首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Weed seed biocontrol by omnivorous mice and insects can limit weed seedbanks, but this ecosystem service can be difficult to predict given the broad diet breadth of seed predators and their potential for intraguild predation. Seed foraging behavior is further modified by fluctuating cues of predation risk from higher trophic levels and the availability of refuge habitat. Uncertainty about whether co-occurring insects and mice additively contribute to weed biocontrol or interfere with each other via intraguild predation limits our ability to recommend habitat management strategies that reliably promote seed destruction. Using seed removal assays, fluorescent powder tracking, and stable isotope analyses, we assessed effects of a predation risk cue (moonlight) on mouse foraging patterns in a patchwork of vegetated and exposed plots in a cultivated field. Mouse foraging activity decreased on exposed ground during the full moon, compared to dark nights, yet foraging movements were unaffected by moon cycle within refuge patches. Weed seed consumption was more than three times higher in cover than exposed soil, and 78% of that difference was attributable to invertebrate granivores. Mice and invertebrate granivores both exhibited higher foraging activity in cover, indicating co-occurrence of intraguild predators and prey. However, stable isotope analyses of fecal samples revealed that mice captured in refuge habitats fed at slightly lower trophic levels than those in exposed habitats (suggesting minimal intraguild predation in refuge habitat), and mouse diet was unaffected by moonlight. Despite increased availability of invertebrate prey in cover patches, mice do not appear to preferentially exploit prey when avoiding their own predators or interfere with weed seed predation. Therefore, functional redundancy of mice and invertebrate seed predators in cover crops and other refuge habitats may strengthen and stabilize weed seed biocontrol.  相似文献   

2.
Individuals, free to choose between different habitat patches, should settle among them such that fitness is equalized. Alternatives to this ideal free distribution result into fitness differences among the patches. The concordance between fitnesses and foraging costs among inhabitants of different quality patches, demonstrated in recent studies, suggests that the mode of habitat selection and the resulting fitness patterns may have important implications to the resource use of a forager and to the survival of its prey. We studied how coarse scale selection between habitat patches of different quality and quitting harvest rate in these patches are related to each other and to fine scale patch use in meadow voles (Microtus pennsylvanicus). To demonstrate these relationships, we manipulated habitat patches within large field enclosures by mowing vegetative cover and adding supplemental food according to a 2×2 factorial design. We tracked vole population densities, collected giving‐up densities (GUDs, a measure of patch quitting harvest rate), and monitored the removal of seeds from lattice grids with 1.5 m intervals (an index of fine‐scale space use) in the manipulated habitat patches. Changes in habitat quality induced changes in habitat use at different spatial scales. In preferred habitats with intact cover, voles were despotic and GUDs were low, but increased with the addition of food. In contrast, voles in less‐preferred mowed habitats settled into an ideal free distribution, GUDs were high and uninfluenced by the addition of food. Seed removal was enhanced by the presence of cover but inhibited by supplemental food. Across all treatments, vole densities and GUDs were strongly correlated making it impossible to separate their effects on seed removal rates. However, this relationship broke down in unmowed habitats, where GUDs rather than vole density primarily influenced seed removal by voles. GUDs and seed removal correlated with predation on tree seedlings formerly planted into the enclosures, demonstrating the mechanisms between coarse‐scale habitat manipulations and community level consequences on a forager's prey.  相似文献   

