首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction of small G proteins with photoexcited rhodopsin   总被引:1,自引:0,他引:1  
Bovine rod outer segment (ROS) membranes contain in addition to the heterotrimeric G protein transducin, several small GTP-binding proteins (23-27 kDa). Furthermore, these membranes contain two substrate proteins (about 22 and 24 kDa) for botulinum C3 ADP-ribosyltransferase known to ADP-ribosylate small G proteins in any mammalian cell type studied so far. Most interestingly, [32P]ADP-ribosylation of ROS membrane small G proteins by C3 is regulated by light and guanine nucleotides in a manner similar to pertussis toxin-catalyzed [32P]ADP-ribosylation of the alpha-subunit of transducin. These findings suggest that not only the heterotrimeric G protein transducin but also the C3 substrate small G proteins present in ROS membranes interact with photoexcited rhodopsin and thus contribute to its signalling action.  相似文献   

2.
Increasing evidence suggests that reversible phosphorylation of histidine residues in proteins is important for signaling cascades in eukaryotic cells. Recently, the first eukaryotic protein histidine phosphatase (PHP) was identified. The beta1-subunit of heterotrimeric G proteins (Gbeta) undergoes phosphorylation on His266 which is apparently involved in receptor-independent G protein activation. We studied whether phosphorylated Gbeta-subunits are substrates of PHP. Phosphorylated Gbetagamma dimers of the retinal G protein transducin and Gbeta in membrane preparations of H10 cells (neonatal rat cardiomyocytes) were dephosphorylated by PHP. Overexpression of PHP in H10 cells showed that PHP and Gbeta also interfere within cells. In membranes of cells overexpressing PHP, the amount of phosphorylated Gbeta was largely reduced. Both our in vitro and cell studies indicate that phosphorylated Gbeta-subunits of heterotrimeric G proteins are substrates of PHP. Therefore, PHP might play a role in the regulation of signal transduction via heterotrimeric G proteins.  相似文献   

3.
Heterotrimeric G proteins in heart disease   总被引:5,自引:0,他引:5  
Guanine nucleotide binding proteins (G proteins) are largely grouped into three classes: heterotrimeric G proteins, ras-like or small molecular weight GTP binding proteins, and others like Gh. In the heart G proteins transduce signals from a variety of membrane receptors to generate diverse effects on contractility, heart rate, and myocyte growth. This central position of G proteins forming a switchboard between extracellular signals and intracellular effectors makes them candidates possibly involved in the pathogenesis of cardiac hypertrophy, heart failure, and arrhythmia. This review focuses primarily on discoveries of heterotrimeric G protein alterations in heart diseases that help us to understand the pathogenesis and pathophysiology. We also discuss the underlying molecular mechanisms of heterotrimeric G protein signalling.  相似文献   

4.
G-protein-coupled receptors (GPCRs) mostly signal through heterotrimeric G proteins. Increasing evidence suggests that GPCRs could function in a G-protein-independent manner. Here, we show that at low concentrations of an agonist, beta(2)-adrenergic receptors (beta(2)-ARs) signal through Galpha(s) to activate the mitogen-activated protein kinase pathway in mouse embryonic fibroblast cells. At high agonist concentrations, signals are also transduced through beta(2)-ARs via an additional pathway that is G-protein-independent but tyrosine kinase Src-dependent. This new dosage-dependent switch of signaling modes of GPCRs has significant implications for GPCR intrinsic properties and desensitization.  相似文献   

5.
The lipoglycoproteins of the WNT family act on seven transmembrane-spanning Class Frizzled receptors. Here, we show that WNT-5A evokes a proliferative response in a mouse microglia-like cell line (N13), which is sensitive to pertussis toxin, thus implicating the involvement of heterotrimeric G proteins of the Gi/o family. We continue to show that WNT-5A stimulation of N13 membranes and permeabilized cells evokes the exchange of GDP for GTP of pertussis toxin-sensitive G proteins employing [γ-35S]GTP assay and activity state-specific antibodies to GTP-bound Gi proteins. Our functional analysis of the PTX-sensitivity of WNT-induced G protein activation and PCR analysis of G protein and FZD expression patterns suggest that WNT-5A stimulation leads to the activation of Gi2/3 proteins in N13 cells possibly mediated by FZD5, the predominant FZD expressed. In summary, we provide for the first time molecular proof that WNT-5A stimulation results in the activation of heterotrimeric Gi2/3 proteins in mammalian cells with physiological protein stochiometry.  相似文献   

6.
The importance of plant heterotrimeric G protein functions has recently been recognized. Rice and Arabidopsis mutants of genes coding the subunits of the G proteins have been isolated and physiological studies on these mutants have suggested that plant heterotrimeric G proteins are involved in several intra-signaling pathways driven by external signals, such as gibberellin, auxin, abscisic acid, brassinolide, ethylene, light, and elicitor. The possible functions of rice heterotrimeric G proteins in gibberellin signaling are discussed here.  相似文献   

