首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein heterogeneity of fractions isolated by immunoaffinity chromatography on anti-apolipoprotein A-I and anti-apolipoprotein A-II affinity columns was analyzed by high resolution two-dimensional gel electrophoresis. The two-dimensional gel electrophoresis profiles of the fractions were analyzed and automatically compared by the computer system MELANIE. Fractions containing apolipoproteins A-I + A-II and only A-I as the major protein components have been isolated from plasma and from high density lipoproteins prepared by ultracentrifugation. Similarities between the profiles of the fractions, as indicated by two-dimensional gel electrophoresis, suggested that those derived from plasma were equivalent to those from high density lipoproteins (HDL), which are particulate in nature. The established apolipoproteins (A-I, A-II, A-IV, C, D, and E) were visible and enriched in fractions from both plasma and HDL. However, plasma-derived fractions showed a much greater degree of protein heterogeneity due largely to enrichment in bands corresponding to six additional proteins. They were present in trace amounts in fractions isolated from HDL and certain of the proteins were visible in two-dimensional gel electrophoresis profiles of the plasma. These proteins are considered to be specifically associated with the immunoaffinity-isolated particles. They have been characterized in terms of Mr and pI. Computer-assisted measurements of protein spot-staining intensities suggest an asymmetric distribution of the proteins (as well as the established apolipoproteins), with four showing greater prominence in particles containing apolipoprotein A-I but no apolipoprotein A-II.  相似文献   

2.
Using fast protein chromatofocusing, a high-efficiency column chromatography method with a self-generated pH gradient and focusing effects, soluble human very-low-density lipoprotein (VLDL) apolipoproteins were fractionated between pH 6.3 and 4.0. In the presence of 6 mol/l urea and with a flow rate of 1 ml/min, one run (up to 10 mg of protein) took 30 min. VLDL apolipoproteins were separated in seven peaks. As revealed by SDS-polyacrylamide gel electrophoresis, isoelectric focusing and double-immunodiffusion against mono-specific antisera, fractions corresponded to the following proteins: apolipoprotein C-I, albumin, apolipoproteins A-I, E, C-II plus C-III0, C-III1 and C-III2, respectively. Apolipoproteins were eluted in sharp, well-resolved peaks. The recovery of proteins was 78% of the starting material. With fast protein chromatofocusing, an efficient isolation of single apolipoproteins is possible from small amounts of VLDL apolipoprotein preparations. This technique is superior to the commonly used, time-consuming methods for apolipoprotein isolation.  相似文献   

3.
Plasma apolipoprotein secretion by human monocyte-derived macrophages   总被引:1,自引:0,他引:1  
Apolipoprotein E has been demonstrated to be a major secretory protein of human monocyte macrophages. The synthesis of the other plasma apolipoproteins by these cells has not been documented. Human monocyte macrophages cultured for 17-76 days were preincubated for 24 h in RPMI 1640/0.2% bovine serum albumin with or without malondialdehyde-LDL (100 micrograms/ml), followed by an additional 24 h incubation in RPMI 1640/0.2% bovine serum albumin. The media from the two incubation periods were analyzed for apolipoproteins A-I, B, C-II, C-III and E by specific radioimmunoassays. No apolipoprotein B mass was detected with a specific radioimmunoassay capable of detecting 10 ng apolipoprotein B. No apolipoproteins A-I, C-II or C-III mass was detected, even though the radioimmunoassays for these apolipoproteins were as sensitive as that for apolipoprotein E (detection limit of 0.2 ng). In contrast, significant levels of macrophage-secreted apolipoprotein E were quantified. Baseline apolipoprotein E production ranged from 0.64 to 2.82 micrograms/mg cell protein per 24 h. Preincubation in the presence of malondialdehyde-LDL (100 micrograms/ml) stimulated a 1.6-3.0-fold increase in apolipoprotein E secretion. The identification of the immunoreactive material as apolipoprotein E was confirmed by labelling the cells with [35S]methionine, followed by fractionation of the 35S-labelled secretory products by anti-apolipoprotein E affinity chromatography and SDS-gel electrophoresis. We thus report the absence of synthesis of apolipoproteins A-I, B, C-II and C-III by cultured human monocyte macrophages. These cells, however, can synthesize microgram levels of apolipoprotein E on a per mg protein basis.  相似文献   