3.
The interaction of animals with their food can yield insights into habitat characteristics, such as perceived predation risk and relative quality. We deployed experimental foraging patches in wetlands used by migrating dabbling ducks Anas spp. in the central Illinois River Valley to estimate variation in seed removal and giving‐up density (GUD; i.e. density of food remaining in patches following abandonment) with respect to seed density, seed size, seed depth in the substrate, substrate firmness, perceived predation risk, and an energetic profitability threshold (i.e. critical food density). Seed depth and the density of naturally‐occurring seeds outside of experimental plots affected seed removal and GUD in experimental patches more than perceived predation risk, seed density, seed size or substrate firmness. The greatest seed removal and lowest GUDs in experimental patches occurred when food resources in alternative foraging locations outside of plots (i.e. opportunity costs) appeared to be near or below a critical food density (i.e. 119–181 kg ha–1). Giving‐up densities varied substantially from a critical food density across a range of food densities in alternative foraging locations suggesting that fixed GUDs should not be used as surrogates for critical food densities in energetic carrying capacity models. Foraging and resting rates in and near experimental foraging patches did not reflect patterns of seed removal and were poor predictors of GUD and foraging habitat quality. Our results demonstrated the usefulness of GUDs as indicators of habitat quality for subsurface, benthic foragers relative to other available foraging patches and suggested that food may be limited for dabbling ducks during spring migration in some years in the midwestern USA.  相似文献   

4.
Douglas W. Morris 《Oikos》2005,109(2):239-254
Current research contrasting prey habitat use has documented, with virtual unanimity, habitat differences in predation risk. Relatively few studies have considered, either in theory or in practice, simultaneous patterns in prey density. Linear predator–prey models predict that prey habitat preferences should switch toward the safer habitat with increasing prey and predator densities. The density‐dependent preference can be revealed by regression of prey density in safe habitat versus that in the riskier one (the isodar). But at this scale, the predation risk can be revealed only with simultaneous estimates of the number of predators, or with their experimental removal. Theories of optimal foraging demonstrate that we can measure predation risk by giving‐up densities of resource in foraging patches. The foraging theory cannot yet predict the expected pattern as predator and prey populations covary. Both problems are solved by measuring isodars and giving‐up densities in the same predator–prey system. I applied the two approaches to the classic predator–prey dynamics of snowshoe hares in northwestern Ontario, Canada. Hares occupied regenerating cutovers and adjacent mature‐forest habitat equally, and in a manner consistent with density‐dependent habitat selection. Independent measures of predation risk based on experimental, as well as natural, giving‐up densities agreed generally with the equal preference between habitats revealed by the isodar. There was no apparent difference in predation risk between habitats despite obvious differences in physical structure. Complementary studies contrasting a pair of habitats with more extreme differences confirmed that hares do alter their giving‐up densities when one habitat is clearly superior to another. The results are thereby consistent with theories of adaptive behaviour. But the results also demonstrate, when evaluating differences in habitat, that it is crucial to let the organisms we study define their own habitat preference.  相似文献   

5.
An animal's pattern of habitat use can reveal how different parts of its environment vary in quality based on the costs (such as predation risk) and benefits (such as food intake) of using each habitat. We studied klipspringer habitat use in Augrabies Falls National Park, South Africa using giving‐up densities (GUDs; the amount of food remaining in a resource patch following exploitation) in experimental food patches. We tested hypotheses related to how salient habitat variables might influence klipspringers' perceptions of foraging costs. At small spatial scales (3–4 m), klipspringer GUDs did not vary with cover and open microhabitats, or with the four cardinal aspects (shading) around shrubs. Adding water adjacent to food patches did not influence GUDs, showing that water is not a limiting complementary resource to food. Generally, klipspringers do not appear to be physiologically constrained. There was no difference in GUDs between four daily time periods, or between summer and winter; however, a significant interaction effect of time‐of‐day with season resulted from GUDs during the midday time period in winter being significantly higher (perceived value lower) than during the same time period in summer. At moderate spatial scales (10–60 m), klipspringer GUDs increased with distance from rocks because of increased predation risk. Based on GUDs collected at the largest scale (two 4.41‐ha grids), klipspringers preferred foraging at greater distances from drainage lines and on pebble and cobble substrates. Overall, this study has shown the efficacy of measuring GUDs to determine klipspringers' habitat utilization while foraging.  相似文献   

