首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between phage G13 and different bacterial and synthetic oligosaccharides has been studied using equilibrium dialysis inhibition. The results, and conformational analysis of the oligosaccharides, make us conclude that the phage G13 carbohydrate receptor is a conformational domain involving three sugar residues. The following trisaccharide elements contain the domain: alpha-D-Galp-(1----3)-[alpha-D-Galp-(1----6)]-alpha-D-Glcp, alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)-alpha-D-Manp , and alpha-D-Glcp-(1----3)-[L-gly-alpha-D-man-Hepp-(1----7)]-L-gly-alph a-D- man-Hepp. Thus two structures, either a hexose substituted with alpha-D-glycopyranosyl groups in the 3- and 6-positions, or a heptose substituted with such groups in the 3- and 7-positions are functional G13 binding sites. Such domains are present in several cores of lipopolysaccharides from Salmonella and Escherichia coli species. Some cores, e.g. those from S. typhimurium chemotypes Ra, Rb1 and Rb2, contain two such domains. The identification of two G13 receptor domains within different core saccharides could explain the broad host range of this phage.  相似文献   

2.
B Laggerbauer  F L Murphy    T R Cech 《The EMBO journal》1994,13(11):2669-2676
The L-21 Tetrahymena ribozyme, an RNA molecule with sequence-specific endoribonuclease activity derived from a self-splicing group I intron, provides a model system for studying the RNA folding problem. A 160 nucleotide, independently folding domain of tertiary structure (the P4-P6 domain) comprises about half of the ribozyme. We now apply Fe(II)-EDTA cleavage to mutants of the ribozyme to explore the role of individual structural elements in tertiary folding of the RNA at equilibrium. Deletion of peripheral elements near the 3' end of the ribozyme destabilizes a region of the catalytic core (P3-P7) without altering the folding of the P4-P6 domain. Three different mutations within the P4-P6 domain that destabilize its folding also shift the folding of the P3-P7 region of the catalytic core to higher MgCl2 concentrations. We conclude that the role of the extended P4-P6 domain and of the 3'-terminal peripheral elements is at least in part to stabilize the catalytic core. The organization of RNA into independently folding domains of tertiary structure may be common in large RNAs, including ribosomal RNAs. Furthermore, the observation of domain-domain interactions in a catalytic RNA supports the feasibility of a primitive spliceosome without any proteins.  相似文献   

3.
Filamins are multi-domain, actin cross-linking, and scaffolding proteins. In addition to the actin cross-linking function, filamins have a role in mechanosensor signaling. The mechanosensor function is mediated by domain-domain interaction in the C-terminal region of filamins. Recently, we have shown that there is a three-domain interaction module in the N-terminal region of filamins, where the neighboring domains stabilize the structure of the middle domain and thereby regulate its interaction with ligands. In this study, we have used small-angle X-ray scattering as a tool to screen for potential domain-domain interactions in the N-terminal region. We found evidence of four domain-domain interactions with varying flexibility. These results confirm our previous study showing that domains 3, 4, and 5 exist as a compact three domain module. In addition, we report interactions between domains 11–12 and 14–15, which are thus new candidate sites for mechanical regulation.  相似文献   

4.
To identify the contacts that stabilise the rate-limiting transition state for folding of FNfn10 (the tenth fnIII domain of human fibronectin), 42 mutants have been analysed at 29 positions across this domain. An anomalous response to mutation means that structure formation in the A, B and G strands cannot be evaluated by this method. In all the residues analysed, phi-values are fractional and no completely structured region is observed. The analysis reveals that hydrophobic residues from the central strands of the beta-sandwich form a large core of interactions in the transition state. Br?nsted analysis shows that the stabilisation energy from the amino acid side-chains in the transition state is approximately 40 % of that in the native state. The protein folds by a nucleation-condensation mechanism, and tertiary interactions within the core make up the folding nucleus. Local interactions, in turns and loops, are apparently much less significant. Comparison with an homologous domain from human tenascin (TNfn3), shows that FNfn10 has a more extended, structured transition state spanning three different "layers" of the beta-sandwich. The results support the hypothesis that interactions in the common structural core guide the folding of these domains.  相似文献   