7.
Employing [32P]ADP-ribosylation by pertussis toxin we have identified a G protein that is located in the rough endoplasmic reticulum of canine pancreas and therefore termed it GRER. Identification of GRER is based on the following data. A 41-kDa polypeptide was the only polypeptide that was [32P]ADP-ribosylated by pertussis toxin in pancreas rough microsomes. Guanosine 5'-(gamma-thio)triphosphate (GTP gamma S) and 1 mM ATP, 6 mM MgCl2, 10 mM NaF (AMF) inhibited ADP-ribosylation of this polypeptide. The [32P]ADP-ribosylated 41-kDa polypeptide was immunoprecipitated by antisera which specifically recognized the C-terminal residues of the alpha subunits of Gi and transducin, indicating that the 41-kDa polypeptide is immunologically related to the alpha subunits of heterotrimeric G proteins. Treatment with GTP gamma S resulted in a reduction in the sedimentation rate of the [32P]ADP-ribosylated, detergent-solubilized GRER. It also induced the release of the [32P]ADP-ribosylated 41-kDa polypeptide from rough microsomes in the absence of detergent, unlike ADP-ribosylated alpha subunits of plasma membrane-associated G proteins. These data are consistent with an oligomeric nature of GRER. The codistribution of GRER with an endoplasmic reticulum marker protein during subcellular fractionation and the lack of plasma membrane contamination of the rough microsomal fraction, combined with the isodensity of GRER with rough microsomes as well as the isodensity of GRER with "stripped" microsomes after extraction of rough microsomes with EDTA and 0.5 M KCl, localized GRER to the rough endoplasmic reticulum. Preliminary experiments suggest that GRER appears not to be involved in translocation of proteins across the rough endoplasmic reticulum membrane.  相似文献   

8.
ZP3 is a protein in the mammalian egg coat (zona pellucida) that binds sperm and stimulates acrosomal exocytosis, enabling sperm to penetrate the zona pellucida. The nature of the ZP3 receptor/s on sperm is a matter of considerable debate, but most evidence suggests that ZP3 binds to beta-1,4-galactosyltransferase-I (GalTase) on the sperm surface. It has been suggested that ZP3 induces the acrosome reaction by crosslinking GalTase, activating a heterotrimeric G protein. In this regard, acrosomal exocytosis is sensitive to pertussis toxin and the GalTase cytoplasmic domain can precipitate G(i) from sperm lysates. Sperm from mice that overexpress GalTase bind more soluble ZP3 and show accelerated G protein activation, whereas sperm from mice with a targeted deletion in GalTase have markedly less ability to bind soluble ZP3, undergo the ZP3-induced acrosome reaction, and penetrate the zona pellucida. We have examined the ability of GalTase to function as a ZP3 receptor and to activate heterotrimeric G proteins using Xenopus laevis oocytes as a heterologous expression system. Oocytes that express GalTase bound ZP3 but did not bind other zona pellucida glycoproteins. After oocyte maturation, ZP3 or GalTase antibodies were able to trigger cortical granule exocytosis and activation of GalTase-expressing eggs. Pertussis toxin inhibited GalTase-induced egg activation. Consistent with G protein activation, both ZP3 and anti-GalTase antibodies increased GTP-gamma[(35)S] binding as well as GTPase activity in membranes from eggs expressing GalTase. Finally, mutagenesis of a putative G protein activation motif within the GalTase cytoplasmic domain eliminated G protein activation in response to ZP3 or anti-GalTase antibodies. These results demonstrate directly that GalTase functions as a ZP3 receptor and following aggregation, is capable of activating pertussis toxin-sensitive G proteins leading to exocytosis.  相似文献   

9.
Abstract

Classically heterotrimeric G proteins have been described as the principal signal transducing machinery for G-protein-coupled receptors. Receptor activation catalyzes nucleotide exchange on the Gα protein, enabling Gα-GTP and Gβγ-subunits to engage intracellular effectors to generate various cellular effects such as second messenger production or regulation of ion channel conductivity. Recent genetic and proteomic screens have identified novel heterotrimeric G-protein-interacting proteins and expanded their functional roles. This review highlights some examples of recently identified interacting proteins and summarizes how they functionally connect heterotrimeric G proteins to previously underappreciated cellular roles.  相似文献   

10.
G protein-coupled receptors (GPCRs) represent the largest class of integral membrane protein receptors in the human genome. Despite the great diversity of ligands that activate these GPCRs, they interact with a relatively small number of intracellular proteins to induce profound physiological change. Both heterotrimeric G proteins and GPCR kinases are well known for their ability to specifically recognize GPCRs in their active state. Recent structural studies now suggest that heterotrimeric G proteins and GPCR kinases identify activated receptors via a common molecular mechanism despite having completely different folds.  相似文献   