6.
Wilder SM  Meikle DB 《Oecologia》2005,144(3):391-398
While many species show positive relationships between population density and habitat patch area, some species consistently show higher densities in smaller patches. Few studies have examined mechanisms that may cause species to have negative density–area relationships. We tested the hypothesis that greater reproduction in edge versus interior habitats and small versus large fragments contributes to higher densities of white-footed mice (Peromyscus leucopus) in small versus large forest fragments. We also examined vegetation structure and foraging tray utilization to evaluate if greater reproduction was a result of higher food availability. There were greater number of litters and proportion of females producing litters in the edge versus interior of forest fragments, which may have contributed to greater population growth rates and higher densities in edge versus interior and small versus large fragments. Data on vegetation structure and giving-up densities of seeds in artificial patches suggest that food availability may be higher in edge versus interior habitats and small versus large fragments. These results, in an area with few or no long-tailed weasels, provide a distinct contrast to the findings of Morris and Davidson (Ecology 81:2061, 2000) who observed lower reproduction in forest edge habitat as a result of high weasel predation, suggesting that specialist predators may be important in affecting the quality of edge habitat. While we cannot exclude the potential contributions of immigration, emigration, and mortality, our data suggest that greater reproduction in edge versus interior habitat is an important factor contributing to higher densities of P. leucopus in small fragments.  相似文献   

7.
Temporal variation of antipredatory behavior and a uniform distribution of predation risk over refuges and foraging sites may create foraging patterns different from those anticipated from risk in heterogenous habitats. We studied the temporal variation in foraging behavior of voles exposed to uniform mustelid predation risk and heterogeneous avian predation risk of different levels induced by vegetation types in eight outdoor enclosures (0.25 ha). We manipulated mustelid predation risk with weasel presence or absence and avian predation risk by reducing or providing local cover at experimental food patches. Foraging at food patches was monitored by collecting giving-up densities at artificial food patches, overall activity was automatically monitored, and mortality of voles was monitored by live-trapping and radiotracking. Voles depleted the food to lower levels in the sheltered patches than in the exposed ones. In enclosures with higher avian predation risk caused by lower vegetation height, trays were depleted to lower levels. Unexpectedly, voles foraged in more trays and depleted trays to lower levels in the presence of weasels than in the absence. Weasels match their prey's body size and locomotive abilities and therefore increase predation risk uniformly over both foraging sites and refuge sites that can both be entered by the predator. This reduces the costs of missing opportunities other than foraging. Voles changed their foraging strategy accordingly by specializing on the experimental food patches with predictable returns and probably reduced their foraging in the matrix of natural food source with unpredictable returns and high risk to encounter the weasel. Moreover, after 1 day of weasel presence, voles shifted their main foraging activities to avoid the diurnal weasel. This behavior facilitated bird predation, probably by nocturnal owls, and more voles were killed by birds than by weasels. Food patch use of voles in weasel enclosures increased with time. Voles had to balance the previously missed feeding opportunities by progressively concentrating on artificial food patches.  相似文献   

8.
Herbivores are thought to respond to the increased risk of attack by predators during foraging activities by concentrating feeding in safe habitats and by reducing feeding in the presence of predators. We tested these hypotheses by comparing tree seedling predation by meadow voles within large outdoor enclosures treated either with scent of large mammalian predators (red fox, bobcat, coyote) or a control scent (vinegar). In addition, we compared the distribution of voles in relation to naturally occurring variation in vegetation cover and the tendency of voles to attack tree seedlings planted in small patches with cover manipulation (intact, reduced or removed cover). Predator scent did not affect the rate or spatial distribution of tree seedling predation by voles, nor did it affect giving up densities (a surrogate of patch quitting harvest rate), survival rates, body size or habitat distribution of voles. In both predator scent and vinegar treatments voles preferred abundant vegetation providing good cover, which was also the site of almost all tree seedling predation. We conclude that large mammalian predator scent does not influence the perception by voles of the general safety of habitat, which is more strongly affected by the presence of cover.  相似文献   

