首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integrins are involved in a wide variety of cell adhesion processes, and have roles in gamete binding and fusion in mammals. Integrins have been also discovered in the scleractinian coral Acropora millepora (Cnidaria: Anthozoa). As a first step toward understanding the molecular basis of fertilization in corals, we examined the effect of polyclonal antisera raised against recombinant coral integrins on gamete interactions in A. millepora. Antiserum raised against integrin βcn1 dramatically decreased the binding of Acropora sperm to eggs and significantly decreased fertilization rates relative to preimmune serum and seawater controls. However, the antiserum against AmIntegrin α1 did not affect significantly either sperm–egg binding or fertilization. One possible explanation for this is that AmIntegrin α1 may preferentially mediate interactions with RGD-containing ligands, whereas mammalian α6 integrin (which is most directly implicated in gamete interactions) preferentially interacts with laminin-related ligands. Our results suggest that β1 type integrins are involved in the fertilization process in Acropora and that some functions of these molecules may have been conserved between corals and mammals. A. Iguchi and L. M. Márquez contributed equally to this work.  相似文献   

2.
Integrins     
Integrins are cell adhesion receptors that are evolutionary old and that play important roles during developmental and pathological processes. The integrin family is composed of 24 αβ heterodimeric members that mediate the attachment of cells to the extracellular matrix (ECM) but that also take part in specialized cell-cell interactions. Only a subset of integrins (8 out of 24) recognizes the RGD sequence in the native ligands. In some ECM molecules, such as collagen and certain laminin isoforms, the RGD sequences are exposed upon denaturation or proteolytic cleavage, allowing cells to bind these ligands by using RGD-binding receptors. Proteolytic cleavage of ECM proteins might also generate fragments with novel biological activity such as endostatin, tumstatin, and endorepellin. Nine integrin chains contain an αI domain, including the collagen-binding integrins α1β1, α2β1, α10β1, and α11β1. The collagen-binding integrins recognize the triple-helical GFOGER sequence in the major collagens, but their ability to recognize these sequences in vivo is dependent on the fibrillar status and accessibility of the interactive domains in the fibrillar collagens. The current review summarizes some basic facts about the integrin family including a historical perspective, their structure, and their ligand-binding properties.  相似文献   

3.
To quantitatively evaluate the effects of integrins α1β1, α2β1, α3β1, α4β1, α5β1, and α6β1 on the chemotaxis of hepatocelluar carcinoma (HCC) cell line SMMC-7721 to laminin (LN). A modified dual-micropipette system was used to dynamically and quantitatively monitor the formation of pseudopod protrusion of HCC cells toward LN in the presence or absence of specific antibodies against integrins α1, α2, α3, α4, α5, α6, and β1. Additionally, the expression levels of different integrin subunits on the surface of the cells were determined via flow cytometry analysis. In response to equal concentrations of LN in both micropipettes, HCC cells form symmetrical pseudopod protrusions on both sides. Addition of antibodies against α3, α6, or β1 into one micropipette leads to significant reduction of pseudopod formation on that side, while antibodies against α1, α2, α4, and α5 do not affect the symmetrical formation of pseudopods in either micropipette. The percentages of HCC cells positive for expression of integrins α1, α2, α3, α4, α5, α6, and β1 were 95.07, 23.17, 95.55, 2.47, 34, 14.29, and 95.78%, respectively. Integrins α3β1 and α6β1 are important cell surface receptors that mediate the chemotaxis of HCC cells toward LN.  相似文献   

4.
Integrin expression in developing human salivary glands   总被引:1,自引:1,他引:0  
The development and complete differentiation of salivary glands is a complex process that involves a large number of co-ordinated events. Little is known about the molecular basis for salivary gland development. However, we have reported previously that integrins appear to play a role. Integrins are heterodimeric transmembrane receptors consisting of one α and one β subunit that play a pivotal role in the interaction of cells with the extracellular matrix. Such interactions regulate the organisation of cells of tissues and organs during development as well as cell proliferation and differentiation. Using immunohistochemistry and Western and Northern blot analysis, we mapped the localisation and expression of integrins β1, β3 and β4 in human salivary glands obtained from foetuses ranging from weeks 4–24 of gestation and compared it with adult salivary glands. Integrin β1 first appeared during the canalisation stage and during the differentiation stage. A message first appeared at week 6 of development. The expression of β4 integrin protein and message was observed only in the late stage of differentiation. Integrin β3 was not detected in the developing glands; however, integrins β1, β3 and β4 were all expressed in adult salivary gland tissues. The data suggest that integrins, particularly β1, have a role to play in salivary gland development and differentiation.  相似文献   

5.