5.
The catalytic activity of the hammerhead ribozyme is limited by its ability to fold into the native tertiary structure. Analysis of folding has been hampered by a lack of assays that can independently monitor the environment of nucleobases throughout the ribozyme-substrate complex in real time. Here, we report the development and application of a new folding assay in which we use pyrrolo-cytosine (pyC) fluorescence to (1) probe active-site formation, (2) examine the ability of peripheral ribozyme domains to support native folding, (3) identify a pH-dependent conformational change within the ribozyme, and (4) explore its influence on the equilibrium between the folded and unfolded core of the hammerhead ribozyme. We conclude that the natural ribozyme folds in two distinct noncooperative steps and the pH-dependent correlation between core folding and activity is linked to formation of the G8-C3 base pair.  相似文献   

6.
Folding of the Tetrahymena ribozyme under physiological conditions in vitro is limited by slow conversion of long-lived intermediates to the active structure. These intermediates arise because the most stable domain of the ribozyme folds 10-50 times more rapidly than the core region containing helix P3. Native gel electrophoresis and time-resolved X-ray-dependent hydroxyl radical cleavage revealed that mutations that weaken peripheral interactions between domains accelerated folding fivefold, while a point mutation that stabilizes P3 enabled 80 % of the mutant RNA to reach the native conformation within 30 seconds at 22 degrees C. The P3 mutation increased the folding rate of the catalytic core as much as 50-fold, so that both domains of the ribozyme were formed at approximately the same rate. The results show that the ribozyme folds rapidly without significantly populating metastable intermediates when native interactions in the ribozyme core are stabilized relative to peripheral structural elements.  相似文献   

7.

Background

High-throughput techniques are becoming widely used to study protein-protein interactions and protein complexes on a proteome-wide scale. Here we have explored the potential of these techniques to accurately determine the constituent proteins of complexes and their architecture within the complex.

Results

Two-dimensional representations of the 19S and 20S proteasome, mediator, and SAGA complexes were generated and overlaid with high quality pairwise interaction data, core-module-attachment classifications from affinity purifications of complexes and predicted domain-domain interactions. Pairwise interaction data could accurately determine the members of each complex, but was unexpectedly poor at deciphering the topology of proteins in complexes. Core and module data from affinity purification studies were less useful for accurately defining the member proteins of these complexes. However, these data gave strong information on the spatial proximity of many proteins. Predicted domain-domain interactions provided some insight into the topology of proteins within complexes, but was affected by a lack of available structural data for the co-activator complexes and the presence of shared domains in paralogous proteins.

Conclusion

The constituent proteins of complexes are likely to be determined with accuracy by combining data from high-throughput techniques. The topology of some proteins in the complexes will be able to be clearly inferred. We finally suggest strategies that can be employed to use high throughput interaction data to define the membership and understand the architecture of proteins in novel complexes.  相似文献   

8.
Pang CN  Krycer JR  Lek A  Wilkins MR 《Proteomics》2008,8(3):425-434
It has recently been proposed by Gavin et al. (Nature 2006, 440, 631-636) that protein complexes in the cell exist in different forms. The proteins within each complex were proposed to exist as three different classes, being core, module or attachment proteins. This study investigates whether the core-module-attachment classification of proteins within each complex is supported by other high-throughput protein data. Core proteins were found to have lower abundance, and shorter half-life as compared to attachment proteins, whilst the abundance and half-life of core and module proteins were similar. When the cell was perturbed, core proteins had smaller changes in abundance as compared to module and attachment proteins. Comparisons between six different pairwise interaction types of core, module and attachment proteins within a complex showed interaction types involving core or module proteins were more likely to be mediated by domain-domain interactions (DDIs) than interaction types involving attachment proteins. Interaction types that involve attachment proteins had a relatively higher ratio of abundance and ratio of half-life. So we conclude that, the core, module and attachment model of protein complexes is supported by data from these proteomic scale datasets, and describe a model for a typical protein complex that considers the above results.  相似文献   

9.
The aim of this work is to shed more light on the effect of domain-domain interactions on the kinetics and the pathway of protein folding. A model protein system consisting of several single-tryptophan variants of the two-domain yeast phosphoglycerate kinase (PGK) and its individual domains was studied. Refolding was initiated from the guanidine-unfolded state by stopped-flow or manual mixing and monitored by tryptophan fluorescence from 1 msec to 1000 sec. Denaturant titrations of both individual domains showed apparent two-state unfolding transitions. Refolding kinetics of the individual domains from different denaturant concentrations, however, revealed the presence of intermediate structures during titration for both domains. Refolding of the same domains within the complete protein showed that domain-domain interactions direct the folding of both domains, but in an asymmetric way. Folding of the N domain was already altered within 1 msec, while detectable changes in the folding of the C domain occurred only 60-100 msec after initiating refolding. All mutants showed a hyperfluorescent kinetic intermediate. Both the disappearance of this intermediate and the completion of the folding were significantly faster in the individual N domain than in the complete protein. On the contrary, folding of the individual C domain was slower than in the complete protein. The presence of the C domain directs the refolding of the N domain along a completely different pathway than that of the individual N domain, while folding of the individual C domain follows the same path as within the complete protein.  相似文献   