11.
Gohla A  Klement K  Nürnberg B 《Autophagy》2007,3(4):393-395
Compelling evidence suggests that the heterotrimeric G protein G(i3) specifically transmits the antiautophagic effects of insulin and amino acids in the liver. This points to a previously unrecognized cross talk between the insulin receptor tyrosine kinase and G(i3). Interestingly, G(i3) is localized not only to plasma membranes but also to membranes of the autophagosomal compartment. Furthermore, as part of insulin's or phenylalanine's actions to inhibit autophagy, G(i3) is redistributed away from autophagosomes. Therefore, endomembrane-associated rather than plasma membrane-localized G(i3) may serve as the target of insulin's endocrine and metabolic actions. We therefore propose that the function and regulation of organelle-associated heterotrimeric G proteins may be different from their roles at the plasma membrane where they act as signal transducers of seven-transmembrane receptors. Here, we discuss recent findings and propose a function for G(i3) in mTOR-dependent signaling pathways. We hypothesize that G(i) family members may have tissue-specific roles in the regulation of autophagy under different physiological and pathological conditions.  相似文献   

12.

Background

Heterotrimeric G proteins and regulators of G protein signaling (RGS) proteins are key downstream interacting partners in the G protein coupled receptor (GPCR) signaling pathway. The highly versatile GPCR transmembrane signaling system is a consequence of the coupling of a diverse set of receptors to downstream partners that include multiple subforms of G proteins and regulatory proteins including RGS proteins, among others. While the GPCR repertoire of Ciona intestinalis, representing the basal chordate is known, the repertoire of the heterotrimeric G proteins and RGS proteins is unknown.

Methodology/Principal Findings

In the present study, we performed an in-silico genome-wide search of C. intestinalis for its complement of G proteins and RGS proteins. The identification of several one-to-one orthologs of human G proteins at the levels of families, subfamilies and types and of homologs of the human RGS proteins suggests an evolutionarily conserved structure function relationship of the GPCR signaling mechanism in the chordates.

Conclusions

The C. intestinalis genome encodes a highly conserved, albeit, limited repertoire of the heterotrimeric G protein complexes with the size of subunit types comparable with that in lower eukaryotes.  相似文献   

13.
Activation of platelets plays a central role in hemostasis as well as in various thromboembolic diseases like myocardial infarction or stroke. Most platelet activating stimuli function through receptors which couple to heterotrimeric G proteins of the Gi, Gq and G12 families. Recent studies have elucidated the roles of individual G proteins in the regulation of platelet functions like shape change, aggregation and granule secretion. The signaling pathways mediated by heterotrimeric G proteins operate synergistically to induce a full activation of platelets. This review summarizes recent progress in the understanding of upstream regulation of platelet activation through G protein-coupled receptors.  相似文献   

14.
Active G protein-coupled receptors activate heterotrimeric Gαβγ proteins by catalyzing the exchange of GDP by GTP at the Gα subunit. A paradoxical attenuation of G protein-activated inwardly rectifying potassium channels (GIRK) upon stimulation of native cells with high concentrations of agonist is known. However, a deactivation of activated G proteins by active receptors has not been experimentally studied in intact cells. We monitored GIRK currents and Go protein activation by means of fluorescence resonance energy transfer (FRET) in parallel. The results suggested that GIRK currents were paradoxically attenuated due to an inactivation of Go proteins by active α2A-adrenergic receptors. To study the mechanisms, G protein activation and receptor-G protein interactions were analyzed as a function of nucleotide type and nucleotide concentrations by means of FRET, while controlling intracellular nucleotides upon permeabilization of the cell membrane. Results suggested a receptor-catalyzed dissociation of GTP from activated heterotrimeric Gαβγ. Consequently, nucleotide-free G proteins were sequestrated in heterotrimeric conformation at the active receptor, thus attenuating downstream signaling in an agonist-dependent manner.  相似文献   

15.
植物激素作用中的G蛋白调节   总被引:1,自引:0,他引:1  
包方  杨贞标 《植物学通报》2003,20(4):395-406
Guanine nucleotide-binding proteins known as G proteins or GTPases are universal molecular switches that play a pivotal role in signal transduction. Signal transducing GTPases include heterotrimeric G proteins composed of Gα, Gβ and Gγ and monomeric small GTPases. Small GTPases are related to the α subunit of heterotrimeric G proteins but differ from heterotrimeric G proteins in the mechanisms by which they are regulated by upstream factors as well as those by which they activate downstream targets (Yang,2002).  相似文献   

