共查询到20条相似文献,搜索用时 0 毫秒
1.
Compartmentation of folate-mediated one-carbon metabolism in eukaryotes 总被引:21,自引:0,他引:21
D R Appling 《FASEB journal》1991,5(12):2645-2651
Folate coenzymes supply the activated one-carbon units required in nucleic acid biosynthesis, mitochondrial and chloroplast protein biosynthesis, amino acid metabolism, methyl group biogenesis, and vitamin metabolism. Because of its central role in purine and thymidylate biosynthesis, folate-mediated one-carbon metabolism has been the target of many anticancer drug therapies. This review is a summary of recent results that suggest that folate-mediated one-carbon metabolism is highly compartmentalized in eukaryotic cells. Evidence exists for compartmentation of folate coenzymes and their one-carbon units between intracellular organelles, for substrate channeling of folate coenzymes, and for compartmentation by intracellular folate-binding proteins. Metabolic, regulatory, and therapeutic implications of these processes are discussed. 相似文献
2.
Resolution of rat liver 10-formyltetrahydrofolate dehydrogenase/hydrolase activities 总被引:1,自引:0,他引:1
10-Formyltetrahydrofolate dehydrogenase (EC 1.5.1.6) catalyzes the NADP-dependent conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2. Previous studies of 10-formyltetrahydrofolate dehydrogenase purified from rat or pig liver homogenized in phosphate buffers indicated the presence of copurifying 10-formyltetrahydrofolate hydrolase activity, which catalyzes conversion of 10-formyltetrahydrofolate to tetrahydrofolate and formate. We find that the supernatant from rat liver homogenized in mannitol/sucrose/EDTA medium contains essentially all of the total cellular 10-formyltetrahydrofolate dehydrogenase activity, but no measurable hydrolase activity. Treating mannitol/sucrose/EDTA-washed mitochondria with Triton X-100 (0.5%) releases hydrolase activity in soluble form. 10-Formyltetrahydrofolate dehydrogenase purified from the mannitol/sucrose/EDTA supernatant has no 10-formyltetrahydrofolate hydrolase activity. Results of kinetic experiments using the hydrolase-free dehydrogenase give a complex rate equation with respect to (6R,S)-10-formyltetrahydrofolate. Double-reciprocal plots fit a 2/1 hyperbolic function with apparent Km values of 3.9 and 68 microM. Our results indicate that 10-formyltetrahydrofolate hydrolase and dehydrogenase are not alternate catalytic activities of a single protein, but represent two closely related and separately compartmentalized hepatic enzymes. 相似文献
3.
Donato H Krupenko NI Tsybovsky Y Krupenko SA 《The Journal of biological chemistry》2007,282(47):34159-34166
10-Formyltetrahydrofolate dehydrogenase (FDH) consists of two independent catalytic domains, N- and C-terminal, connected by a 100-amino acid residue linker (intermediate domain). Our previous studies on structural organization and enzymatic properties of rat FDH suggest that the overall enzyme reaction, i.e. NADP(+)-dependent conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO(2), consists of two steps: (i) hydrolytic cleavage of the formyl group in the N-terminal catalytic domain, followed by (ii) NADP(+)-dependent oxidation of the formyl group to CO(2) in the C-terminal aldehyde dehydrogenase domain. In this mechanism, it was not clear how the formyl group is transferred between the two catalytic domains after the first step. This study demonstrates that the intermediate domain functions similarly to an acyl carrier protein. A 4'-phosphopantetheine swinging arm bound through a phosphoester bond to Ser(354) of the intermediate domain transfers the formyl group between the catalytic domains of FDH. Thus, our study defines the intermediate domain of FDH as a novel carrier protein and provides the previously lacking component of the FDH catalytic mechanism. 相似文献
4.
5.
The enzyme 10-formyltetrahydrofolate dehydrogenase (FDH) catalyzes conversion of 10-formyltetrahydrofolate to tetrahydrofolate in either a dehydrogenase or hydrolase reaction. The hydrolase reaction occurs in a 310-residue amino-terminal domain of FDH (N(t)-FDH), whereas the dehydrogenase reaction requires the full-length enzyme. N(t)-FDH shares some sequence identity with several 10-formyltetrahydrofolate-utilizing enzymes. All these enzymes have a strictly conserved aspartate, which is Asp(142) in the case of N(t)-FDH. Replacement of the aspartate with alanine, asparagine, glutamate, or glutamine in N(t)-FDH resulted in complete loss of hydrolase activity. All the mutants, however, were able to bind folate, although with lower affinity than wild-type N(t)-FDH. Six other aspartate residues located near the conserved Asp(142) were substituted with an alanine, and these substitutions did not result in any significant changes in the hydrolase activity. The expressed D142A mutant of the full-length enzyme completely lost both hydrolase and dehydrogenase activities. This study shows that Asp(142) is an essential residue in the enzyme mechanism for both the hydrolase and dehydrogenase reactions of FDH, suggesting that either the two catalytic centers of FDH are overlapped or the dehydrogenase reaction occurs within the hydrolase catalytic center. 相似文献
6.