Background  

Integrins comprise a large family of α,β heterodimeric, transmembrane cell adhesion receptors that mediate diverse essential biological functions. Higher vertebrates possess a single β1 gene, and the β1 subunit associates with a large number of α subunits to form the major class of extracellular matrix (ECM) receptors. Despite the fact that the zebrafish (Danio rerio) is a rapidly emerging model organism of choice for developmental biology and for models of human disease, little is currently known about β1 integrin sequences and functions in this organism.  相似文献   

6.
Fu BH  Wu ZZ  Qin J 《Molecular biology reports》2011,38(5):3271-3276
In this study, we applied specific blocking antibodies for integrin α6 or β1 subunit, and evaluated the in vitro effects of integrins α6β1 on the adhesion, chemotaxis and migration of hepatocellular carcinoma (HCC) cell line SMMC-7721 to type IV collagen. The adhesion force and cell migration, as measured by a micropipette aspiration system and Boyden chamber assay respectively, was dramatically reduced when either integrin subunits was blocked. The chemotaxis, as determined using a dual-micropipette system, was only affected by the antibody against β1 subunit. This study suggests that integrin α6β1 is an important cell surface receptor that mediates the adhesion of SMMC-7721 to type IV collagen. But the α6 subunit has minimal effect on pseudopod formation in response to type IV collagen. Therefore, the integrin α6β1-mediated cell migration is, at least in part, through the regulation on the cell adhesion step.  相似文献   

7.
Summary The epigenetic modulation by histone deacetylase (HDAC) inhibitors including trichostatin A (TSA) has been known to block cell proliferation, induce apoptosis and inhibit cell migration in human cancer cells that represents the potential therapeutic agents for cancers and fibrosis. However, more than 55% of Hep3B cells remained alive after our initial study of 100 nM TSA treatment. To further study the epigenetic modulation and the biological function of newly activated genes by HDAC inhibitor involved in HCC progression and metastasis, we profiled 23 integrin genes including 15α and 8β in TSA-treated Hep3B cells. Six integrins including three down-regulated α6, α10, β8 and three significant up-regulated α4, β2, β6 integrins were revealed after semi-quantitative RT-PCR. To confirm the epigenetic modulation and explore their biological functions, we selected the three significantly up-regulated integrins for confirmation of protein up-regulation, hyperacetylated-histones by ChIP assays, and functional inhibition by specific neutralizing antibodies of integrins. Our results indicated that epigenetic modulation in TSA-treated Hep3B cells up-regulated new integrins including α4, β2 and β6 and reduced migration activities by specific neutralizing antibodies to 61.3%, 42.4% and 34.5%, respectively. Our novel findings provided a better understanding of the epigenetic modulation of integrins and suggested that targeting the epigenetic up-regulated integrins to abrogate the migration activity might be a promising strategy to prevent HCC progression.  相似文献   

8.
Cell integrins: commonly used receptors for diverse viral pathogens   总被引:9,自引:0,他引:9  
When searching for their favorite host tissues, animal viruses frequently attach to cell-surface receptors that have key roles in normal cell physiology. Integrins are prime examples of physiologically important receptors that have been usurped by nonenveloped and enveloped viruses for attachment and/or cell entry. This family of heterodimeric receptors mediates cell adhesion, cell migration, tumor metastasis and cell differentiation. Recent investigations have shed new light on integrin structure as well as on the underlying molecular features of their association with viral ligands. In this review, we discuss several examples of virus-integrin interactions that highlight recent advances in this field. The continuing improvements in virus and cell imaging techniques have helped to uncover the molecular basis of how integrins are recognized by such a wide range of microbial pathogens to invade host cells.  相似文献   

9.
Genetic analysis of olfC provides evidence for a role for integrins in the development and/or function of the olfactory system of Drosophila. The olfC gene was identified on the basis of mutations that result in specific defects in behavioural responses to acetate esters, and has been mapped to the cytogenetic interval 7D1;D5–6 on the X chromosome. The myospheroid (mys) gene maps to this region and encodes a β subunit of integrins. Integrins are αβ heterodimers which are present on the cell surface and have been implicated in a variety of signalling roles. Mutations in mys fail to complement the olfactory deficits of olfC mutants. These defects can be rescued by misexpression of the mys + gene under control of a hsp70 promoter. Mutations that affect the α subunit of the position-specific integrin PS2 show a dominant interaction with olfC. These results suggest that olfC is allelic to mys and functions together with αPS2 integrins in the olfactory pathway in Drosophila. Received: 3 November 1999 / Accepted: 17 January 2000  相似文献   