4.
Procedures for the isolation of two lipoprotein fractions from plasma high-density lipoproteins (HDL), characterized by apolipoprotein A-I and apolipoprotein A-I together with apolipoprotein A-II, have been elaborated. Apolipoprotein A-I was identified as the protein moiety of one of these fractions (lipoprotein A-I) with polyacrylamide gel electrophoresis (at basic and acidic pH, as well as in the presence of sodium dodecyl sulphate), immuno-double-diffusion, and amino acid analysis. Apolipoproteins A-I and A-II were identified as the protein moiety of the other fraction (lipoprotein A) with polyacrylamide gel electrophoresis (basic and acidic pH) and immuno-double-diffusion. Lipoprotein A-I consisted of spherical particles with a diameter similar to that of HDL as judged from negative strains in the transmission electron microscope. The diameter was estimated to be 8.7 nm from gel chromatography. Lipoprotein A-I migrated in the HDL position on crossed immunoelectrophoresis. On iso-electric focusing lipoprotein A-I appeared as multiple bands in the pH range 5.05-5.55. Lipoprotein A-I had the density of an HDL-2 fraction (rho: 1.063-1.105). Lipoprotein A consisted of spherical particles with a diameter similar to that of HDL, as judged from negative strains in the transmission electron microscope. The diameter was estimated to be 7.9 nm from gel chromatography. The molar ratio between the A-I and A-II polypeptides was estimated to 1.3:1 with electroimmunoassay and calculations from the amino acid compositions. Lipoprotein A migrated in the position of HDL on crossed immuno-electrophoresis. On iso-electric focusing lipoprotein A appeared as one major and two minor bands in the pH range 5.10-5.30. Lipoprotein A had the hydrated density of an HDL-2 fraction.  相似文献   

5.
Procedures are presented for the separation and determination of the isotopic enrichment of multiple human apolipoproteins labeled in vivo with a stable isotope amino acid. The isotopic enrichments of plasma lysine and plasma apolipoproteins were monitored for 16 days after a single intravenous dose of [4,4,5,5-2H4]lysine (5 mg/kg body weight). The use of a multiply deuterated amino acid enabled the measurement of isotopic enrichments above background over the entire 16-day time course in all proteins. Individual apolipoproteins were separated on a specially designed gradient sodium dodecyl sulfate polyacrylamide gel electrophoresis system cast in a conventional slab gel apparatus which resolved apoB-100, apoE, apoA-I, apoA-II, apoC-I, apoC-II, apoC-III-1, and apoC-III-2 on a single gel. After staining with Coomassie blue, proteins bands (containing 5 to 30 micrograms of individual apolipoprotein) were excised from the gel. Amino acids were recovered from hydrolyzed gel slices, derivatized, and analyzed by gas chromatography-mass spectrometry for determination of lysine isotopic enrichments. The utility of the method is demonstrated using examples of apolipoproteins B-100, A-I, A-II, C-I, C-II, and C-III from either total plasma d less than 1.21 g/ml lipoproteins or selected lipoprotein subfractions. Lysine isotopic enrichments of proteins were generally determined with a precision of better than 5%. The isotopic enrichment profiles were consistent with literature reports of apolipoprotein metabolic kinetics based on the use of radioiodinated apolipoproteins. The procedures outlined can be used to separate and measure the isotopic enrichment of virtually any apolipoprotein from any chosen lipoprotein fraction. Thus, these procedures should find wide application in the study of apolipoprotein metabolic kinetics.  相似文献   

6.
We studied the proteolytic action in vitro of free and alpha 2-macroglobulin-bound porcine pancreatic elastase [EC 3.4.21.11] on the apolipoproteins of plasma: very low density lipoprotein (VLDL), low density lipoprotein (LDL), and high density lipoprotein (HDL). Polyacrylamide gel electrophoresis, isoelectric focusing and immunodiffusion tests of elastase-treated plasma lipoproteins revealed that apolipoprotein C-II and C-III polypeptides were more susceptible to elastase in free form than plasma apolipoproteins (A-I, A-II, B, and E). Elastase bound to alpha 2-macroglobulin did not show any such activities.  相似文献   