7.
Isolation and characterization of cDNA clones for rat liver 10-formyltetrahydrofolate dehydrogenase. 总被引:7,自引:0,他引:7
We have isolated and characterized cDNA clones encoding rat liver cytosol 10-formyltetrahydrofolate dehydrogenase (EC 1.5.1.6). An open reading frame of 2706 base pairs encodes for 902 amino acids of Mr 99,015. The deduced amino acid sequence contains exact matches to the NH2-terminal sequence (28 residues) and the sequences of five peptides derived from cyanogen bromide cleavage of the purified protein. The amino acid sequence of 10-formyltetrahydrofolate dehydrogenase has three putative domains. The NH2-terminal sequence (residues 1-203) is 24-30% identical to phosphoribosylglycinamide formyltransferase (EC 2.1.2.2) from Bacillus subtilis (30%), Escherichia coli (24%), Drosophila melanogaster (24%), and human hepatoma HepG2 (27%). Residues 204-416 show no extensive homology to any known protein sequence. Sequence 417-900 is 46% (mean) identical to the sequences of a series of aldehyde dehydrogenase (NADP+) (EC 1.2.1.3). Intact 10-formyltetrahydrofolate dehydrogenase exhibits NADP-dependent aldehyde dehydrogenase activity. The sequence identity to phosphoribosylglycinamide formyltransferase is discussed, and a binding region for 10-formyltetrahydrofolate is proposed. 相似文献
8.
10-Formyltetrahydrofolate dehydrogenase (FDH) is composed of three domains and possesses three catalytic activities but has only two catalytic centers. The amino-terminal domain (residue 1-310) bears 10-formyltetrahydrofolate hydrolase activity, the carboxyl-terminal domain (residue 420-902) bears an aldehyde dehydrogenase activity, and the full-length FDH produces 10-formyltetrahydrofolate dehydrogenase activity. The intermediate linker (residues 311-419) connecting the two catalytic domains does not contribute directly to the enzyme catalytic centers but is crucial for 10-formyltetrahydrofolate dehydrogenase activity. We have identified a region within the intermediate domain (residues 384-405) that shows sequence similarity to the central helix of calmodulin. Deletion of either the entire putative helix or the central part of the helix or replacement of the six residues within the central part with alanines resulted in total loss of the 10-formyltetrahydrofolate dehydrogenase activity, whereas the full hydrolase and aldehyde dehydrogenase activities were retained. Alanine-scanning mutagenesis revealed that neither of the six residues alone is required for FDH activity. Analysis of the predicted secondary structures and circular dichroic and fluorescence spectroscopy studies of the intermediate domain expressed as a separate protein showed that this region is likely to consist of two alpha-helices connected by a flexible loop. Our results suggest that flexibility within the putative helix is important for FDH function and could be a point for regulation of the enzyme. 相似文献
9.
Strickland KC Krupenko NI Dubard ME Hu CJ Tsybovsky Y Krupenko SA 《Chemico-biological interactions》2011,191(1-3):129-136
10-Formyltetrahydrofolate dehydrogenase (FDH, ALDH1L1), an abundant cytosolic enzyme of folate metabolism, shares significant sequence similarity with enzymes of the aldehyde dehydrogenase (ALDH) family. The enzyme converts 10-formyltetrahydrofolate (10-fTHF) to tetrahydrofolate and CO(2) in an NADP(+)-dependent manner. The mechanism of this reaction includes three consecutive steps with the final occurring in an ALDH-homologous domain. We have recently identified a mitochondrial isoform of FDH (mtFDH), which is the product of a separate gene, ALDH1L2. Its overall identity to cytosolic FDH is about 74%, and the identity between the ALDH domains rises up to 79%. In the present study, human mtFDH was expressed in Escherichia coli, purified to homogeneity, and characterized. While the recombinant enzyme was capable of catalyzing the 10-fTHF hydrolase reaction, it did not produce detectable levels of ALDH activity. Despite the lack of typical ALDH catalysis, mtFDH was able to perform the characteristic 10-fTHF dehydrogenase reaction after reactivation by recombinant 4'-phosphopantetheinyl transferase (PPT) in the presence of coenzyme A. Using site-directed mutagenesis, it was determined that PPT modifies mtFDH specifically at Ser375. The C-terminal domain of mtFDH (residues 413-923) was also expressed in E. coli and characterized. This domain was found to exist as a tetramer and to catalyze an esterase reaction that is typical of other ALDH enzymes. Taken together, our studies suggest that ALDH1L2 has enzymatic properties similar to its cytosolic counterpart, although the inability to catalyze the ALDH reaction with short-chain aldehyde substrates remains an unresolved issue at present. 相似文献
10.