9.
Wirsing AJ  Heithaus MR  Dill LM 《Oecologia》2007,153(4):1031-1040
Predators can influence plants indirectly by altering spatial patterns of herbivory, so studies assessing the relationship between perceived predation risk and habitat use by herbivores may improve our understanding of community organization. In marine systems, the effects of predation danger on space use by large herbivores have received little attention, despite the possibility that predator-mediated alterations in patterns of grazing by these animals influence benthic community structure. We evaluated the relationship between habitat use by foraging dugongs (Dugong dugon) and the threat of tiger shark predation in an Australian embayment (Shark Bay) between 1997 and 2004. Dugong densities were quantified in shallow (putatively dangerous) and deep (putatively safe) habitats (seven survey zones allocated to each habitat), and predation hazard was indexed using catch rates of tiger sharks (Galeocerdo cuvier); seagrass volume provided a measure of food biomass within each zone. Overall, dugongs selected shallow habitats, where their food is concentrated. Foragers used shallow and deep habitats in proportion to food availability (input matching) when large tiger sharks were scarce and overused deep habitats when sharks were common. Furthermore, strong synchrony existed between daily measures of shark abundance and the extent to which deep habitats were overused. Thus, dugongs appear to adaptively manage their risk of death by allocating time to safe but impoverished foraging patches in proportion to the likelihood of encountering predators in profitable but more dangerous areas. This apparent food-safety trade-off has important implications for seagrass community structure in Shark Bay, as it may result in marked temporal variability in grazing pressure. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Predator odours and habitat structure are thought to influence the behaviour of small mammalian prey, which use them as cues to reduce risks of predation. We tested this general hypothesis for house mice, Mus domesticus, by manipulating fox odour density via addition of fox scats and habitat via patchy mowing of vegetation, for populations in 15 × 15-m field enclosures. Using giving-up densities (GUDs), the density of food remaining when an animal quits harvesting a patch, we measured foraging behaviours in response to these treatments. Mice consistently avoided open areas, leaving GUDs two to four times greater in these areas than in densely vegetated patches. However, mouse GUDs did not change in response to the addition of fox scats, even immediately after fresh scats were added. There was no interaction between fox odour and habitat use. We then tested whether habituation to fox odours had occurred, by comparing the individual responses to scats of eight mice born into enclosures with fox scats to those of eight mice born into scat-free enclosures and five wild mice. In smaller enclosures, GUDs of trays with scats did not differ from GUDs of trays without scats for any treatment. We conclude that exposure to high levels of fox odours did not alter the foraging behaviour of mice, but that mice did reduce foraging in areas where habitat was removed, perceiving predation risk to be greater in these areas than controls. We suggest further that studies using the ‘scat-at-trap’ technique, which have shown avoidance of predator odours by mice and other small mammals, may overestimate the general avoidance of predator odours by free-living prey, which must forage with a constant background of predator odours.  相似文献   

11.
Foraging behavior is influenced by spatial and temporal habitat heterogeniety. Here we report on within-day foraging and perceived risk of predation by the striped mouse (Rhabdomys pumilio) in a grassland savannah with wooded “islands” using giving-up densities (GUD, amount of food left behind in depletable food patches). Higher GUDs correspond to higher forging costs. GUDs were measured six times per day at 2-h intervals from paired stations along fern–grass habitat boundaries at 3 and 6 m distances from 10 wooded islands. R. pumilio's GUDs varied significantly over the course of the day with highest GUDs during the afternoon hours of 1–3 pm, and lowest between 7 and 9 am in the morning. The same pattern was consistent for both habitats (fern and grass) and distances from the wooded islands. GUDs decreased with distance from the woody islands in both fern and grass habitats and were significantly lower in the fern habitat. This activity pattern suggests that R. pumilio responds to a spectrum of spatially and temporally varying risks from a variety of predators including aerial predators that increase risk as they make use of mid-day thermals.  相似文献   