7.
Apolipoprotein A-IV is a member of the apo A-I/C-III/A-IV gene cluster. In order to investigate its hypothetical coordinated regulation, an acute phase was induced in pigs by turpentine oil injection. The hepatic expression of the gene cluster as well as the plasma levels of apolipoproteins were monitored at different time periods. Furthermore, the involvement of the inflammatory mediators' interleukins 1 and 6 and tumor necrosis factor in the regulation of this gene cluster was tested in cultured pig hepatocytes, incubated with those mediators and apo A-I/C-III/A-IV gene cluster expression at the mRNA level was measured. In response to turpentine oil-induced inflammation, a decreased hepatic apo A-IV mRNA expression was observed (independent of apo A-I and apo C-III mRNA) not correlating with the plasma protein levels. The distribution of plasma apo A-IV experienced a shift from HDL to larger particles. In contrast, the changes in apo A-I and apo C-III mRNA were reflected in their corresponding plasma levels. Addition of cytokines to cultured pig hepatocytes also decreased apo A-IV and apo A-I mRNA levels. All these results show that the down-regulation of apolipoprotein A-I and A-IV messages in the liver may be mediated by interleukin 6 and TNF-alpha. The well-known HDL decrease found in many different acute-phase responses also appears in the pig due to the decreased expression of apolipoprotein A-I and the enlargement of the apolipoprotein A-IV-containing HDL.  相似文献   

8.
Small particles of high density lipoproteins (HDL) were isolated from fresh, fasting human plasma and from the ultracentrifugally isolated high density lipoprotein fraction by means of ultrafiltration through membranes of molecular weight cutoff of 70,000. These particles were found to contain cholesterol, phospholipids, and apolipoproteins A-I and A-II; moreover, they floated at a density of 1.21 kg/l. They contained 67.5% of their mass as protein and the rest as lipid. Two populations of small HDL particles were identified: one containing apolipoprotein A-I alone [(A-I)HDL] and the other containing both apolipoproteins A-I and A-II [A-I + A-II)HDL]. The molar ratio of apoA-I to apoA-II in the latter subclass isolated from plasma or HDL was 1:1. The molecular weights of these subpopulations were determined by nondenaturing gradient polyacrylamide gel electrophoresis and found to be 70,000; 1.5% of the plasma apoA-I was recovered in the plasma ultrafiltrate.  相似文献   

9.
The concentration of cholesterol, apolipoproteins A-I, B, and E has been determined in lymphedema fluid from nine patients with chronic primary lymphedema. The concentrations were: 38.14 +/- 21.06 mg/dl for cholesterol, 15.6 +/- 6.17 mg/dl for apolipoprotein A-I, 7.5 +/- 2.8 mg/dl for apolipoprotein B, and 1.87 +/- 0.50 mg/dl for apolipoprotein E. These values represent 23%, 12%, 6%, and 38% of plasma concentrations, respectively. The ratio of esterified to unesterified cholesterol in lymphedema fluid was 1.46 +/- 0.45. Lipoproteins of lymphedema fluid were fractionated according to particle size by gradient gel electrophoresis and by exclusion chromatography. Gradient gel electrophoresis showed that a majority of high density lipoproteins (HDL) of lymphedema fluid were larger than ferritin (mol wt 440,000) and smaller than low density lipoproteins (LDL); several discrete subpopulations could be seen with the large HDL region. Fractionation by exclusion chromatography showed that more than 25% of apolipoprotein A-I and all of apolipoprotein E in lymphedema fluid was associated with particles larger than plasma HDL2. Apolipoprotein A-I also eluted in fractions that contained particles the size of or smaller than albumin. Isolation of lipoproteins by sequential ultracentrifugation showed that less than 25% of lymphedema fluid cholesterol was associated with apolipoprotein B. The majority of apolipoprotein A-containing lipoproteins of lymphedema fluid were less dense than those in plasma. Ultracentrifugally separated fractions of lipoproteins were examined by electron microscopy. The fraction d less than 1.019 g/ml contained little material, while fraction d 1.019-1.063 g/ml contained two types of particles: round particles 17-26 nm in diameter and square-packing particles 13-17 nm on a side. Fractions d 1.063-1.085 g/ml had extensive arrays of square-packing particles 13-14 nm in size. Fractions d 1.085-1.11 g/ml and fractions d 1.11-1.21 g/ml contained round HDL, 12-13 nm diameter and 10 nm diameter, respectively. Discoidal particles were observed infrequently.  相似文献   