Wen-Ni Chang Gang-Hui Lee Tseng-Ting Kao Cha-Ying Lin Tsun-Hsien Hsiao Jen-Ning Tsai Bing-Hung Chen Yau-Hung Chen Hsin-Ru Wu Huai-Jen Tsai Tzu-Fun Fu 《Biochimica et Biophysica Acta (BBA)/General Subjects》2014
Background
Folate is an essential nutrient for cell survival and embryogenesis. 10-Formyltetrahydrofolate dehydrogenase (FDH) is the most abundant folate enzyme in folate-mediated one-carbon metabolism. 10-Formyltetrahydrofolate dehydrogenase converts 10-formyltetrahydrofolate to tetrahydrofolate and CO2, the only pathway responsible for formate oxidation in methanol intoxication. 10-Formyltetrahydrofolate dehydrogenase has been considered a potential chemotherapeutic target because it was down-regulated in cancer cells. However, the normal physiological significance of 10-Formyltetrahydrofolate dehydrogenase is not completely understood, hampering the development of therapeutic drug/regimen targeting 10-Formyltetrahydrofolate dehydrogenase.Methods
10-Formyltetrahydrofolate dehydrogenase expression in zebrafish embryos was knocked-down using morpholino oligonucleotides. The morphological and biochemical characteristics of fdh morphants were examined using specific dye staining and whole-mount in-situ hybridization. Embryonic folate contents were determined by HPLC.Results
The expression of 10-formyltetrahydrofolate dehydrogenase was consistent in whole embryos during early embryogenesis and became tissue-specific in later stages. Knocking-down fdh impeded morphogenetic movement and caused incorrect cardiac positioning, defective hematopoiesis, notochordmalformation and ultimate death of morphants. Obstructed F-actin polymerization and delayed epiboly were observed in fdh morphants. These abnormalities were reversed either by adding tetrahydrofolate or antioxidant or by co-injecting the mRNA encoding 10-formyltetrahydrofolate dehydrogenase N-terminal domain, supporting the anti-oxidative activity of 10-formyltetrahydrofolate dehydrogenase and the in vivo function of tetrahydrofolate conservation for 10-formyltetrahydrofolate dehydrogenase N-terminal domain.Conclusions
10-Formyltetrahydrofolate dehydrogenase functioned in conserving the unstable tetrahydrofolate and contributing to the intracellular anti-oxidative capacity of embryos, which was crucial in promoting proper cell migration during embryogenesis.General significance
These newly reported tetrahydrofolate conserving and anti-oxidative activities of 10-formyltetrahydrofolate dehydrogenase shall be important for unraveling 10-formyltetrahydrofolate dehydrogenase biological significance and the drug development targeting 10-formyltetrahydrofolate dehydrogenase. 相似文献11.
12.