12.
Urban bird communities exhibit high population densities and low species diversity, yet mechanisms behind these patterns remain largely untested. We present results from experimental studies of behavioral mechanisms underlying these patterns and provide a test of foraging theory applied to urban bird communities. We measured foraging decisions at artificial food patches to assess how urban habitats differ from wildlands in predation risk, missed-opportunity cost, competition, and metabolic cost. By manipulating seed trays, we compared leftover seed (giving-up density) in urban and desert habitats in Arizona. Deserts exhibited higher predation risk than urban habitats. Only desert birds quit patches earlier when increasing the missed-opportunity cost. House finches and house sparrows coexist by trading off travel cost against foraging efficiency. In exclusion experiments, urban doves were more efficient foragers than passerines. Providing water decreased digestive costs only in the desert. At the population level, reduced predation and higher resource abundance drive the increased densities in cities. At the community level, the decline in diversity may involve exclusion of native species by highly efficient urban specialists. Competitive interactions play significant roles in structuring urban bird communities. Our results indicate the importance and potential of mechanistic approaches for future urban bird community studies.  相似文献   

13.
Patch use in time and space for a meso-predator in a risky world   总被引:1,自引:0,他引:1  
Predator–prey studies often assume a three trophic level system where predators forage free from any risk of predation. Since meso-predators themselves are also prospective prey, they too need to trade-off between food and safety. We applied foraging theory to study patch use and habitat selection by a meso-predator, the red fox. We present evidence that foxes use a quitting harvest rate rule when deciding whether or not to abandon a foraging patch, and experience diminishing returns when foraging from a depletable food patch. Furthermore, our data suggest that patch use decisions of red foxes are influenced not just by the availability of food, but also by their perceived risk of predation. Fox behavior was affected by moonlight, with foxes depleting food resources more thoroughly (lower giving-up density) on darker nights compared to moonlit nights. Foxes reduced risk from hyenas by being more active where and when hyena activity was low. While hyenas were least active during moon, and most active during full moon nights, the reverse was true for foxes. Foxes showed twice as much activity during new moon compared to full moon nights, suggesting different costs of predation. Interestingly, resources in patches with cues of another predator (scat of wolf) were depleted to significantly lower levels compared to patches without. Our results emphasize the need for considering risk of predation for intermediate predators, and also shows how patch use theory and experimental food patches can be used for a predator. Taken together, these results may help us better understand trophic interactions.  相似文献   

14.
Energetic carrying capacity of habitats for wildlife is a fundamental concept used to better understand population ecology and prioritize conservation efforts. However, carrying capacity can be difficult to estimate accurately and simplified models often depend on many assumptions and few estimated parameters. We demonstrate the complex nature of parameterizing energetic carrying capacity models and use an experimental approach to describe a necessary parameter, a foraging threshold (i.e., density of food at which animals no longer can efficiently forage and acquire energy), for a guild of migratory birds. We created foraging patches with different fixed prey densities and monitored the numerical and behavioral responses of waterfowl (Anatidae) and depletion of foods during winter. Dabbling ducks (Anatini) fed extensively in plots and all initial densities of supplemented seed were rapidly reduced to 10 kg/ha and other natural seeds and tubers combined to 170 kg/ha, despite different starting densities. However, ducks did not abandon or stop foraging in wetlands when seed reduction ceased approximately two weeks into the winter-long experiment nor did they consistently distribute according to ideal-free predictions during this period. Dabbling duck use of experimental plots was not related to initial seed density, and residual seed and tuber densities varied among plant taxa and wetlands but not plots. Herein, we reached several conclusions: 1) foraging effort and numerical responses of dabbling ducks in winter were likely influenced by factors other than total food densities (e.g., predation risk, opportunity costs, forager condition), 2) foraging thresholds may vary among foraging locations, and 3) the numerical response of dabbling ducks may be an inconsistent predictor of habitat quality relative to seed and tuber density. We describe implications on habitat conservation objectives of using different foraging thresholds in energetic carrying capacity models and suggest scientists reevaluate assumptions of these models used to guide habitat conservation.  相似文献   