10.
The extent to which lipid and apolipoprotein (apo) concentrations in tissue fluids are determined by those in plasma in normal humans is not known, as all studies to date have been performed on small numbers of subjects, often with dyslipidemia or lymphedema. Therefore, we quantified lipids, apolipoproteins, high density lipoprotein (HDL) lipids, and non-HDL lipids in prenodal leg lymph from 37 fasted ambulant healthy men. Lymph contained almost no triglycerides, but had higher concentrations of free glycerol than plasma. Unesterified cholesterol (UC), cholesteryl ester (CE), phosphatidylcholine (PC), and sphingomyelin (SPM) concentrations in whole lymph were not significantly correlated with those in plasma. HDL lipids, but not non-HDL lipids, were directly related to those in plasma. Lymph HDLs were enriched in UC. However, as the HDL cholesterol/non-HDL cholesterol ratio in lymph exceeded that in plasma, whole lymph nevertheless had a lower UC/CE ratio than plasma. Lymph also had a significantly higher SPM/PC ratio. The lymph/plasma (L/P) ratios of apolipoproteins were as follows: A-IV > A-I and A-II > C-III and E > B. Comparison with the L/P ratios of seven nonlipoprotein proteins suggested that apoA-IV was predominantly lipid free. Concentrations of apolipoproteins A-II, A-IV, C-III, and E in lymph, but not of apolipoproteins A-I or B, were positively correlated with those in plasma. The L/P ratios of apolipoproteins B, C-III, and E in two subjects with lipoprotein lipase (LPL) deficiency, and of apolipoproteins A-I and A-IV in a subject with lecithin:cholesterol acyltransferase (LCAT) deficiency, were low relative to those in normal subjects. Thus, the concentrations of lipids, apolipoproteins, and lipoproteins in human tissue fluid are determined only in part by their concentrations in plasma. Other factors, including the actions of LPL and LCAT, are at least as important.  相似文献   

11.
The distribution of apolipoproteins A-I and A-IV among lymph lipoprotein fractions was studied after separation by molecular sieve chromatography, avoiding any ultracentrifugation. Lymph was obtained from rats infused either with a glucose solution or with a triacylglycerol emulsion. Relative to glucose infusion, triacylglycerol infusion caused a 20-fold increase in the output of triacylglycerol, coupled with a 4-fold increase in output of apolipoprotein A-IV. The output of apolipoprotein A-I was only elevated 2-fold. Chromatography on 6% agarose showed that lymph apolipoproteins A-I and A-IV are present on triacylglycerol-rich particles and on particles of the size of HDL. In addition, apolipoprotein A-IV is also present as 'free' apolipoprotein A-IV. The increase in apolipoprotein A-I output is caused by a higher output of A-I associated with large chylomicrons only, while the increase in apolipoprotein A-IV output is reflected by an increased output in all lymph lipoprotein fractions, including lymph HDL and 'free' apolipoprotein A-IV. The increased level of 'free' A-IV, seen in fatty lymph, may contribute to, and at least partly explain, the high concentrations of 'free' apolipoprotein A-IV present in serum obtained from fed animals.  相似文献   

12.
High density lipoproteins (HDL) from 14 patients with obstructive jaundice were examined by gradient gel electrophoresis to determine the effect of obstruction on particle size distribution. HDL from 7 of these patients were fractionated by gel permeation chromatography and further characterized by electron microscopy, SDS gel electrophoresis, apolipoprotein A-I and apolipoprotein A-II immunoturbidimetry, and analysis of chemical composition. In addition, lecithin:cholesterol acyltransferase (LCAT) activity was measured and correlated with plasma apolipoprotein A-I concentration and particle size distribution. HDL were abnormal in all patients regardless of severity, cause, or duration of obstruction. The major HDL subfraction in normal subjects, HDL3a (radius 4.1-4.3 nm) was either absent or considerably diminished, and HDL2b (radius 5.3 nm) was also frequently absent. Very small particles comparable in size to normal HDL3c (radius 3.8 nm) were prominent. In patients with a bilirubin concentration greater than 250 mumol/l, normal HDL had totally disappeared and were replaced by large discoidal particles of radius 8.5 nm and small spherical particles of radius 3.6-3.7 nm. Both populations of particles were markedly depleted of cholesteryl ester and enriched in free cholesterol and phospholipid. The discoidal particles were rich in apolipoproteins E, A-I, A-II, and C, while the small spherical particles contained predominantly apolipoprotein A-I. LCAT activity was diminished in all subjects to 8-54% of normal, and was strongly positively correlated (r = 0.91 P less than 0.05) with plasma apolipoprotein A-I levels.  相似文献   

