首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Abnormal formation of otoconia, the biominerals of the inner ear, results in balance disorders. The inertial mass of otoconia activates the underlying mechanosensory hair cells in response to change in head position primarily during linear and rotational acceleration. Otoconia associate exclusively with the two gravity receptors, the utricle and saccule. The cristae sensory epithelium is associated with an extracellular gelatinous matrix known as cupula, equivalent to otoconia. During head rotation, the inertia of endolymphatic fluids within the semicircular canals deflects the cupula of the corresponding crista and activates the underlying mechanosensory hair cells. It is believed that detached free‐floating otoconia particles travel ectopically to the semicircular canal and cristae and are the culprit for benign paroxysmal positional vertigo (BPPV). The Slc26a4 mouse mutant harbors a missense mutation in pendrin. This mutation leads to impaired transport activity of pendrin and to defects in otoconia composition and distribution. All Slc26a4 loop/loop homozygous mutant mice are profoundly deaf but show inconsistent vestibular deficiency. A panel of behavioral tests was utilized in order to generate a scoring method for vestibular function. A pathological finding of displaced otoconia was identified consistently in the inner ears of mutant mice with severe vestibular dysfunction. In this work, we present a mouse model with a genetic predisposition for ectopic otoconia with a clinical correlation to BPPV. This unique mouse model can serve as a platform for further investigation of BPPV pathophysiology, and for developing novel treatment approaches in a live animal model.  相似文献   

4.
5.
Null-mutation in Drosophila importin-alpha2, such as the deficiency imp-alpha2(D14), causes recessive female sterility with the formation of dumpless eggs. In imp-alpha2(D14) the transfer of nurse cell components to the oocyte is interrupted and the Kelch protein, an oligomeric ring canal actin organizer, is normally produced but fails to associate with the ring canals resulting in their occlusion. To define domains regulating Kelch deposition on ring canals we performed site-directed mutagenesis on protein binding domains and putative phosphorylation sites of Imp-alpha2. Phenotypic analysis of the mutant transgenes in imp-alpha2(D14) revealed that mutations affecting the Imp-beta binding-domain, the dimerization domain, and specific serine residues of putative phosphorylation sites led to a normal or nearly normal oogenesis but arrested early embryonic development, whereas mutations in the nuclear localization signal (NLS) and CAS/exportin binding domains resulted in ring canal occlusion and a drastic nuclear accumulation of the mutant proteins. Deletion of the Imp-beta binding domain also gave rise to a nuclear localization of the mutant protein, which partially retained its function in ring canal assembly. Thus, we propose that mutations in NLS and CAS binding domains affect the deposition of Kelch onto the ring canals and prevent the association of Imp-alpha2 with a negative regulator of Kelch function.  相似文献   

6.

Background

The Bone Morphogenetic Protein (BMP) genes bmp2 and bmp4 are expressed in highly conserved patterns in the developing vertebrate inner ear. It has, however, proved difficult to elucidate the function of BMPs during ear development as mutations in these genes cause early embryonic lethality. Previous studies using conditional approaches in mouse and chicken have shown that Bmp4 has a role in semicircular canal and crista development, but there is currently no direct evidence for the role of Bmp2 in the developing inner ear.

Methodology/Principal Findings

We have used an RNA rescue strategy to test the role of bmp2b in the zebrafish inner ear directly. Injection of bmp2b or smad5 mRNA into homozygous mutant swirl (bmp2b−/−) embryos rescues the early patterning defects in these mutants and the fish survive to adulthood. As injected RNA will only last, at most, for the first few days of embryogenesis, all later development occurs in the absence of bmp2b function. Although rescued swirl adult fish are viable, they have balance defects suggestive of vestibular dysfunction. Analysis of the inner ears of these fish reveals a total absence of semicircular canal ducts, structures involved in the detection of angular motion. All other regions of the ear, including the ampullae and cristae, are present and appear normal. Early stages of otic development in rescued swirl embryos are also normal.