The enzyme, 10-formyltetrahydrofolate dehydrogenase (FDH), converts 10-formyltetrahydrofolate (10-formyl-THF) to tetrahydrofolate in an NADP(+)-dependent dehydrogenase reaction or an NADP(+)-independent hydrolase reaction. The hydrolase reaction occurs in a 310-amino acid long amino-terminal domain of FDH (N(t)-FDH), whereas the dehydrogenase reaction requires the full-length enzyme. The amino-terminal domain of FDH shares some sequence identity with several other enzymes utilizing 10-formyl-THF as a substrate. These enzymes have two strictly conserved residues, aspartate and histidine, in the putative catalytic center. We have shown recently that the conserved aspartate is involved in FDH catalysis. In the present work we studied the role of the conserved histidine, His(106), in FDH function. Site-directed mutagenesis experiments showed that replacement of the histidine with alanine, asparagine, aspartate, glutamate, glutamine, or arginine in N(t)-FDH resulted in expression of insoluble proteins. Replacement of the histidine with another positively charged residue, lysine, produced a soluble mutant with no hydrolase activity. The insoluble mutants refolded from inclusion bodies adopted a conformation inherent to the wild-type N(t)-FDH, but they did not exhibit any hydrolase activity. Substitution of alanine for three non-conserved histidines located close to the conserved one did not reveal any significant changes in the hydrolase activity of N(t)-FDH. Expressed full-length FDH with the substitution of lysine for the His(106) completely lost both the hydrolase and dehydrogenase activities. Thus, our study showed that His(106), besides being an important structural residue, is also directly involved in both the hydrolase and dehydrogenase mechanisms of FDH. Modeling of the putative hydrolase catalytic center/folate-binding site suggested that the catalytic residues, aspartate and histidine, are unlikely to be adjacent to the catalytic cysteine in the aldehyde dehydrogenase catalytic center. We hypothesize that 10-formyl-THF dehydrogenase reaction is not an independent reaction but is a combination of hydrolase and aldehyde dehydrogenase reactions. 相似文献
13.
We hypothesized that the unanticipated bioactivity of orally administered unnatural carbon-6 isomers, (6R)-5-formyltetrahydrofolate (5-HCO-THF) and (6S)-5,10-methenyltetrahydrofolate (5,10-CH-THF), in humans [Baggott, J. E., and Tamura, T. (1999) Biochim. Biophys. Acta 1472, 323-32] is explained by the rapid oxidation of (6S)-10-formyltetrahydrofolate (10-HCO-THF), which is produced by in vivo chemical processes from the above folates. An oxidation of 10-HCO-THF produces 10-formyldihydrofolate (10-HCO-DHF), which no longer has the asymmetric center at carbon-6 and is metabolized by aminoimidazole carboxamide ribotide (AICAR) transformylase forming bioactive dihydrofolate. Since cytochrome c (Fe(3+)) rapidly oxidizes both (6R)- and (6S)-10-HCO-THF [Baggott et al. (2001) Biochem. J. 354, 115-22], we investigated the metabolism of 10-HCO-THF by isolated rat liver mitochondria. We found that 10-HCO-THF supported the respiration of mitochondria without uncoupling ATP synthesis. The site of electron donation was identified as complex IV, which contains cytochrome c; the folate product was 10-HCO-DHF, and the reaction was saturable with respect to 10-HCO-THF. Both (6S)- (unnatural) and (6R)-10-HCO-THF supported the respiration of mitochondria, whereas (6S)-5-formyltetrahydrofolate (5-HCO-THF) was inactive. To our knowledge, this cytochrome c oxidation of 10-HCO-THF to 10-HCO-DHF in the mitochondrial intermembrane space represents a possible folate metabolic pathway previously unidentified and would explain the bioactivity of unnatural carbon-6 isomers, (6R)-5-HCO-THF and (6S)-5,10-CH-THF, in humans. 相似文献
14.
15.
One-carbon metabolism is a network of metabolic pathways, disruption of which has been associated with cancer and other pathological conditions. Biomarkers of these pathways include homocysteine (HCY), S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH). A better understanding of the relationships between these biomarkers is needed for their utilization in research. This study investigated the relationships between fasting concentrations of plasma HCY, SAM, SAH and the ratio of SAM:SAH, and serum folate, vitamin B(12) and creatinine in a healthy adult population. A cross-sectional study recruited 678 volunteers; only subjects with complete data (n = 581) were included in this analysis. Correlations were used to examine bivariate relationships among the biomarkers and multivariate linear regression determined independent relationships with HCY, SAM and SAH treated as dependent variables in separate models. Multivariate logistic regression examined determinants of a low SAM:SAH ratio (defined as having a SAM:SAH ratio in the bottom quartile and SAH value in the top quartile). HCY correlated inversely with folate and vitamin B(12) and weakly correlated with SAH and creatinine. Both SAM and SAH correlated with creatinine but were independent of serum folate and vitamin B(12). In multivariate analyses, folate, vitamin B(12), creatinine, sex and age were associated with HCY; age and creatinine were determinants of SAM, and sex and creatinine determinants of SAH. Finally, male sex and increasing creatinine levels were associated with having a low SAM:SAH ratio. Findings suggest that HCY, SAM and SAH are relatively independent parameters and reflect distinct aspects of one-carbon metabolism. 相似文献
16.