13.
Sertoli cells and germ cells are separated from the interstitial blood capillaries by an extracellular matrix and the peritubular cells, which constitute a barrier to the movement of plasma lipoproteins. The present study was undertaken to evaluate in vivo and in vitro the high density lipoprotein (HDL) cholesteryl ester transfer from plasma to seminiferous tubule cells in the testis of 30-day-old rats. Firstly, the transfer of HDL cholesteryl oleate from plasma to testicular compartments was evaluated and, secondly, the role of apolipoproteins A-I and E in the uptake of cholesteryl ester by Sertoli cells was investigated. At 2 h after the administration of HDL reconstituted with [3H]cholesteryl ester, dimyristoyl phosphatidylcholine and apolipoproteins, the tissue space in the interstitial cells (740 +/- 60 microliters g-1 cell protein) was fourfold higher than that in the seminiferous tubule cells (170 +/- 10 microliters g-1). Sertoli cells were isolated and incubated with [3H]cholesteryl ester HDL reconstituted with apolipoprotein A-I or E to evaluate the mechanisms of cholesteryl ester influx. At the same apolipoprotein concentration (50 micrograms apolipoprotein ml-1 medium), the uptake of [3H]cholesteryl oleate from phospholipid-apolipoprotein E vesicles was twofold higher than that with phospholipid-apolipoprotein A-I vesicles. The presence of heparin reduced the uptake of cholesteryl ester from apolipoprotein E vesicles but not with apolipoprotein A-I vesicles, indicating that uptake of apolipoprotein A-I vesicles via a secretion of apolipoprotein E by the cells themselves was not involved. These results demonstrate that plasma lipoprotein cholesterol is able to cross the testis lamina propria and that Sertoli cells take up cholesteryl ester for seminiferous tubule cell metabolism mainly via an apolipoprotein E pathway.  相似文献   

14.
A double antibody radioimmunoassay (RIA) for rat apolipoprotein A-I is reported. The ApoA-I isolated from delipidated HDL by gel filtration yielded a single band on polyacrylamide gel electrophoresis in sodium dodecyl sulfate (SDS), and its amino acid composition resembled that reported by others. ApoA-I was iodinated by lactoperoxidase and the resulting 125I-apoA-I was purified by gel filtration. Up to 93% of 125I-apoA-I was precipitable by antibody and greater than 99% of bound 125I-apoA-I was displaced by "cold" apoA-I. Other rat lopoproteins and apolipoproteins did not react in this system. Human plasma were also not reactive, nor were dog, goat, and sheep plasmas.  相似文献   

15.
The nature of the interaction of high density lipoproteins (HDL), formed during lipolysis of human very low density lipoprotein (VLDL) by perfused rat heart, with subfractions of human plasma HDL was investigated. Perfusate HDL, containing apoliproproteins (apo) E, C-II, and C-III but no apo A-I or A-II, was incubated with a subfraction of HDL (HDL-A) containing apo A-I and A-II, but devoid of apo C-II, C-III, and E. The products of the incubation were resolved by heparin-Sepharose or hydroxylapatite chromatography under conditions which allowed the resolution of the initial HDL-A and perfusate HDL. The fractions were analyzed for apolipoprotein content and lipid composition and assessed for particle size by electron microscopy. Following the incubation, the apo-E-containing lipoproteins were distinct from perfusate HDL since they contained apo A-I as a major component and apo C-II and C-III in reduced proportions. However, the HDL-A fraction contained apo C-II and C-III as major constituents. Associated with these changes in apolipoprotein composition, the apo-E-rich lipoproteins acquired cholesteryl ester from the HDL-A fraction and lost phospholipid to the HDL-A fraction. The HDL-A fraction maintained a low unesterified cholesterol/phospholipid molar ratio (0.23), while the apo-E-containing lipoproteins possessed a high ratio (0.75) characteristic of the perfusate HDL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Lipoprotein apolipoprotein synthesis by human hepatoma cells in culture   总被引:16,自引:0,他引:16  
Lipoprotein synthesis was demonstrated by double diffusion with low density lipoprotein antibody, and by 3H-labeled amino acid incorporation into proteins of the d less than 1.063 g/ml centrifugally isolated lipoprotein fraction. Radioactive label was incorporated predominantly into apolipoprotein B (60%), apolipoprotein A-I (20%) and apolipoprotein C (12%), as determined by Sepharose column chromatography and polyacrylamide gel electrophoresis. Incorporation of radioactive label into apolipoprotein B was inhibited by the presence of albumin in the medium, and was restored to control levels with the addition of 1 mM oleic acid, indicating that cell synthesis of apolipoproteins could be modified by culture conditions. The human hepatoma cell line, Hep G2, provides a potential in vitro model for the study of regulation of human hepatic lipoprotein and apolipoprotein synthesis.  相似文献   

