapsigargin (TG)-induced store-mediated Ca2+ entry (SMCE) in the human hepatocellular carcinoma cell line HepG2. In these cells, short-term (10 min) exposure to TNF-alpha slightly increased SMCE. In contrast, long-term (12 h) exposure to TNF-alpha significantly reduced SMCE. This effect was reversed by coincubation with atrial natriuretic peptide (ANP), which itself had no effect on SMCE. Cytochalasin D and latrunculin A, inhibitors of actin polymerization, abolished SMCE. Long-term exposure of HepG2 cells to TNF-alpha abolished TG-induced actin polymerization and membrane association of Ras proteins. When TNF-alpha was added in combination with ANP, these effects were reduced. These findings suggest that in HepG2 cells, TNF-alpha inhibits SMCE by affecting reorganization of the actin cytoskeleton, probably by interfering with the activation of Ras proteins, and that ANP protects against these inhibitory effects of TNF-alpha. 相似文献
14.
Zhang BX Ma X Yeh CK Lifschitz MD Zhu MX Katz MS 《The Journal of biological chemistry》2002,277(50):48165-48171
Epidermal growth factor (EGF) is a multifunctional factor known to influence proliferation and function of a variety of cells. The actions of EGF are mediated by EGF receptor tyrosine kinase pathways, including stimulation of phospholipase Cgamma and mobilization of intracellular Ca(2+) ([Ca(2+)](i)). Generally, agonist-mediated Ca(2+) mobilization involves both Ca(2+) release from internal stores and Ca(2+) influx activated by store depletion (i.e. capacitative or store-operated Ca(2+) influx). However, the role of capacitative Ca(2+) entry in EGF-mediated Ca(2+) mobilization is still largely unknown. In this study, we compared [Ca(2+)](i) signals elicited by EGF with those induced by agents (the muscarinic receptor agonist carbachol and thapsigargin (Tg)) known to activate capacitative Ca(2+) entry. Unlike carbachol and Tg, EGF (5 nm) elicited a transient [Ca(2+)](i) signal without a plateau phase in the presence of extracellular Ca(2+) and also failed to accelerate Mn(2+) entry. Repletion of extracellular Ca(2+) to cells stimulated with EGF in the absence of Ca(2+) elicited an increase in [Ca(2+)](i), indicating that EGF indeed stimulates Ca(2+) influx. However, the influx was activated at lower EGF concentrations than those required to stimulate Ca(2+) release. Interestingly, the phospholipase C inhibitor completely inhibited Ca(2+) release induced by both EGF and carbachol and also reduced Ca(2+) influx responsive to carbachol but had no effect on Ca(2+) influx induced by EGF. EGF-induced Ca(2+) influx was potentiated by low concentrations (<5 ng/ml) of oligomycin, a mitochondrial inhibitor that blocks capacitative Ca(2+) influx in other systems. Transient expression of the hTRPC3 protein enhanced Ca(2+) influx responsive to carbachol but did not increase EGF-activated Ca(2+) influx. Both EGF and carbachol depleted internal Ca(2+) stores. Our results demonstrate that EGF-induced Ca(2+) release from internal stores does not activate capacitative Ca(2+) influx. Rather, EGF stimulates Ca(2+) influx via a mechanism distinct from capacitative Ca(2+) influx induced by carbachol and Tg. 相似文献
15.
X Qiu J A Valentijn J D Jamieson 《Biochemical and biophysical research communications》2001,285(3):708-714
Rab3D is a small GTPase implicated in regulated exocytosis, and is a marker of secretory granules in exocrine cells. We have previously shown that rab3D undergoes reversible carboxyl-methylation in adult rat pancreatic acinar cells, and that carboxyl-methylation of rab3D is developmentally regulated concomitantly with the maturation of the regulated secretory apparatus in rat pancreas. We also observed that dexamethasone treatment of the rat pancreatic acinar tumor cell line, AR42J, led to a significant increase in the size of the unmethylated pool of a rab3-like protein. The current study was designed to further characterize this rab3-like protein. Here we show that AR42J cells express rab3D, and that the protein focuses on 2D gels as two spots with pI values of 4.9 and 5.0. Treatment of AR42J cells with N-acetyl-S-geranylgeranyl-l-cysteine, an inhibitor of carboxyl-methylation, led to a decrease in the basic form of rab3D and a proportional increase in the acidic form. In contrast, N-acetyl-S-farnesyl-l-cysteine, which inhibits carboxyl-methylation of farnesylated proteins, had no effect. Lovastatin, an inhibitor of geranylgeranylation, also induced an accumulation of the acidic form of rab3D. Taken together, these data indicate that rab3D can undergo reversible carboxyl-methylation in AR42J cells by a geranylgeranyl-specific methyltransferase. The 2D gel and immunoblotting analyses indicated that dexamethasone treatment of AR42J cells led to an increase in the proportion of the unmethylated form of rab3D concurrent to inducing a regulated secretory pathway, similar to the rab3D profile change in developing rat pancreas. Our data, along with previous studies done on developing rat pancreas, indicate that the tumor cell line AR42J represents a good model system for studying the regulated secretory pathway, and that carboxyl-methylation of rab3D may play a role in the acquisition of stimulus-secretion coupling. 相似文献
16.
