首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation of binary and ternary enzyme-ligand complexes was investigated for amino acid:tRNA ligases specific for L-isoleucine, L-leucine, and L-phenylalanine. Each of the enzymes exhibited synergistic binding when a substrate was substituted by a structurally related compound. The strength of coupling between the sites binding the amino acid and ATP was strongly dependent on the structure of ligands. The phenomenon was observed with the L-leucine and L-phenylalanine-specific enzymes only in the presence of magnesium. Spermine was inhibitory for L-phenylalanine:tRNA ligase. From the variation which structure of the strength of the observed synergism a correlation scheme was derived considering the ammonium group, the carboxylate group and the side chain of the amino acid, and the adenosine and triphosphate moieties of ATP. The strength of coupling between the subsites binding various combinations of these moieties was evaluated. We found that binding of the subgroups of the amino acid exerts an intramolecular synergism. The strength intramolecular synergism was similar to the strength of the intermolecular synergism observed for the simultaneous binding of an amino alcohol and ATP (or MgATP-2-). We have derived a molecular mechanism for the formation of the ternary enzyme-amino acid-ATP (or MgATP-2-) complex taking into account the synergistic phenomena. The complex is considered to involve electrostatic repulsion between the amino acid carboxylate and the ATP triphosphate moieties. When one of the negatively charged groups have been eliminated, the enzymatic rearrangement which facilitates the formation of this complex may be seen as a synergistic coupling.  相似文献   

2.
A. C. Borstlap 《Planta》1981,151(4):314-319
The joint action of L-valine and L-isoleucine, L-leucine and L-isoleucine, and L-valine and L-leucine on the growth of Spirodela polyrhiza was established. The effect of one branched-chain amino acid on growth inhibition by another one was compared with the non-specific antagonisms which glycine and L-alanine exert on growth inhibition by singly supplied branched-chain amino acids. In this way specific and non-specific interactions could be distinguished. It appeared that: (1) L-isoleucine was a specific antagonist of L-valine; (2) L-leucine was a specific antagonist of L-isoleucine; (3) L-valine and L-leucine were synergistic growth inhibitors. Further, it was found that: (4) growth inhibition by L-leucine was specifically antagonized by simultaneously supplied L-valine and L-isoleucine; (5) an excess of L-isoleucine strongly inhibited the conversion of exogenous valine into leucine; (6) accumulation of valine was typical of isoleucine-induced growth inhibition. The results are consistent with the view that growth inhibition by L-valine and L-leucine is due to the blocking of acetohydroxy acid synthetase, the first common enzyme in the valine-isoleucine biosynthetic pathway. Growth inhibition by L-isoleucine, however, seems to result from inhibition of leucine synthesis at a step after 2-oxoisovaleric acid. Some aspects of the regulation of branched-chain amino acid biosynthesis in higher plants are discussed.  相似文献   

3.
Changes in phenylalanyl-tRNA synthetase (L-phenylalanine : tRNAPhe ligase, EC 6.1.1.20) and leucyl-tRNA synthetase (L-leucine : tRNALeu ligase. EC 6.1.1.4) activities were studied during the growth cycle of Tetrahymena pyriformis. High levels of charged tRNA observed during exponential growth were associated with elevated aminoacyl-tRNA synthetase activities. Low levels of charges tRNA in the stationary phase culture were associated with decreased aminoacyl-tRNA synthethase activities together with a concomitant accumulation of factor(s) which inhibited the enzyme activities. The inhibitory factor(s) has been partially purified and evidence is presented to rule out RNA, RNAases, proteases and ATPases as the responsible inhibitory factor(s) of the aminoacyl-tRNA synthetases.  相似文献   

4.
In adipocytes, amino acids stimulate the target of rapamycin (TOR) signaling pathway leading to phosphorylation of the translational repressor, eIF-4E binding protein-I (4E-BP1), and ribosomal protein S6. L-leucine is the primary mediator of these effects. The structure-activity relationships of a putative L-leucine recognition site in adipocytes (LeuR(A)) that regulates TOR activity were analyzed by examining the effects of leucine analogues on the rapamycin-sensitive phosphorylation of the translational repressor, eIF-4E binding protein-I (4E-BP1), an index of TOR activity. Several amino acids that are structurally related to leucine strongly stimulated 4E-BP1 phosphorylation at concentrations greater than the EC(50) value for leucine. The order of potency was leucine > norleucine > threo-L-beta-hydroxyleucine approximately Ile > Met approximately Val. Other structural analogues of leucine, such as H-alpha-methyl-D/L-leucine, S-(-)-2-amino-4-pentenoic acid, and 3-amino-4-methylpentanoic acid, possessed only weak agonist activity. However, other leucine-related compounds that are known agonists, antagonists, or ligands of other leucine binding/recognition sites did not affect 4E-BP1 phosphorylation. We conclude from the data that small lipophilic modifications of the leucine R group and alpha-hydrogen may be tolerated for agonist activity; however, leucine analogues with a modified amino group, a modified carboxylic group, charged R groups, or bulkier aliphatic R groups do not seem to possess significant agonist activity. Furthermore, the leucine recognition site that regulates TOR signaling in adipocytes appears to be different from the following: (1) a leucine receptor that regulates macroautophagy in liver, (2) a leucine recognition site that regulates TOR signaling in H4IIE hepatocytes, (3) leucyl tRNA or leucyl tRNA synthetase, (4) the gabapentin-sensitive leucine transaminase, or (5) the system L-amino acid transporter.  相似文献   