10.
Subunit interactions among the chloroplast ATP synthase subunits were studied using the yeast two-hybrid system. Various pairwise combinations of genes encoding α, β, γ, δ and ε subunits ofSpinach ATP synthase fused to the binding domain or activation domain of GAL4 DNA were introduced into yeast and then expression of a reporter gene encoding β-galactosidase was detected. Of all the combinations, that of γ and ε subunit genes showed the highest level of reporter gene expression, while those of α and β, a and ε, β and ε and β and δ induced stable and significant reporter gene expression. The combination of δ and ε as well as that of δ and γ induced weak and unstable reporter gene expression. However, combinations of α and γ, β and γ and α and δ did not induce reporter gene expression. These results suggested that specific and strong interactions between γ and ε, α and β, α and ε, β and ε and β and δ subunits, and weak and transient interactions between δ and ε and δ and γ subunits occurred in the yeast cell in the two-hybrid system. These results give a new look into the structural change of ATP synthase during catalysis.  相似文献   

11.
Subunit interactions among the chloroplast ATP synthase subunits were studied using the yeast two-hybrid system. Various pairwise combinations of genes encoding α, β, γ, δ and ε subunits ofSpinach ATP synthase fused to the binding domain or activation domain of GAL4 DNA were introduced into yeast and then expression of a reporter gene encoding β-galactosidase was detected. Of all the combinations, that of γ and ε subunit genes showed the highest level of reporter gene expression, while those of α and β, a and ε, β and ε and β and δ induced stable and significant reporter gene expression. The combination of δ and ε as well as that of δ and γ induced weak and unstable reporter gene expression. However, combinations of α and γ, β and γ and α and δ did not induce reporter gene expression. These results suggested that specific and strong interactions between γ and ε, α and β, α and ε, β and ε and β and δ subunits, and weak and transient interactions between δ and ε and δ and γ subunits occurred in the yeast cell in the two-hybrid system. These results give a new look into the structural change of ATP synthase during catalysis.  相似文献   

12.
The hyperthermophilic archaeon Thermococcus sp. strain KS-1 (T. KS-1) expresses two different chaperonin subunits, α and β, for the folding of its proteins. The composition of the subunits in the hexadecameric double ring changes with temperature. The content of the β subunit significantly increases according to the increase in temperature. The homo-oligomer of the β subunit, Cpnβ, is more thermostable than that of the α subunit, Cpnα. Since Cpnα and Cpnβ also have different protein folding activities and interactions with prefoldin, the hetero-oligomer is thought to exhibit different characteristics according to the content of subunits. The hetero-oligomer of the T. KS-1 chaperonin has not been studied, however, because the α and β subunits form hetero-oligomers of varying compositions when they are expressed simultaneously. In this study, we characterized the T. KS-1 chaperonin hetero-oligomer, Cpnαβ, containing both α and β in the alternate order, which was constructed by the expression of α and β subunits in a coordinated fashion and protease digestion. Cpnαβ protected citrate synthase from thermal aggregation, promoted the folding of acid-denatured GFP in an ATP-dependent manner, and exhibited an ATP-dependent conformational change. The yield of refolded GFP generated by Cpnαβ was almost equivalent to that generated by Cpnβ but lower than that generated by Cpnα. In contrast, Cpnαβ exhibited almost the same level of thermal stability as Cpnα, which was lower than that of Cpnβ. The affinity of Cpnαβ to prefoldin was found to be between those of Cpnα and Cpnβ, as expected.  相似文献   

13.
Evolution of the Integrin α and β Protein Families   总被引:4,自引:0,他引:4  
A phylogenetic analysis of vertebrate and invertebrate α integrins supported the hypothesis that two major families of vertebrate α integrins originated prior to the divergence of deuterostomes and protostomes. These two families include, respectively, the αPS1 and αPS2 integrins of Drosophila melanogaster, and each family has duplicated repeatedly in vertebrates but not in Drosophila. In contrast, a third family (including αPS3) has duplicated in Drosophila but is absent from vertebrates. Vertebrate αPS1 and αPS2 family members are found on human chromosomes 2, 12, and 17. Linkage of these family members may have been conserved since prior to the origin of vertebrates, and the two genes duplicated simultaneously. A phylogenetic analysis of β integrins did not clearly resolve whether vertebrate β integrin genes duplicated prior to the origin of vertebrates, although it suggested that at least the gene encoding vertebrate β4 may have done so. In general, the phylogeny of neither α nor β integrins showed a close correspondence with patterns of α–β heterodimer formation or other functional characteristics. One major exception to this trend involved αL, αM, αX, and αD, a monophyletic group of immune cell-expressed α integrins, which share a number of common functional characteristics and have evolved in coordinated fashion with their β integrin partners. Received: 22 June 2000 / Accepted: 11 September 2000  相似文献   