Conclusions/Significance

Our findings demonstrate a critical late role for bmp2b in the morphogenesis of semicircular canals in the zebrafish inner ear. This is the first demonstration of a developmental role for any gene during post-embryonic stages of otic morphogenesis in the zebrafish. Despite differences in the early stages of semicircular canal formation between zebrafish and amniotes, the role of Bmp2 in semicircular canal duct outgrowth is likely to be conserved between different vertebrate species.  相似文献   

7.
We have undertaken a phenotypic approach in the mouse to identifying molecules involved in inner ear function by N-ethyl-N-nitrosourea mutagenesis followed by screening for new dominant mutations affecting hearing or balance. The pathology and genetic mapping of the first of these new mutants, tailchaser (Tlc), is described here. Tlc/+ mutants display classic behavioural symptoms of a vestibular dysfunction, including head-shaking and circling. Behavioural testing of ageing mice revealed a gradual deterioration of both hearing and balance function, indicating that the pathology caused by the Tlc mutation is progressive, similar to many dominant nonsyndromic deafnesses in humans. Based on scanning electron microscopy (SEM) studies, Tlc clearly plays a developmental role in the hair cells of the cochlea since the stereocilia bundles fail to form the characteristic V-shape pattern around the time of birth. By young adult stages, Tlc/+ outer hair bundles are grossly disorganised although inner hair bundles appear relatively normal by SEM. Increased compound action potential thresholds revealed that the Tlc/+ cochlear hair cells were not functioning normally in young adults. Similar to inner hair cells, the hair bundles of the vestibular hair cells also do not appear grossly disordered. However, all types of hair cells in the Tlc/+ inner ear eventually degenerate, apparently regardless of the degree of organisation of their hair bundles. We have mapped the Tlc mutation to a 12 cM region of chromosome 2, between D2Mit164 and D2Mit423. Based on the mode of inheritance and map location, Tlc appears to be a novel mouse mutation affecting both hair cell survival and stereocilia bundle development.  相似文献   

8.
9.
In this review, we summarize the potential functional roles of transient receptor potential (TRP) channels in the vertebrate inner ear. The history of TRP channels in hearing and balance is characterized at great length by the hunt for the elusive transduction channel of sensory hair cells. Such pursuit has not resulted in unequivocal identification of the transduction channel, but nevertheless revealed a number of candidates, such as TRPV4, TRPN1, TRPA1, and TRPML3. Much of the circumstantial evidence indicates that these TRP channels potentially play significant roles in inner ear physiology. Based on mutations in the corresponding mouse genes, TRPV4 and TRPML3 are possible candidates for human hearing, and potentially also balance disorders. We further discuss the role of the invertebrate TRP channels Nanchung, Inactive, and TRPN1 and how the functional analysis of these channels provides a link to vertebrate hearing and balance. In summary, only a few TRP channels have been analyzed thus far for a prospective role in the inner ear, and this makes the search for additional TRPs associated with inner ear function quite a tantalizing endeavor.  相似文献   

10.
Despite considerable progress understanding genes that affect the HDL particle, its function, and cholesterol content, genes identified to date explain only a small percentage of the genetic variation. We used N-ethyl-N-nitrosourea mutagenesis in mice to discover novel genes that affect HDL cholesterol levels. Two mutant lines (Hlb218 and Hlb320) with low HDL cholesterol levels were established. Causal mutations in these lines were mapped using linkage analysis: for line Hlb218 within a 12 Mbp region on Chr 10; and for line Hlb320 within a 21 Mbp region on Chr 7. High-throughput sequencing of Hlb218 liver RNA identified a mutation in Pla2g12b. The transition of G to A leads to a cysteine to tyrosine change and most likely causes a loss of a disulfide bridge. Microarray analysis of Hlb320 liver RNA showed a 7-fold downregulation of Hpn; sequencing identified a mutation in the 3' splice site of exon 8. Northern blot confirmed lower mRNA expression level in Hlb320 and did not show a difference in splicing, suggesting that the mutation only affects the splicing rate. In addition to affecting HDL cholesterol, the mutated genes also lead to reduction in serum non-HDL cholesterol and triglyceride levels. Despite low HDL cholesterol levels, the mice from both mutant lines show similar atherosclerotic lesion sizes compared to control mice. These new mutant mouse models are valuable tools to further study the role of these genes, their affect on HDL cholesterol levels, and metabolism.  相似文献   