17.
The redox state of two SH-groups per enzyme subunit has been shown to control the cooperative properties of alpha-ketoglutarate dehydrogenase. These thiols oxidized, alpha-ketoglutarate dehydrogenase does not exhibit any cooperative properties. The enzyme reduction leads to subunit interactions. It has been found that the most effective agent reducing the alpha-ketoglutarate dehydrogenase thiols essential for the cooperativity is dihydrolipoate, one of the intermediates of the overall alpha-ketoglutarate dehydrogenase reaction. The possibility of changing the properties of alpha-ketoglutarate dehydrogenase in the multienzyme complex under the conditions when the lipoic acid integrated into the complex is reduced, has been investigated. Thus, incubation of the alpha-ketoglutarate dehydrogenase complex with NADH has been found to induce the conversion from the non-cooperative form to the cooperative one, presumably through the reduction of lipoic acid bound to the complex in the reaction catalyzed by lipoyl dehydrogenase, the third component of the complex. 相似文献
18.
Farrah Sadre-Marandi Thabat Dahdoul Michael C. Reed H. Frederik Nijhout 《BMC systems biology》2018,12(1):89
Background
There are large differences between men and women of child-bearing age in the expression level of 5 key enzymes in one-carbon metabolism almost certainly caused by the sex hormones. These male-female differences in one-carbon metabolism are greatly accentuated during pregnancy. Thus, understanding the origin and consequences of sex differences in one-carbon metabolism is important for precision medicine.Results
We have created a mathematical model of hepatic one-carbon metabolism based on the underlying physiology and biochemistry. We use the model to investigate the consequences of sex differences in gene expression. We give a mechanistic understanding of observed concentration differences in one-carbon metabolism and explain why women have lower S-andenosylmethionine, lower homocysteine, and higher choline and betaine. We give a new explanation of the well known phenomenon that folate supplementation lowers homocysteine and we show how to use the model to investigate the effects of vitamin deficiencies, gene polymorphisms, and nutrient input changes.Conclusions
Our model of hepatic one-carbon metabolism is a useful platform for investigating the mechanistic reasons that underlie known associations between metabolites. In particular, we explain how gene expression differences lead to metabolic differences between males and females.19.
10-Formyltetrahydrofolate dehydrogenase (FDH) converts 10-formyltetrahydrofolate, a precursor for nucleotide biosynthesis, to tetrahydrofolate. The protein comprises two functional domains: a hydrolase domain that removes a formyl group from 10-formyltetrahydrofolate and a NADP(+)-dependent dehydrogenase domain that reduces the formyl to carbon dioxide. As a first step toward deciphering the catalytic mechanism of the enzyme, we have determined the crystal structure of the hydrolase domain of FDH from rat, solved to 2.3-A resolution. The structure comprises two domains. As expected, domain 1 shares the same Rossmann fold as the related enzymes, methionyl-tRNA-formyltransferase and glycinamide ribonucleotide formyltransferase, but, unexpectedly, the structural similarity between the amino-terminal domain of 10-formyltetrahydrofolate dehydrogenase and methionyl-tRNA-formyltransferase extends to the C terminus of both proteins. The active site contains a molecule of beta-mercaptoethanol that is positioned between His-106 and Asp-142 and that appears to mimic the formate product. We propose a catalytic mechanism for the hydrolase reaction in which Asp-142 polarizes the catalytic water molecule and His-106 orients the carbonyl group of formyl. The structure also provides clues as to how, in the native enzyme, the hydrolase domain transfers its product to the dehydrogenase domain. 相似文献
20.
C L Hsin-Hsiung-TaiTai C S Hollander 《Biochemical and biophysical research communications》1974,57(2):457-462
15-Hydroxyprostaglandin dehydrogenase has been purified from swine kidney to a specific activity of near 100 miliunits per mg of protein. The purified enzyme was found to be inhibited by thyroid hormone analogues of which triiodothyroacetic acid was the most potent inhibitor. The concentration required for 50% inhibition was 5 μM for triiodothyroacetic acid. The inhibition by thyroid hormones was uncompetitive and non-competitive with regard to NAD+ and prostaglandin E1, respectively. The sensitivity of this enzyme to thyroid hormones suggests that these hormones may regulate the metabolism of prostaglandins . 相似文献