16.
To test the effects of hydrostatic pressure on the coupling of receptors to guanyl nucleotide binding reglatory proteins (G proteins) in transmembrane signaling, pertussis toxin (PTX)-catalyzed [32P]ADP-ribosylation was used to probe the guanyl nucleotide-binding proteins Gi and G(o) in brain membranes from four marine teleosts. These macrourids, Coryphaenoides pectoralis, Coryphaenoides cinereus, Coryphaenoides filifer and Coryphaenoides armatus, span depths from 200 to 5400 m. Pertussis toxin specifically labelled proteins of 39-41 kDa. The PTX-catalyzed [32P]ADP-ribosylation reaction was linear for 7 h. Added guanyl nucleotides (guanosine 5'-diphosphate (GDP) and guanosine 5'-O-(3-thiotriphosphate)(GTP[S])) at concentrations up to 1000 microM did not affect ribosylation at atmospheric pressure. Under basal conditions the Gi/G(o) protein population appears to be uncoupled from receptors and bound with GDP. Pressures up to 476 atm were tested in the absence and presence of added guanyl nucleotides, 100 microM GDP and 100 microM GTP[S]. [32P]ADP-ribosylation in brain membranes from the deeper-occurring C. cinereus, C. filifer and C. armatus was not inhibited by increased pressure in the presence of 100 microM GDP. Increasing pressure decreased ribosylation in brain membranes of C. pectoralis. In the presence of 100 microM GTP[S], increased pressure inhibited ribosylation in all species. Pressure appears to enhance the efficacy of GTP[S] in dissociating the heterotrimeric holoprotein.  相似文献   

17.
Frizzled receptors have long been thought to couple to G proteins but biochemical evidence supporting such an interaction has been lacking. Here we expressed mammalian Wnt-Frizzled fusion proteins in Saccharomyces cerevisiae and tested the receptors' ability to activate the yeast mitogen-activated protein kinase (MAPK) pathway via heterotrimeric G proteins. Our results show that Frizzled receptors can interact with Gαi, Gαq, and Gαs proteins, thus confirming that Frizzled functions as a G protein coupled receptor (GPCR). However, the activity level of Frizzled-mediated G protein signaling was much lower than that of a typical GPCR and, surprisingly, was highest when coupled to Gαs. The Frizzled/Gαs interaction was further established in vivo as Drosophila expressing a loss-of-function Gαs allele rescued the photoreceptor differentiation phenotype of Frizzled mutant flies. Together, these data point to an important role for Frizzled as a nontraditional GPCR that preferentially couples to Gαs heterotrimeric G proteins.  相似文献   

18.
The generation of daughter cells of different fate and size depends on the orientation, positioning and morphology of the mitotic spindle. In both C. elegans and Drosophila, heterotrimeric G proteins have emerged as central and conserved regulators of this process. Although the same molecular players are involved in worms and flies, there are clear differences in the mechanisms used. Interestingly, recent work in mammalian cells suggests that heterotrimeric G proteins may control spindle positioning in higher organisms during symmetric and asymmetric cell divisions.  相似文献   

19.
The newly recognized regulators of G protein signaling (RGS) attenuate heterotrimeric G protein signaling pathways. We have cloned an IL-2-induced gene from human T cells, cytokine-responsive gene 1, which encodes a member of the RGS family, RGS16. The RGS16 protein binds Gialpha and Gqalpha proteins present in T cells, and inhibits Gi- and Gq-mediated signaling pathways. By comparison, the mitogen-induced RGS2 inhibits Gq but not Gi signaling. Moreover, the two RGS genes exhibit marked differences in expression patterns. The IL-2-induced expression of the RGS16 gene in T cells is suppressed by elevated cAMP, whereas the RGS2 gene shows a reciprocal pattern of regulation by these stimuli. Because the mitogen and cytokine receptors that trigger expression of RGS2 and RGS16 in T cells do not activate heterotrimeric G proteins, these RGS proteins and the G proteins that they regulate may play a heretofore unrecognized role in T cell functional responses to Ag and cytokine activation.  相似文献   

20.
Activator of G protein signalling 1 (AGS1) is a Ras-like protein that affects signalling through heterotrimeric G proteins. Previous in vitro studies suggest that AGS1 can bind to G(alpha)-GDP subunits and promote nucleotide exchange, leading to activation of intracellular signalling pathways. This model is consistent with in vivo evidence demonstrating that AGS1 activates both G(alpha)- and G(betagamma)-dependent pathways in the absence of ligand. However, it does not easily explain how AGS1 blocks G(betagamma)-dependent, but not G(alpha)-dependent, signalling following receptor activation. We have used yeast two hybrid analysis and co-immunoprecipitation studies in mammalian cells to demonstrate a direct interaction between AGS1 and the G(beta1) subunit of heterotrimeric G proteins. The interaction is specific for G(beta1) and involves the cationic region of AGS1 and the C-terminal region of G(beta1). Possible implications of this novel interaction for the activity of AGS1 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号