11.
Klysik J  Dinh C  Bradley A 《Genomics》2004,83(2):303-310
Segmental inversions causing recombination suppression are an essential feature of balancer chromosomes. Meiotic crossing over between homologous chromosomes within an inversion interval will lead to nonviable gametes, while gametes generated from recombination events elsewhere on the chromosome will be unaffected. This apparent recombination suppression has been widely exploited in genetic studies in Drosophila to maintain and analyze stocks carrying recessive lethal mutations. Balancers are particularly useful in mutagenesis screens since they help to establish the approximate genomic location of alleles of genes causing phenotypes. Using the Cre-loxP recombination system, we have constructed two mouse balancer chromosomes carrying 8- and 30-cM inversions between Wnt3 and D11Mit69 and between Trp53 and EgfR loci, respectively. The Wnt3-D11Mit69 inversion mutates the Wnt3 locus and is therefore homozygous lethal. The Trp53-EgfR inversion is homozygous viable, since the EgfR locus is intact and mutations in p53 are homozygous viable. A dominantly acting K14-agouti minigene tags both rearrangements, which enables these balancer chromosomes to be visibly tracked in mouse stocks. With the addition of these balancers to the previously reported Trp53-Wnt3 balancer, most of mouse chromosome 11 is now available in balancer stocks.  相似文献   

12.
R E Doerig  B Suter  M Gray    E Kubli 《The EMBO journal》1988,7(8):2579-2584
Seven xanthine dehydrogenase and cross-reacting material negative Drosophila melanogaster rosy stocks were screened for amber and ochre nonsense mutations. Amber and ochre nonsense suppressors were created by site-directed mutagenesis starting from a wild-type tRNA(Tyr) gene. The suppressor tRNA genes were subcloned into a pUChsneo transformation vector providing heat-shock controlled neomycin resistance. The seven rosy stocks were germline transformed with amber and ochre tDNA(Tyr), and the G1 generation was screened for Geneticin resistance. Surviving rosy516 flies transformed with the amber suppressor showed an eye colour intermediate between the original ry516 stock and the wild-type, suggesting that ry516 is an amber nonsense mutant. This was confirmed by sequencing the relevant part of the ry516 gene; the analysis revealed a C-to-T transition in a CAG glutamine codon at nucleotide 1522 of the wild-type rosy gene.  相似文献   

13.
The large-scale mouse mutagenesis with ENU has provided forward-genetic resources for functional genomics. The frozen sperm archive of ENU-mutagenized generation-1 (G1) mice could also provide a "mutant mouse library" that allows us to conduct reverse genetics in any particular target genes. We have archived frozen sperm as well as genomic DNA from 9224 G1 mice. By genome-wide screening of 63 target loci covering a sum of 197 Mbp of the mouse genome, a total of 148 ENU-induced mutations have been directly identified. The sites of mutations were primarily identified by temperature gradient capillary electrophoresis method followed by direct sequencing. The molecular characterization revealed that all the identified mutations were point mutations and mostly independent events except a few cases of redundant mutations. The base-substitution spectra in this study were different from those of the phenotype-based mutagenesis. The ENU-based gene-driven mutagenesis in the mouse now becomes feasible and practical.  相似文献   

14.
Mouse genetics has made crucial contributions to the understanding of the molecular mechanisms of hearing. With the help of a plethora of mouse mutants, many of the key genes that are involved in the development and functioning of the auditory system have been elucidated. Mouse mutants continue to shed light on the genetic and physiological bases of human hearing impairment, including both early- and late-onset deafness. A combination of genetic and physiological studies of mouse mutant lines, allied to investigations into the protein networks of the stereocilia bundle in the inner ear, are identifying key complexes that are crucial for auditory function and for providing profound insights into the underlying causes of hearing loss.  相似文献   

15.
The exc mutations of Caenorhabditis elegans alter the position and shape of the apical cytoskeleton in polarized epithelial cells. Mutants in exc-7 form small cysts throughout the tubular excretory canals that regulate organismal osmolarity. We have cloned the exc-7 gene, the closest nematode homologue to the neural RNA-binding protein ELAV. EXC-7 is expressed in the canal for a short time midway through embryogenesis. Cysts in exc-7 mutants do not develop until several hours later, beginning at the time of hatching. We find that the first larval period is when the canal completes the majority of its outgrowth, and adds new apical cytoskeleton at a rapid rate. Ultrastructural studies show that exc-7 mutant defects resemble loss of beta(H)-spectrin (encoded by sma-1) at the distal ends of the excretory canals. In addition, exc-7 mutants exhibit synergistic excretory canal defects with mutations in sma-1, and EXC-7 binds sma-1 mRNA. These data imply that EXC-7 protein may affect expression of sma-1 and other genes to effect proper development of the excretory canals.  相似文献   