14.
Summary HeLa cell variants capable of multiplying in the presence of sodium butyrate were used to study the relationship of cell cycle position to human chorionic gonadotropin (hCG) production and regulation of the genes encoding hCG α- and β-subunits. The butyrate-resistant variants exhibit several different stable phenotypes. In wild-type HeLa cells, butyrate arrests cell division and modulates synthesis of α- and β-subunits of glycoprotein hormones by coordinately regulating steady-state levels of their respective mRNAs. Because the variant cell lines replicate, in addition to producing hCG subunits in the presence of butyrate, cell cycle arrest does not seem to be a requirement for expression of glycoprotein hormone genes. Studies of histone modification suggest that neither hyperacetylation of histones H3 and H4 nor dephosphorylation of histones H1 and H2A mediates inhibition of cell replication. In the variants, α-subunit and hCGβ levels are independently regulated, as a consequence of independent regulation of α- and β-hCG mRNA levels. Long-term effects of butyrate include derepression of some genes (hCGβ in the variant AO) and repression of others (hCGα in variant AO). Moreover, hormone production correlates with the steady-state levels of mRNA for each of the subunits, suggesting that regulation occurs before translation. These findings indicate that the butyrate-resistant variant cell lines are valuable for studies of the molecular mechanisms involved in regulation of expression of ectopic hormones.  相似文献   

15.
Integrins, a family of transmembrane heterodimeric polypeptides, mediate various biological responses including cell adhesion and migration. In this report, we show that sphingosine-1-phosphate (S1P) activates integrin αvβ3 in endothelial cells (ECs) via the sphingosine-1-phosphate receptor subtype 1 (S1P1)-mediated signaling pathway. S1P treatment results in the activation of integrin αvβ3 in the lamellipodia region of ECs, suggesting that integrin αvβ3 plays a critical role in the S1P-stimulated chemotactic response of ECs. Indeed, S1P treatment induces the association of focal adhesion kinase (FAK) and cytoskeletal proteins with integrin αvβ3, the ligation of αv and β3 subunits, as well as enhances endothelial migration on vitronectin-coated substrata. Knockdown endothelial S1P1 receptor, treatments with pertussis toxin or dominant-negative-Rho family GTPases abrogates the S1P-induced integrin αvβ3 activation in ECs. Consequently, these treatments markedly inhibit the S1P-induced endothelial migratory response on vitronectin-coated substrata. Collectively, these data indicate that the S1P-mediated signaling via the S1P1/Gi/Rho GTPases pathway activates integrin αvβ3, which is indispensable for S1P-stimulated chemotactic response of ECs.  相似文献   

16.
A new unique lectin (galactose-specific) purified from the seeds of Dolichos lablab, designated as DLL-II is a heterodimer composed of closely related subunits α and β. These were separated by SDS-PAGE and isolated by electroelution. By ESI-MS analysis their molecular masses were found to be 30.746 kDa (α) and 28.815 kDa (β) respectively. Both subunits were glycosylated and displayed similar amino acid composition. Using advanced mass spectrometry in combination with de novo sequencing and database searches for the peptides derived by enzymatic and chemical cleavage of these subunits, the primary sequence was deduced. This revealed DLL-II to be made of two polypeptide chains of 281(α) and 263(β) amino acids respectively. The β subunit differed from the α subunit by the absence of some amino acids at the carboxy terminal end. This structural difference suggests that possibly, the β subunit is derived from the α subunit by posttranslational proteolytic modification at the COOH-terminus. Comparison of the DLL-II sequence to other leguminous seed lectins indicates a high degree of structural conservation. Electronic Supplementary Material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The strategy of translationally fusing the subunits of heterodimeric proteins into single chain molecules is often used to overcome the mutagenesis-induced defects in subunit interactions. The approach of fusing the α and β subunits of human Chorionic Gonadotropin (hCG) to produce a single chain hormone (phCGαβ) was used to investigate roles of critical residues of the α subunit in hormone receptor interaction and biological activity. The α subunit was mutated using PCR-based site-directed mutagenesis, fused to the wild type β subunit and the fusion protein was expressed using Pichia pastoris expression system. Following partial purification, the mutant proteins were extensively characterized using immunological probes, receptor assays, and in vitro bioassays. The mutation hCGα P38A, which disrupts subunit interaction in the heterodimeric molecule, produced a fusion molecule exhibiting altered subunit interactions as judged by the immunological criteria, but could bind to the receptor with lower affinity and elicit biological response. Mutation of hCGα T54A disrupting the glycosylation at Asparagine 52, believed to be important for bioactivity, also yielded a biologically active molecule suggesting that the glycosylation at this site is not as critical for bioactivity as it is in the case of the heterodimer. The fusion protein approach was also used to generate a superagonist of hormone action. Introduction of four lysine residues in the Loop 1 of the α subunit led to the generation of a mutant having higher affinity for the receptor and enhanced bioactivity. Immunological characterization of single chain molecules revealed that the interactions between the subunits were not identical to those seen in the heterodimeric hormone, and the subunits appeared to retain their isolated conformations, and also retained the ability to bind to the receptors and elicit response. These data suggest the plasticity of the hormone-receptor interactions.  相似文献   