15.
The purpose of this study was to test the hypothesis that foraging sand fiddler crabs. Uca pugilator (Bosc), move through the habitat in response to low substratum food levels even though these movements may take the crabs considerable distances from the safety of the burrow area. Chl a and ATP concentrations were used as measures of food density in foraged and unforaged substratum. Field and laboratory feeding experiments showed that crab foraging intensity in a habitat patch was directly correlated with food density in the patch either in the presence or absence of alternative food patches. Other experiments showed that sand fiddlers can respond to differences in food level on a scale of millimeters and do this by probing the substratum with minor chelae. Food levels in aggregations of non-ingested particles harvested by sand fiddlers, feeding pellets, correspond to low foraging intensities predicted from foraging experiments and crabs exhibit low foraging intensities on substratum patches derived from feeding pellets. Substratum food levels in two distinct areas corresponded to high predicted foraging intensities and there was no consistent trend in the level of food in the burrow vs. the nonburrow microhabitats. These results suggest that the movements of foraging sand fiddlers are to some extent controlled by the reduction in substratum food levels due to feeding during a single foraging episode. Sand fiddlers can extract over 70% of the food from harvested substratum over a broad range of substratum food densities but harvest only 42% of the available substratum.  相似文献   

16.
We combined the concept of mechanisms of co-existence with the approach of giving-up densities to study inter-taxon competition between seed-eating birds and mammals. We measured feeding behaviour in food patches to define and study the guild of seed-eating vertebrates occupying sandy habitats at Bir Asluj, Negev Desert, Israel. Despite a large number of putatively granivorous rodents and birds at the site, two gerbil species (Allenbys gerbil, Gerbillus allenbyi, and the greater Egyptian gerbil, G. pyramidum) dominated nocturnal foraging, and a single bird species (crested lark, Galerida cristata) contributed all of the daytime foraging. We used giving-up densities to quantify foraging behaviour and foraging efficiencies. A low giving-up density demonstrates the ability of a forager to profitably harvest food at low abundances and to profitably utilize the foraging opportunities left behind by the less efficient forager. Gerbils had lower giving-up densities in the bush than open microhabitat, and lower giving-up densities in the semi-stabilized than stabilized sand habitats. Crested larks showed the opposite: lower giving-up densities in the open than bush, and on the stabilized than semi-stabilized sand habitats. Despite these patterns, gerbils had substantially lower giving-up densities than crested larks in both microhabitats, all sand habitats, and during each month. Several mechanisms may permit the crested lark to co-exist with the gerbils. Larks may be cream skimmers on the high spatial and temporal variability in seed abundances. Larks may rely on insects, fruit or smaller seeds. Or, larks may rely on adjacent rocky habitats.  相似文献   

17.
Ideal free distribution (IFD) theory predicts that animals in competitive situations should distribute themselves among available habitat patches according to the density of conspecifics and its regulatory effect on resources. To investigate the applicability of IFD models to free-ranging herbivores, we quantified the dispersion and foraging behaviour of eastern grey kangaroos Macropus giganteus among habitat patches of differing suitability, within and outside a reservoir catchment in southern Victoria, Australia. Kangaroo densities within the catchment had a regulatory effect on resource density, while surrounding farmland maintained a higher standing crop despite higher densities of competitors. This difference was slight in autumn, however, when the system was apparently close to equilibrium. Gross bite rates of individuals foraging in farmland were lower than for individuals foraging within the catchment, and vigilance behaviour occurred more frequently in farmland habitat than any other, decreasing time devoted to feeding. Interference competition occurred in only 1.9% of focal samples, although competitive differences based on phenotype were observed. Although resource gains by individual kangaroos are likely to be influenced by other factors, including resource dynamics, predation risk and phenotypic differences, IFD theory provides a valuable analytical framework for this herbivore foraging system.  相似文献   