16.
We performed a systematic mutagenesis screen for lethals in the genomic region 61D1-2 to 61F1-2 on chromosomal arm 3L of Drosophila melanogaster. Our genetic analyses revealed that this region contains eight essential complementation groups including trio, Glut1 and extra macrochaetae (emc). For the trio locus, 22 mutant alleles were identified, and all of the alleles analyzed resulted in defects in the central nervous system of embryos, indicating that trio functions in the control of axon extension or guidance. Western analysis showed that at least three proteins are derived from trio and also suggested that a polypeptide of over 200 kDa plays a crucial role in embryonic or larval development. In addition, a newly identified emc allele was associated with several defects in embryonic morphogenesis, including abnormalities in head involution, gut formation and dorsal closure, thus revealing multiple roles for emc in embryonic development. We also performed preliminary phenotypic analyses on stocks bearing mutations belonging to the other lethal complementation groups. These genes function in essential biological events, but the mutations do not result in gross morphological changes during embryonic stages. The present study extends our knowledge of the Drosophila gene set, by identifying most of the essential genes in the chromosomal region 61D1-2 to 61F1-2.  相似文献   

17.
Many different genes appear to be involved in the development and function of the mammalian inner ear. Some of the genes involved during early inner ear morphogenesis have been identified using mutations or targetted transgenic interruption, while a handful of genes involved in pigmentation anomalies associated with hearing impairement have been cloned. Several genes involved in syndromic late-onset hearing loss have also been isentified. However, the lajority of cases of hereditary hearing impairement from childhood probably involve genes expressed in the sensory neuroepithelia of the inner ear, and none of the genes or mutations causing this type of deafness have yet been identified. Here, we review the progress that has been made in finding genes for deafness and in using mouse mutants to elucidate the biological basis of the hearing deficit.  相似文献   

18.
By use of chlorambucil, we have generated a mouse mutation called scraggly (sgl) that exhibits skin and hair defects. Homozygous mutant mice exhibit hair loss, skin defects, and abnormalities in sebaceous lipid composition. We have constructed a high-resolution genetic map of mouse Chromosome (Chr) 19 that links this mutation to the anonymous DNA marker D19Umi1. An additional cross, (BALB/c × CAST/Ei) F1× BALB/c, was used to map markers around this mutation as well as to map the potential candidate genes, Fgf8 and Cyp17. Allelism tests between sgl and asebia (ab), another hair loss mutation on mouse Chr 19, showed that these genes were separate and distinct. Received: 8 December 1998 / Accepted: 10 May 1999  相似文献   

19.
Genomics meets genetics: towards a mutant map of the mouse   总被引:1,自引:0,他引:1  
Phenotype-driven mutagenesis approaches in the mouse will deliver a vastly expanded mouse mutant resource and can be expected to lead to the identification of novel genes and pathways, enabling the emergence of new insights into mammalian gene function. In order for this goal to be realized, developments in genomics need to be harnessed to progress in mouse mutagenesis. We need firstly to generate a mutant map of the mouse, devising and employing rapid methods for the genetic mapping of the growing mouse mutant resource. Secondly, we need to be able to rapidly identify and assess candidate genes in the vicinity of the mapped mutations. Developments in mapping and genotyping technology are described that will potentially speed the construction of a rich mutant map of the mouse. In addition, the benefits of comparative sequencing of the human and mouse genomes are reviewed. The availability of both human and mouse genome sequences will underpin the evolution of a comprehensive and well annotated mammalian gene map that will significantly enhance our ability to move rapidly from mapped mutation to the identification of the underlying gene. Received: 16 December 1999 / Accepted: 17 December 1999  相似文献   

20.
The mouse homologs of the Huntington's disease (HD) gene and 17 other human Chromosome (Chr) 4 loci (including six previously unmapped) were localized by use of an interspecific cross. All loci mapped in a continuous linkage group on mouse Chr 5, distal to En2 and Il6, whose human counterparts are located on Chr y. The relative order of the loci on human Chr 4 and mouse Chr 5 was maintained, except for a break between D5H4S115E and Idua/rd, with relocation of the latter to the opposite end of the map. The mouse HD homolog (Hdh) mapped within a cluster of seven genes that were completely linked in our data set. In human these loci span a1.8 Mb stretch of human 4p 16.3 that has been entirely cloned. To date, there is no phenotypic correspondence between human and mouse mutations mapping to this region of synteny conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号