5.
A simple procedure to label individual tRNA species in a total tRNA preparation has been developed. The principle of the method is as follows: total crude tRNA (from E. coli) is incubated in the presence of a crude aminoacyl-tRNA synthetase preparation, containing most aminoacyl-tRNA synthetases and only one specific amino acid corresponding to the tRNA species which is intended to be labelled. This achieves the purpose of charging the desired tRNA species thereby protecting its 3'OH-terminus; obviously all the other tRNA species will have a free 3'OH group. Periodate oxidation, followed by beta-elimination, destroys any free 3'OH. After deacylation of the specific aminoacylated tRNA at pH 8.8 the only free 3'OH group will be the one of the desired tRNA species. High specific activity (32P)-pCp is ligated to this 3'OH by means of T4-RNA ligase. Two-dimensional polyacrylamide gel electrophoresis (2D-PGE) and sequence analysis of the isolated tRNA show that the method is very specific. Individually labelled tRNA species can be used as probes for cloning tRNA genes.  相似文献   

6.
Queuosine (Q), found exclusively in the first position of the anticodons of tRNA(Asp), tRNA(Asn), tRNA(His) and tRNA(Tyr), is synthesized in eucaryotes by a base-for-base exchange of queuine, the base of Q, for guanine at tRNA position 34. This reaction is catalyzed by the enzyme tRNA-guanine transglycosylase (EC 2.4.2.29). We measured the specific release of queuine from Q-5'-phosphate (queuine salvage) and the extent of tRNA Q modification in 6 human tumors carried as xenografts in immune-deprived mice. Q-deficient tRNA was found in 3 of the tumors but it did not correlate with diminished queuine salvage. The low tRNA Q content of one tumor, the HxGC3 colon adenocarcinoma, prompted us to examine a HxGC3-derived cell line, GC3/M. GC3/M completely lacks Q in its tRNA and measurable tRNA-guanine transglycosylase activity; the first example of a higher eucaryotic cell which lacks this enzyme. Exposure of GC3/M cells to 5-azacytidine induces the transient appearance of Q-positive tRNA. This result suggests that at least one allele of the transglycosylase gene in GC3/M cells may have been inactivated by DNA methylation. In clinical samples, we found Q-deficient tRNA in 10 of 46 solid tumors, including 2 of 13 colonic carcinomas.  相似文献   

7.
The specific modification of N6-delta 2-(isopentenyl)adenosine in purified tRNA Ser yeast by mild treatment with KMnO4 and I2 was studied. N6-delta 2-(isopentenyl)adenosine in tRNA SER is specifically modified by iodination, providing us with a suitable method for the quantitative determination of N6-delta 2-(isopentenyl)adenosine in tRNA was found to contain 114 +/- 8 pmol/A260nm unit of N6-delta 2-(isopentenyl)adenosine and gave three labelled fractions on an RPC-5 column. The product obtained after KMnO4 treatment of tRNA Ser was not homogeneous. The enzymatic "reisopentenylation" of KMnO4-treated tRNA Ser resulted in the regeneration of only traces of the original molecule(s). Most of them had been damaged either by the KMnO4 treatment or in the incubation mixture used for "reisopentenylation".  相似文献   

8.
Transport of glycyl-L-leucine into isolated brush border membrane vesicles was studied. On the basis of the following observations it was postulated that glycyl-L-leucine was transported intact by a specific dipeptide mechanism. (1) The differing time course and Na-+ stimulation of glycine, L-leucine and glycyl-L-leucine. (2) The failure of glycine and L-leucine to inhibit glycyl-L-leucine transport. (3) Initial presence of dipeptide within the vesicle. (4) Inhibition of glycyl-L-leucine uptake by other dipeptides. (5) The occurrence of accelerated amino acid uptake in the presence of the dipeptide.  相似文献   