L Buscail P Gourlet A Cauvin P De Neef D Gossen A Arimura A Miyata D H Coy P Robberecht J Christophe 《FEBS letters》1990,262(1):77-81
We characterized highly selective receptors for PACAP, the pituitary adenylate cyclase activating peptide, in the tumoral acinar cell line AR 4-2J derived from the rat pancreas. PACAP, a novel hypothalamic peptide related to vasoactive intestinal peptide (VIP), was tested as the full natural 38-residue peptide (PACAP-38) and as an N-terminal amidated 27-residue derivative (PACAP-27). The binding sites showed considerable affinity for [125I]PACAP-27 (Kd = 0.4 nM) and PACAP-38, while their affinity for VIP and the parent peptide helodermin was 1000-fold lower. These receptors were coupled to adenylate cyclase, the potency of PACAP-38 and PACAP-27 (Kact = 0.2 nM) being much higher than that of VIP (Kact = 100 nM) and helodermin (Kact = 30 nM). Chemical cross-linking of [125I]PACAP-27 followed by SDS-PAGE and autoradiography revealed a specifically cross-linked peptide with an Mr of 68,000 (including 3000 for one PACAP-27 molecule). 相似文献
17.
Lee SY Choi BH Hur EM Lee JH Lee SJ Lee CO Kim KT 《American journal of physiology. Cell physiology》2006,290(4):C1060-C1066
Norepinephrine (NE) is one of the major neurotransmitters that determine melatonin production in the pineal gland. Although a substantial amount of Ca2+ influx is triggered by NE, the Ca2+ entry pathway and its physiological relevance have not been elucidated adequately. Herein we report that the Ca2+ influx triggered by NE significantly regulates the protein level of serotonin N-acetyltransferase, or arylalkylamine N-acetyltransferase (AANAT), a critical enzyme in melatonin production, and is responsible for maintaining the Ca2+ response after repetitive stimulation. Ca2+ entry evoked by NE was dependent on PLC activation. NE evoked a substantial amount of Ca2+ entry even after cells were treated with 1-oleoyl-2-acetyl-sn-glycerol (OAG), an analog of diacylglycerol. To the contrary, further OAG treatment after cells had been exposed to OAG did not evoke additional Ca2+ entry. Moreover, NE failed to induce further Ca2+ entry after the development of Ca2+ entry induced by thapsigargin (Tg), suggesting that the pathway of Ca2+ entry induced by NE might be identical to that of Tg. Interestingly, Ca2+ entry evoked by NE or Tg induced membrane hyperpolarization that was reversed by iberiotoxin (IBTX), a specific inhibitor of large-conductance Ca2+-activated K+ (BK) channels. Moreover, IBTX-sensitive BK current was observed during application of NE, suggesting that activation of the BK channels was responsible for the hyperpolarization. Furthermore, the activation of BK channels triggered by NE contributed to regulation of the protein level of AANAT. Collectively, these results suggest that NE triggers Ca2+ entry coupled to BK channels and that NE-induced Ca2+ entry is important in the regulation of AANAT. serotonin N-acetyltransferase; pineal gland 相似文献
18.
After 2 days of incubation of AR42J pancreatoma cells with 400 microM [3H]inositol, the specific radioactivity of [3H]phosphatidylinositol 4,5-bisphosphate and the specific radioactivity of [3H]inositol were similar, indicating that isotopic equilibrium had been achieved. The inositol 1,4,5-trisphosphate (1,4,5-IP3) level in cells was estimated to be approximately 2 microM and was increased by substance P receptor activation to about 25 microM. HPLC analysis of [3H]inositol phosphates indicated that only 1,4,5-IP3, inositol 1,4-bisphosphate, and inositol 4-monophosphate were increased upon receptor activation. There was no increase in inositol 1,3,4,5-tetrakisphosphate (1,3,4,5-IP4), or in any of its metabolites. Incubation of [3H]1,4,5-IP3 with a cell homogenate did not result in the formation of [3H]1,3,4,5-IP4. Therefore, it appears that 1,4,5-IP3 3-kinase is either not present or not functional under these assay conditions. Substance P increased cytosolic calcium levels in fura-2-loaded cells from about 600 nM to 2.5 microM. This increase in Ca2+ was partially attenuated in the absence of extracellular calcium, indicating that in AR42J cells, substance P stimulation appears to activate calcium signaling through both Ca2+ entry and intracellular Ca2+ release. These modes of Ca2+ mobilization occur without an increase in 1,3,4,5-IP4 or any of its metabolites. 相似文献
19.
20.
CUI ZONG JIE 《Cell research》1998,8(1):23-31
Ca2 channelsandamylasesecreti0ninAR4-2Jce1lsAR4-2Jisacelllineoriginallyderivedfr0matransp1antable,azaserine-inducedmurinetumour[1,2],whichc0ntainssignificantamount0famylaseandotherdiges-tiveenzymes'Thiscelllinecontainsanumberofreceptorsystems:substanceP[3… 相似文献