10.
11.
Recent advances in functional genomics have helped generate large-scale high-throughput protein interaction data. Such networks, though extremely valuable towards molecular level understanding of cells, do not provide any direct information about the regions (domains) in the proteins that mediate the interaction. Here, we performed co-evolutionary analysis of domains in interacting proteins in order to understand the degree of co-evolution of interacting and non-interacting domains. Using a combination of sequence and structural analysis, we analyzed protein-protein interactions in F1-ATPase, Sec23p/Sec24p, DNA-directed RNA polymerase and nuclear pore complexes, and found that interacting domain pair(s) for a given interaction exhibits higher level of co-evolution than the non-interacting domain pairs. Motivated by this finding, we developed a computational method to test the generality of the observed trend, and to predict large-scale domain-domain interactions. Given a protein-protein interaction, the proposed method predicts the domain pair(s) that is most likely to mediate the protein interaction. We applied this method on the yeast interactome to predict domain-domain interactions, and used known domain-domain interactions found in PDB crystal structures to validate our predictions. Our results show that the prediction accuracy of the proposed method is statistically significant. Comparison of our prediction results with those from two other methods reveals that only a fraction of predictions are shared by all the three methods, indicating that the proposed method can detect known interactions missed by other methods. We believe that the proposed method can be used with other methods to help identify previously unrecognized domain-domain interactions on a genome scale, and could potentially help reduce the search space for identifying interaction sites.  相似文献   

12.
13.
p115RhoGEF, a guanine nucleotide exchange factor for Rho GTPase, is also a GTPase activating protein (GAP) for G(12) and G(13) heterotrimeric G alpha subunits. Near its N-terminus, p115RhoGEF contains a domain (rgRGS) with remote sequence identity to RGS (regulators of G protein signaling) domains. The rgRGS domain is necessary but not sufficient for the GAP activity of p115RhoGEF. The 1.9 A resolution crystal structure of the rgRGS domain shows structural similarity to RGS domains but possesses a C-terminal extension that folds into a layer of helices that pack against the hydrophobic core of the domain. Mutagenesis experiments show that rgRGS may form interactions with G alpha(13) that are analogous to those in complexes of RGS proteins with their G alpha substrates.  相似文献   

14.
The immunoglobulin (Ig) molecule is composed of two identical heavy chains and two identical light chains (H2L2). Transport of this heteromeric complex is dependent on the correct assembly of the component parts, which is controlled, in part, by the association of incompletely assembled Ig heavy chains with the endoplasmic reticulum (ER) chaperone, BiP. Although other heavy chain-constant domains interact transiently with BiP, in the absence of light chain synthesis, BiP binds stably to the first constant domain (CH1) of the heavy chain, causing it to be retained in the ER. Using a simplified two-domain Ig heavy chain (VH-CH1), we have determined why BiP remains bound to free heavy chains and how light chains facilitate their transport. We found that in the absence of light chain expression, the CH1 domain neither folds nor forms its intradomain disulfide bond and therefore remains a substrate for BiP. In vivo, light chains are required to facilitate both the folding of the CH1 domain and the release of BiP. In contrast, the addition of ATP to isolated BiP-heavy chain complexes in vitro causes the release of BiP and allows the CH1 domain to fold in the absence of light chains. Therefore, light chains are not intrinsically essential for CH1 domain folding, but play a critical role in removing BiP from the CH1 domain, thereby allowing it to fold and Ig assembly to proceed. These data suggest that the assembly of multimeric protein complexes in the ER is not strictly dependent on the proper folding of individual subunits; rather, assembly can drive the complete folding of protein subunits.  相似文献   