9.
A method for the production of recombinant L-leucine dehydrogenase from Bacillus cereus in pilot scale is described employing the temperature induced runaway replication vector pIET98 and the Escherichia coli host strain BL21. Fed-batch cultivation using a semi-synthetic high-cell densitiy medium was adjusted in 5-L scale to yield a constant growth rate of 0,17 h(-1) and a final cell concentration of 27 g dry weight/L by exponentially increasing the nutrient supply. Runaway replication and thus, LeuDH expression was induced during the feeding phase by increasing the cultivation temperature to 41 degrees C yielding a specific enzyme activity of 110 U/mg, which corresponds to 30% of the soluble cell protein. The cultivation was terminated when the dissolved oxygen content fell below 10% saturation. The final volume activity was 600,000 U/L cultivation. No change in growth, cell density, or expression activity was observed scaling up the cultivation volume to 200 L. Thus, 120,000,000 units L-leucine dehydrogenase were obtained from one cultivation. The purification of L-leucine dehydrogenase to homogeneity was carried out by heat denaturation, liquid-liquid extraction, gel filtration, and anion-exchange chromatography to give pure enzyme in 65% yield. The integrity of the recombinant enzyme was tested measuring the molecular weight and determining the N-terminal amino acid sequence.  相似文献   

10.
In gramicidin S synthetase 2 (GS 2) from Bacillus brevis, L-proline, L-valine, L-ornithine, and L-leucine activations to aminoacyl adenylates are progressively inhibited by phenylglyoxal. The inactivation of GS 2 obeys pseudo-first-order kinetics. ATP completely prevents inactivation of GS 2 by phenylglyoxal, whereas amino acids only partially prevent it. In the presence of ATP, four arginine residues per mol of GS 2 are protected from modification by phenylglyoxal as determined by amino acid analysis and the incorporation of [7-14C]phenylgloxal into the enzyme protein, indicating that a single arginine residue is necessary for each amino acid activation. In isoleucyl tRNA synthetase from Escherichia coli, phenylglyoxal inhibits activation of L-isoleucine to isoleucyl adenylate. ATP completely prevents inactivation, although isoleucine only partially prevents it. One arginine residue of isoleucyl tRNA synthetase is protected by ATP from modification by phenylglyoxal, suggesting that a single arginine residue is essential for isoleucine activation. These results support the involvement of arginine residues in ATP binding with GS 2 or isoleucyl tRNA synthetase, and thus indicate that arginine residues of amino acid activating enzymes are essential for the formation of aminoacyl adenylates in both nonribosomal and ribosomal peptide biosynthesis.  相似文献   

11.
A method is described by which specific tRNA isoacceptors may be identified in small amounts of bulk tRNA. The strategy relies on the retention of aminoacyl-tRNA by CNBr-Sepharose through covalent coupling of the alpha-NH2 group of the amino acid to the matrix. After removing unbound material by thorough washing, the bound specific isoacceptors are released by cleavage of the labile aminoacyl-tRNA ester bond through mild alkaline treatment. The product is analysed by two-dimensional gel electrophoresis and the spots obtained may be correlated with the pattern from bulk tRNA. Optimum sensitivity is achieved by combining the method with the recently introduced silver staining technique (Igloi, G.L. (1983) Anal. Biochem. 134, 184-188) for tRNA.  相似文献   

12.
During isolation of total ribonucleic acids from white lupin (Lupinus albus) and their subsequent separation by 10% polyacrylamide gel electrophoresis, a fast migrating RNA band is very well separated. The nucleotide sequence analysis of 76 nucleotide long sequence with many modified nucleosides was found to be identical with that of tyrosine specific tRNA of yellow lupin seeds (Lupinus luteus) and wheat germ (Triticum aestivum). Also this tRNA(Tyr) is identical with plant amber suppressor tRNA. The presented approach offers a very rapid method of purification of plant tRNA with UAG suppressor activity.  相似文献   

13.
A novel method for the purification of a specific tRNA using solid phase DNA probe is developed. With this method, the probe DNA immobilized on HPLC gel hybridized with target tRNA within a minute at room temperature. The hybridizing capacity of the solid phase probe was about 20 O.D. per gram dry gel when yeast phenylalanine tRNA was used. The specificity of this method was extremely high and the recovery rate was about 90%.  相似文献   