17.
Human high-density lipoprotein (HDL) and its apolipoproteins A-I and A-II inhibit complement-mediated lysis of human and sheep erythrocytes. This inhibitory activity under study is exerted after C9 is bound to membrane-associated C5b-8 complexes but prior to completed assembly and insertion of the C5b-9 complex. In this paper, we define some structure-activity relationships of the inhibitory moiety. With the exception of weak lytic inhibitory activity found in LDL/VLDL pools and in some unconcentrated minor fractions of plasma obtained by hydrophobic chromatography, all inhibitor activity was found in fractions which contained either apolipoprotein A-I, apolipoprotein A-II, or both. Intact HDL has a high level of inhibitor activity but delipidation by chloroform-methanol extraction was associated with an increase in activity on a protein-weight basis. Purified apolipoprotein A-I and apolipoprotein A-II exhibited equal inhibitory activity, greater than that exhibited by intact HDL. Nevertheless, ultracentrifugal fractions in which no free apolipoproteins could be demonstrated still possessed inhibitory activity. These experiments suggest that delipidation of HDL is not necessary for expression of inhibitor activity, although we could not rule out the possibility that apolipoproteins in dynamic equilibrium with HDL are responsible for the inhibitor activity observed in whole serum and plasma and in HDL preparations. Limited proteinase digestion completely abolished the inhibitory activity of partially delipidated HDL. Phospholipase C had little or no effect on the inhibitory activity of delipidated HDL, apolipoprotein A-I or apolipoprotein A-II, but reduced the inhibitory activity of intact HDL. These data suggest that the phospholipid polar headgroups are not necessary for inhibitory activity. However, the loss of these headgroups is associated with decreased activity, possibly due to increased hydrophobicity of HDL, or increased association among HDL micelles, and subsequent decrease in effective molar concentration of the inhibitory moiety.  相似文献   

18.
High-density lipoprotein (HDL) is the most abundant lipoprotein particle in the plasma and a negative risk factor of atherosclerosis. By using a proteomic approach it is possible to obtain detailed information about its protein content and protein modifications that may give new information about the physiological roles of HDL. In this study the two subfractions; HDL(2) and HDL(3), were isolated by two-step discontinuous density-gradient ultracentrifugation and the proteins were separated with two-dimensional gel electrophoresis and identified with peptide mass fingerprinting, using matrix-assisted laser desorption/ionisation time of flight mass spectrometry. Identified proteins in HDL were: the dominating apo A-I as six isoforms, four of them with a glycosylation pattern and one of them with retained propeptide, apolipoprotein (apo) A-II, apo A-IV, apo C-I, apo C-II, apo C-III (two isoforms), apo E (five isoforms), the recently discovered apo M (two isoforms), serum amyloid A (two isoforms) and serum amyloid A-IV (six isoforms). Furthermore, alpha-1-antitrypsin was identified in HDL for the first time. Additionally, salivary alpha-amylase was identified as two isoforms in HDL(2), and apo L and a glycosylated apo A-II were identified in HDL(3). Besides confirming the presence of different apolipoproteins, this study indicates new patterns of glycosylated apo A-I and apo A-II. Furthermore, the study reveals new proteins in HDL; alpha-1-antitrypsin and salivary alpha-amylase. Further investigations about these proteins may give new insight into the functional role of HDL in coronary artery diseases.  相似文献   