15.
Cole SD  Schleif R 《Proteins》2012,80(5):1465-1475
An interaction between the dimerization domains and DNA binding domains of the dimeric AraC protein has previously been shown to facilitate repression of the Escherichia coli araBAD operon by AraC in the absence of arabinose. A new interaction between the domains of AraC in the presence of arabinose is reported here, the regulatory consequences of which are unknown. Evidence for the interaction is the following: the dissociation rate of arabinose-bound AraC from half-site DNA is considerably faster than that of free DNA binding domain, and the affinity of the dimerization domains for arabinose is increased when half-site DNA is bound. In addition, an increase in the fluorescence intensity of tryptophan residues located in the arabinose-bound dimerization domain is observed upon binding of half-site DNA to the DNA binding domains. Direct physical evidence of the new domain-domain interaction is demonstrated by chemical crosslinking and NMR experiments.  相似文献   

16.
Qin J  Perera R  Lovelace LL  Dawson JH  Lebioda L 《Biochemistry》2006,45(10):3170-3177
Crystal structures of the ferric H93G myoglobin (Mb) cavity mutant containing either an anionic proximal thiolate sulfur donor or a carboxylate oxygen donor ligand are reported at 1.7 and 1.4 A resolution, respectively. The crystal structure and magnetic circular dichroism spectra of the H93G Mb beta-mercaptoethanol (BME) thiolate adduct reveal a high-spin, five-coordinate complex. Furthermore, the bound BME appears to have an intramolecular hydrogen bond involving the alcohol proton and the ligated thiolate sulfur, mimicking one of the three proximal N-H...S hydrogen bonds in cytochrome P450. The Fe is displaced from the porphyrin plane by 0.5 A and forms a 2.41 A Fe-S bond. The Fe(3+)-S-C angle is 111 degrees , indicative of a covalent Fe-S bond with sp(3)-hybridized sulfur. Therefore, the H93G Mb.BME complex provides an excellent protein-derived structural model for high-spin ferric P450. In particular, the Fe-S bond in high-spin ferric P450-CAM has essentially the same geometry despite the constraints imposed by covalent linkage of the cysteine to the protein backbone. This suggests that evolution led to the geometric optimization of the proximal Fe-S(cysteinate) bond in P450. The crystal structure and spectral properties of the H93G Mb acetate adduct reveal a high-spin, six-coordinate complex with proximal acetate and distal water axial ligands. The distal His-64 forms a hydrogen bond with the bound water. The Fe-acetate bonding geometry is inconsistent with an electron pair along the Fe-O bond as the Fe-O-C angle is 152 degrees and the Fe is far from the plane of the acetate. Thus, the Fe-O bonding is ionic. The H93G Mb cavity mutant has already been shown to be a versatile model system for the study of ligand binding to heme proteins; this investigation affords the first structural evidence that nonimidazole exogenous ligands bind in the proximal ligation site.  相似文献   

17.
3-phosphoglycerate kinase (PGK) is a typical two-domain hinge-bending enzyme with a well-structured interdomain region. The mechanism of domain-domain interaction and its regulation by substrate binding is not yet fully understood. Here the existence of strong cooperativity between the two domains was demonstrated by following heat transitions of pig muscle and yeast PGKs using differential scanning microcalorimetry and fluorimetry. Two mutants of yeast PGK containing a single tryptophan fluorophore either in the N- or in the C-terminal domain were also studied. The coincidence of the calorimetric and fluorimetric heat transitions in all cases indicated simultaneous, highly cooperative unfolding of the two domains. This cooperativity is preserved in the presence of substrates: 3-phosphoglycerate bound to the N domain or the nucleotide (MgADP, MgATP) bound to the C domain increased the structural stability of the whole molecule. A structural explanation of domain-domain interaction is suggested by analysis of the atomic contacts in 12 different PGK crystal structures. Well-defined backbone and side-chain H bonds, and hydrophobic and electrostatic interactions between side chains of conserved residues are proposed to be responsible for domain-domain communication. Upon binding of each substrate newly formed molecular contacts are identified that firstly explain the order of the increased heat stability in the various binary complexes, and secondly describe the possible route of transmission of the substrate-induced conformational effects from one domain to the other. The largest stability is characteristic of the native ternary complex and is abolished in the case of a chemically modified inactive form of PGK, the domain closure of which was previously shown to be prevented [Sinev MA, Razgulyaev OI, Vas M, Timchenko AA & Ptitsyn OB (1989) Eur J Biochem180, 61-66]. Thus, conformational stability correlates with domain closure that requires simultaneous binding of both substrates.  相似文献   