14.
15.
In Escherichia coli, the free amino group of the aminoacyl moiety of methionyl-tRNA(fMet) is specifically modified by a transformylation reaction. To identify the nucleotides governing the recognition of the tRNA substrate by the formylase, initiator tRNA(fMet) was changed into an elongator tRNA with the help of an in vivo selection method. All the mutations isolated were in the tRNA acceptor arm, at positions 72 and 73. The major role of the acceptor arm was further established by the demonstration of the full formylability of a chimaeric tRNA(Met) containing the acceptor stem of tRNA(fMet) and the remaining of the structure of tRNA(mMet). In addition, more than 30 variants of the genes encoding tRNA(mMet) or tRNA(fMet) have been constructed, the corresponding mutant tRNA products purified and the parameters of the formylation reaction measured. tRNA(mMet) became formylatable by the only change of the G1.C72 base-pair into C1-A72. It was possible to render tRNA(mMet) as good a substrate as tRNA(fMet) for the formylase by the introduction of a limited number of additional changes in the acceptor stem. In conclusion, A73, G2.C71, C3.G70 and G4.C69 are positive determinants for the specific processing of methionyl-tRNA(fMet) by the formylase while the occurrence of a G.C or C.G base-pair between positions 1 and 72 acts as a major negative determinant. This pattern appears to account fully for the specificity of the formylase and the lack of formylation of any aminoacylated tRNA, excepting the methionyl-tRNA(fMet).  相似文献   

16.
The nucleotide sequences of the two glutamine tRNA species in Escherichia coli K12 have been determined. Sufficient data was obtained to order unambiguously the products of complete RNase digestion of tRNA2Gln, and all but one oligonucleotide from tRNA1Gln. The sequence of tRNA1Gln was established by analogy with tRNA1Gln, as the two tRNAs are very similar, differing by only 7 residues out of 75. tRNA1Gln has the anticodon NUG, where N is a modified nucleotide which is likely to be a derivative of 2-thiouridine, and is specific for the codon CAA. tRNA1Gln has the anticodon CUG, and is specific for the codon CAG (Folk, W. R., and Yaniv, M. (1972) Nature 237, 165). The complete sequences of the tRNAGln species are: See journal for formula (Unique residues are enclosed in parentheses, with the residue in tRNA1Gln above that in tRNA2Gln.).  相似文献   

17.
18.
A technique developed for analysis of less than microgram quantities of tRNA has been applied to the study of human leukemia. Leucocytes from peripheal blood and bone marrow samples of six, untreated leukemia patients and cells of five different established human cell lines were maintained for 18 hours in media containing (32P)-phosphate. Incorporation of radioactive phosphate into the cells from the patient samples was slightly less than that of the cell lines. Likewise, incorporation of (32P)-phosphate into the tRNA of the patient samples (approximately 5 x 106 DPM/mug tRNA) was also less then that incorporated into the tRNA of the cell lines. The major and minor nucleotide compositions of the unfractionated tRNA preparations from each patient sample and each cell line were determined and compared. Similarities and differences in the major and minor nucleotide compositions of the tRNA preparations are discussed with reference to types of leukemia and the importance of patient sample analysis versus analysis of cultured human cells.  相似文献   

19.
Replacement of RNA hairpins by in vitro selected tetranucleotides.   总被引:3,自引:0,他引:3       下载免费PDF全文
An in vitro selection method based on the autolytic cleavage of yeast tRNA(Phe) by Pb2+ was applied to obtain tRNA derivatives with the anticodon hairpin replaced by four single-stranded nucleotides. Based on the rates of the site-specific cleavage by Pb2+ and the presence of a specific UV-induced crosslink, certain tetranucleotide sequences allow proper folding of the rest of the tRNA molecule, whereas others do not. One such successful tetramer sequence was also used to replace the acceptor stem of yeast tRNA(Phe) and the anticodon hairpin of E.coli tRNA(Phe) without disrupting folding. These experiments suggest that certain tetramers may be able to replace structurally nonessential hairpins in any RNA.  相似文献   

20.
We found that both tetramethylammonium chloride (TMA-Cl) and tetra-ethylammonium chloride (TEA-Cl), which are used as monovalent cations for northern hybridization, drastically destabilized the tertiary structures of tRNAs and enhanced the formation of tRNA•oligoDNA hybrids. These effects are of great advantage for the hybridization-based method for purification of specific tRNAs from unfractionated tRNA mixtures through the use of an immobilized oligoDNA complementary to the target tRNA. Replacement of NaCl by TMA-Cl or TEA-Cl in the hybridization buffer greatly improved the recovery of a specific tRNA, even from unfractionated tRNAs derived from a thermophile. Since TEA-Cl destabilized tRNAs more strongly than TMA-Cl, it was necessary to lower the hybridization temperature at the sacrifice of the purity of the recovered tRNA when using TEA-Cl. Therefore, we propose two alternative protocols, depending on the desired properties of the tRNA to be purified. When the total recovery of the tRNA is important, hybridization should be carried out in the presence of TEA-Cl. However, if the purity of the recovered tRNA is important, TMA-Cl should be used for the hybridization. In principle, this procedure for tRNA purification should be applicable to any small-size RNA whose gene sequence is already known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号