18.
Protein kinase CK2 is a highly conserved Ser/Thr protein kinase that is ubiquitous among eucaryotic organisms and appears to play an important role in many cellular functions. This enzyme in yeast has a tetrameric structure composed of two catalytic (α and/or α′) subunits and two regulatory β and β′ subunits. Previously, we have reported isolation from yeast cells four active forms of CK2, composed of αα′ββ′, α2ββ′, α′2ββ′ and a free α′-catalytic subunit. Now, we report that in Saccharomyces cerevisiae CK2 holoenzyme regulatory β subunit cannot substitute other β′ subunit and only both of them can form fully active enzymatic unit. We have examined the subunit composition of tetrameric complexes of yeast CK2 by transformation of yeast strains containing single deletion of the β or β′ regulatory subunits with vectors carrying lacking CKB1 or CKB2 genes. CK2 holoenzyme activity was restored only in cases when both of them were present in the cell. Additional, co-immunoprecypitation experiments show that polyadenylation factor Fip1 interacts with catalytic α subunits of CK2 and interaction with beta subunits in the holoenzyme decreases CK2 activity towards this protein substrate. These data may help to elucidate the role of yeast protein kinase CK2β/β′ subunits in the regulation of holoenzyme assembly and phosphotransferase activity.  相似文献   

19.
Amyloidogenic proteins (Aβ peptide) in Alzheimer’s disease (AD) and alpha-synuclein (α-Syn) in Parkinson’s disease (PD) are typically soluble monomeric precursors, which undergo remarkable conformational changes and culminate in the form of aggregates in diseased condition. Overlap of clinical and neuropathological features of both AD and PD are observed in dementia with Lewy body (DLB) disease, the second most common form of dementia after AD. The identification of a 35-amino acid fragment of α-Syn in the amyloid plaques in DLB brain have raised the possibility that Aβ and α-Syn interact with each other. In this report, the molecular interaction of α-Syn with Aβ40 and/or Aβ42 are investigated using multidimensional NMR spectroscopy. NMR data in the membrane mimic environment indicate specific sites of interaction between membrane-bound α-Syn with Aβ peptide and vice versa. These Aβ–α-Syn interactions are demonstrated by reduced amide peak intensity or change in chemical shift of amide proton of the interacting proteins. Based on NMR results, the plausible molecular mechanism of overlapping pathocascade of AD and PD in DLB due to interactions between α-Syn and Aβ is described. To the best of our knowledge, it is the first report using multidimensional NMR spectroscopy that elucidates molecular interactions between Aβ and α-Syn which may lead to onset of DLB. An erratum to this article can be found at  相似文献   

20.
Extracellular signals are transduced across the cell by the cell surface receptors, with the aid of G-proteins, which act at a critical point of signal transduction and cellular regulation. Structurally, G-proteins are heterotrimeric consisting α, β and γ subunits but in functionally active state they dissociate into α subunit coupled to GTP and as βγ dimer. G-proteins can be broadly divided into two classes based on their sensitivity to pertussis toxin and cholera toxin. Existence of various forms of each of the subunit allows molecular diversity in the subunit species of G-proteins. These subunits interact with a wide range of receptors and effectors, facilitated by post translational modification of their subunits. Different types of G-proteins mediate several signalling events in different parts of the body. This review summarizes the features of (i) structural and functional heterogenity among different subunits of G-proteins, (ii) interaction of G-proteins and their subunits with effectors with specific cases of G-protein mediated signalling in olfaction, phototransduction in the retina, ras andras related transduction and (iii) disease conditions associated with malfunctioning of G-proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号