18.
Bann JG  Frieden C 《Biochemistry》2004,43(43):13775-13786
The folding of the two-domain bacterial chaperone PapD has been studied to develop an understanding of the relationship between individual domain folding and the formation of domain-domain interactions. PapD contains six phenylalanine residues, four in the N-terminal domain and two in the C-terminal domain. To examine the folding properties of PapD, the protein was both uniformly and site-specifically labeled with p-fluoro-phenylalanine ((19)F-Phe) for (19)F NMR studies, in conjunction with those of circular dichroism and fluorescence. In equilibrium denaturation experiments monitored by (19)F NMR, the loss of (19)F-Phe native intensity for both the N- and C-terminal domains shows the same dependence on urea concentration. For the N-terminal domain the loss of native intensity is mirrored by the appearance of separate denatured resonances. For the C-terminal domain, which contains residues Phe 168 and Phe 205, intermediate as well as denatured resonances appear. These intermediate resonances persist at denaturant concentrations well beyond the loss of native resonance intensity and appear in kinetic refolding (19)F NMR experiments. In double-jump (19)F NMR experiments in which proline isomerization does not affect the refolding kinetics, the formation of domain-domain interactions is fast if the protein is denatured for only a short time. However, with increasing time of denaturation the native intensities of the N- and C-terminal domains decrease, and the denatured resonances of the N-terminal domain and the intermediate resonances of the C-terminal domain accumulate. The rate of loss of the N-terminal domain resonances is consistent with a cis to trans isomerization process, indicating that from an equilibrium denatured state the slow refolding of PapD is due to the trans to cis isomerization of one or both of the N-terminal cis proline residues. The data indicate that both the N- and C-terminal domains must fold into a native conformation prior to the formation of domain-domain interactions.  相似文献   

19.
WW domains target proline-tyrosine (PY) motifs and frequently function as tandem pairs. When studied in isolation, single WW domains are notably promiscuous and regulatory mechanisms are undoubtedly required to ensure selective interactions. Here, we show that the fourth WW domain (WW4) of Suppressor of Deltex, a modular Nedd4-like protein that down-regulates the Notch receptor, is the primary mediator of a direct interaction with a Notch-PY motif. A natural Trp to Phe substitution in WW4 reduces its affinity for general PY sequences and enhances selective interaction with the Notch-PY motif via compensatory specificity-determining interactions with PY-flanking residues. When WW4 is paired with WW3, domain-domain association, impeding proper folding, competes with Notch-PY binding to WW4. This novel mode of autoinhibition is relieved by binding of another ligand to WW3. Such cooperativity may facilitate the transient regulatory interactions observed in vivo between Su(dx) and Notch in the endocytic pathway. The highly conserved tandem arrangement of WW domains in Nedd4 proteins, and similar arrangements in more diverse proteins, suggests domain-domain communication may be integral to regulation of their associated cellular activities.  相似文献   

20.
N T Yu  S H Lin  C K Chang    K Gersonde 《Biophysical journal》1989,55(6):1137-1144
Resonance Raman spectra of the MnII-NO moiety in synthetic nitrosyl manganese heme complexes with and without steric hindrance are reported. The "strapped" hemes having a hydrocarbon strap (variable length) across one face of the heme hinder the perpendicular bonding of a linear ligand. These complexes were employed to investigate the effects of ligand distortion (primarily tilting) on Mn-NO stretching, Mn-N-O bending, and N-O stretching modes. It is demonstrated that ligand distortion in the MnII-NO system is a valid mechanism for causing the resonance enhancement of the Mn-N-O bending mode, similar to that observed in the FeII-CO system (Yu, N.-T., E. A. Kerr, B. Ward, and C. K. Chang. 1983. Biochemistry. 22:4534-4540). More interesting is the observation of the delta(Mn-N-O) enhancement caused by the tilting of the trans Mn-N epsilon bond in the "open" heme complexes (e.g., heme-5 and proto-1X dimethylester) with 1,2-dimethylimidazole or piperidine as a base. The nu(Mn-NO) and nu(N-O) modes exhibit an increase and a decrease, respectively, as the strap length decreases (hence the steric hindrance increases). Both nu(Mn-NO) and nu(N-O) frequencies are insensitive to the strength of the trans base. The results from "strapped" and "open" model heme systems imply that the Mn-N-O geometry is essentially linear and perpendicular in the nitrosyl complexes of monomeric manganese insect hemoglobin CTT IV and sperm whale myoglobin. The unusually low nu(N-O) frequency in the manganese myoglobin complex may be caused by the distal histidine-NO interaction. The delta(Mn-N-O) enhancement in both nitrosyl manganese CTT IV and nitrosyl manganese myoglobin may be caused by a tilting of the Mn"-Nf (proximal histidine) bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号