19.
A total of six established human hepatoma-derived cell lines, including Hep3B, NPLC/PRF/5 (NPLC), Tong/HCC, Hep 10, huH1, and huH2, were screened for their ability to accumulate significant quantities of lipoproteins in serum-free medium. Only two cell lines, Hep3B and NPLC, secreted quantitatively significant amounts of lipoproteins. In a 24-h period the accumulated mass of apolipoproteins (apo) A-I, A-II, B, and E and albumin for Hep3B cells was 1.96, 1.01, 1.96, 1.90, and 53.2 micrograms/mg cell protein per 24 h, respectively. NPLC cells secreted no detectable albumin but the 24-h accumulated mass for apolipoproteins A-I, A-II, B, and E was 0.45, 0.05, 0.32, and 0.68 micrograms/mg cell protein per 24 h, respectively. Twenty four-hour serum-free medium of Hep3B cells contained lipoproteins corresponding to the three major density classes of plasma; percent protein distribution among the lipoprotein classes was 4%, 41%, and 56% for very low density lipoprotein ("VLDL"), low density lipoprotein ("LDL"), and high density lipoprotein ("HDL"), respectively. NPLC was unusual since most of the lipoprotein mass was in the d 1.063-1.235 g/ml range. Hep3B "LDL", compared with plasma LDL, contained elevated triglyceride, phospholipid, and free cholesterol. Nondenaturing gradient gel electrophoresis revealed that Hep3B "LDL" possessed a major component at 25.5 nm and a minor one at 18.3 nm. Immunoblots showed that the former contained only apoB while the latter possessed only apoE. Like plasma VLDL, Hep3B "VLDL" particles (30.5 nm diameter) isolated from serum-free medium contained apoB, apoC, and apoE. "HDL" harvested from Hep3B and NPLC medium were enriched in phospholipid and free cholesterol and poor cholesteryl ester which is similar to the composition of HepG2 "HDL." "HDL" from Hep3B and NPLC culture medium on gradient gel electrophoresis had peaks at 7.5, 10, and 11.9 nm which were comparable to major components found in HepG2 cell medium. Hep3B cells, in addition, possessed a particle that banded at 8.2 nm which appeared to be an apoA-II without apoA-I particle by Western blot analysis. The cell line also produced a subpopulation of larger-sized "HDL" not found in HepG2 medium. NPLC "HDL" had a distinct peak at 8.3 nm which by Western blot was an apoE-only particle. Electron microscopy revealed that "HDL" harvested from Hep3B and NPLC medium consisted of discoidal and small, spherical particles like those of HepG2. The "HDL" apolipoprotein content of each cell line was distinct from that of HepG2. ApoA-II at 35% of apolipoprotein distinguishes Hep3B "HDL" from HepG2, which contains only 10%.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
To study the activation of lecithin-cholesterol acyl transferase (LCAT) (phosphatidylcholine:sterol O-acyltransferase, EC 2.3.1.43) by apolipoprotein D in comparison to apolipoproteins A-I and C-I, proteoliposomes with a phosphatidylcholine/free cholesterol molar ratio of 24:1, containing 10-300 micrograms/ml of apolipoproteins were used. The proteoliposomes were prepared by the cholate dialysis technique. In all proteoliposome preparations we found rouleaux structures and stacked discs. The particles formed with apolipoprotein A-I were the most homogeneous, followed by apolipoprotein D- and apolipoprotein C-I-containing particles. Apolipoprotein A-I was the most potent LCAT activator in our system followed by apolipoproteins C-I and D. The fractional esterification rate observed with apolipoprotein D-containing substrates amounted to 15-48% that of apolipoprotein A-I-containing ones. Neither apolipoprotein A-I- nor C-I-containing proteoliposomes gave linear reaction kinetics with LCAT. Even during the first 15-30 min of incubation, the kinetics deviated strikingly from linearity at all apolipoprotein concentrations. In contrast, proteoliposomes containing apolipoprotein D exhibited linear reaction kinetics up to 60-90 min. At low apolipoprotein A-I concentrations (5 micrograms/ml), the addition of apolipoprotein D to the incubates resulted in significantly higher esterification rates as compared to substrates containing apolipoprotein A-I only. This was not the case using substrates with high apolipoprotein A-I concentrations (50 micrograms/ml). From our results we speculate that apolipoprotein D may have some stabilizing effect on the enzyme LCAT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号