18.
ValeriaHochman  BurtP. Kotler 《Oikos》2006,112(3):547-554
Measuring patch use of a forager can reveal not only its cost and benefits from foraging, but also the importance of environmental factors and the significance of energy, nutrients and predation risk to its fitness. In order to assess the effects of various variables that may affect the foraging behavior of free-ranging Nubian ibex in the Negev Desert, Israel, giving-up densities (GUD) in artificial food patches were measured following Kotler et al. In particular, we tested the effects of food quality and water availability on Nubian ibex foraging behavior. To do so, we (1) tested whether the tannic acid content of food affected diet preferences, (2) assayed their diet selection strategy, (3) tested if the foraging decisions of the Nubian ibex were affected by the availability of water and (4) determined the nutritional relationship between food resources and water. Nubian ibex had lower GUDs and used resources patches more intensively where water was available, the food quality was higher and the location was closer to the escape terrain. Nubian ibex showed an expanding specialist diet selection when exploiting resource patches with a mix of items that differ in quality. Overall, food and water were complementary resources for Nubian ibex, and tannins reduced food quality. These factors help to determine patch foraging behavior decisions in Nubian ibex and contribute to habitat quality.  相似文献   

19.
Varying environmental conditions and energetic demands can affect habitat use by predators and their prey. Anthropogenic habitats provide an opportunity to document both predation events and foraging activity by prey and therefore enable an empirical evaluation of how prey cope with trade‐offs between starvation and predation risk in environments of variable foraging opportunities and predation danger. Here, we use seven years of observational data of peregrine falcons Falco peregrinus and shorebirds at a semi‐intensive shrimp farm to determine how starvation and predation risk vary for shorebirds under a predictable variation in foraging opportunities. Attack rate (mean 0.1 attacks/hr, equating 1 attack every ten hours) was positively associated with the total foraging area available for shorebirds at the shrimp farm throughout the harvesting period, with tidal amplitude at the adjacent mudflat having a strong nonlinear (quadratic) effect. Hunt success (mean 14%) was higher during low tides and declined as the target flocks became larger. Finally, individual shorebird vigilance behaviors were more frequent when birds foraged in smaller flocks at ponds with poorer conditions. Our results provide empirical evidence of a risk threshold modulated by tidal conditions at the adjacent wetlands, where shorebirds trade‐off risk and rewards to decide to avoid or forage at the shrimp farm (a potentially dangerous habitat) depending on their need to meet daily energy requirements. We propose that semi‐intensive shrimp farms serve as ideal “arenas” for studying predator–prey dynamics of shorebirds and falcons, because harvest operations and regular tidal cycles create a mosaic of foraging patches with predictable food supply. In addition, the relatively low hunt success suggests that indirect effects associated with enhanced starvation risk are important in shorebird life‐history decisions.  相似文献   

20.
The behavioural response of juvenile bluegill sunfish (Lepomis macrochirus) to predation risk when selecting between patches of artificial vegetation differing in food and stem density was investigated. Bluegill foraging activity was significantly affected by all three factors. Regardless of patch stem density or risk of predation bluegills preferred patches with the highest prey number. During each trial bluegill foraging activity was clearly divided into a between- and within-patch component. In the presence of a predator bluegills reduced their between-patch foraging activity by an equivalent amount regardless of patch stem density or food level, apparently showing a risk-adjusting behavioural response to predation risk. Within patches, however, foraging activity was affected by both food level and patch stem density. When foraging in a patch offering a refuge from predation, the presence of a predator had no effect on bluegill foraging activity within this patch. However, if foraging in a patch with only limited refuge potential, bluegill foraging activity was reduced significantly in the presence of a predator. Further, this reduction was significantly greater if the patch contained a low versus a high food level, indicating a risk-balancing response to predation with respect to within-patch foraging activity. Both these responses differ from the risk-avoidance response to predation demonstrated by juvenile bluegills when selecting among habitats. Therefore, our results demonstrate the flexibility of juvenile bluegill foraging behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号