首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Large multinucleate (LMN) HeLa cells with more than 10–50 nuclei were produced by random fusion with polyethylene glycol. The number of nuclei in a particular stage of the cell cycle at the time of fusion was proportionate to the duration of the phase relative to the total cell cycle. The fused cells did not gain generation time. Interaction of various nuclei in these cells has been observed. The nuclei initially belonging to the G1-or S-phase required a much longer time to complete DNA synthesis than in mononucleate cells. Some of the cells reached mitosis 15 h after fusion, whereas others required 24 h. The cells dividing early, contained a larger number of initially early G1-phase nuclei than those cells dividing late. The former very often showed prematurely condensed chromosome (PCC) groups. In cells with a large number of advanced nuclei the few less advanced nuclei could enter mitosis prematurely. On the other hand, the cells having a large number of nuclei belonging initially to late S-or G2-phase took longer to reach mitosis. These nuclei have been taken out of the normal sequence and therefore failed to synthesize the mitotic factors and depended on others to supply them. Therefore the cells as a whole required a longer period to enter mitosis. Although the nuclei became synchronized at metaphase, the cells revealed a gradation in prophase progression in the different nuclei. At the ultrastructural level the effect of advanced nuclei on the less advanced ones was evident with respect to chromosome condensation and nuclear envelope breakdown. Less advanced nuclei trapped among advanced nuclei showed PCC and nuclear envelope breakdown prematurely, whereas mitotic nuclei near interphase or early prophase nuclei retained their nuclear envelopes for a much longer time. PCC is closely related to premature breakdown of the nuclear envelope. Our observations clearly indicate that chromosome condensation and nuclear envelope breakdown are two distinct events. Kinetochores with attached microtubules could be observed on prematurely condensed chromosomes. Kinetochores of fully condensed chromosomes often failed to become connected to spindle elements. This indicates that the formation of a functional spindle is distinct from the other events and may depend on different factors.  相似文献   

2.
DNA topoisomerase II has been implicated in regulating chromosome interactions. We investigated the effects of the specific DNA topoisomerase II inhibitor, teniposide on nuclear events during oocyte maturation, fertilization, and early embryonic development of fertilized Spisula solidissima oocytes using DNA fluorescence. Teniposide treatment before fertilization not only inhibited chromosome separation during meiosis, but also blocked chromosome condensation during mitosis; however, sperm nuclear decondensation was unaffected. Chromosome separation was selectively blocked in oocytes treated with teniposide during either meiotic metaphase I or II indicating that topoisomerase II activity may be required during oocyte maturation. Teniposide treatment during meiosis also disrupted mitotic chromosome condensation. Chromosome separation during anaphase was unaffected in embryos treated with teniposide when the chromosomes were already condensed in metaphase of either first or second mitosis; however, chromosome condensation during the next mitosis was blocked. When interphase two- and four-cell embryos were exposed to topoisomerase II inhibitor, the subsequent mitosis proceeded normally in that the chromosomes condensed, separated, and decondensed; in contrast, chromosome condensation of the next mitosis was blocked. These observations suggest that in Spisula oocytes, topoisomerase II activity is required for chromosome separation during meiosis and condensation during mitosis, but is not involved in decondensation of the sperm nucleus, maternal chromosomes, and somatic chromatin.  相似文献   

3.
The cytoplasmic factor responsible for chromosome condensation was introduced into mouse zygotes at different times after fertilization by fusion of the zygotes with metaphase I oocytes. In 72% of heterokaryons obtained after fusion of early zygotes (14-18 hr post-human chorionic gonadotrophin (HCG) with oocytes, the male and female pronuclei of the zygote decondensed. At the same time, the oocyte chromosomes became enclosed in a nuclear envelope and decondensed to an interphase state. However, in the rest of the heterokaryons, the chromatin of the pronuclei condensed to metaphase chromosomes, thus resulting in three sets of chromosomes. Fusion of zygotes that had begun DNA synthesis (20-22 hr post-HCG) with oocytes induced chromosome condensation of the pronuclei in 76% of the cases. In some heterokaryons, however, the oocyte chromosome decondensed to an interphase state similar to the zygote pronuclei. Fusion between late zygotes (27-29 hr post-HCG) with oocytes resulted in chromosome condensation of the pronuclei in all heterokaryons. On the basis of these results, the formation of the pronuclei and their progression toward mitosis in the zygote may be explained by changing levels of a metaphase factor in the cell, or by a balance between interphase and metaphase factors.  相似文献   

4.
Fusion of a cell in mitosis with a cell in interphase results in the condensation of chromatin in the interphase nucleus into chromosomes. Premature chromosome condensation is caused by certain proteins, called mitotic factors, that are present in the mitotic cell and are localized on chromosomes. Extracts from mitotic cells were used to immunize mice to produce monoclonal antibodies specific for cells in mitosis. Among the antibodies obtained, the MPM-4 antibody defines a 125-kD polypeptide antigen located on mitotic chromosomes by indirect immunofluorescence. Although the polypeptide antigen is present in approximately equal concentrations in extracts of interphase cells and mitotic cells, as revealed by immunoblots, it cannot be detected cytologically in the former. Cell fractionation experiments showed that the 125-kD antigen is found in the cytoplasm of interphase cells and metaphase cells, but is concentrated in fractions containing metaphase chromosomes, although not detectable in interphase nuclei. Even though the antigen is apparently primate-specific, it binds to mitotic chromosomes and prematurely condensed chromosomes in human-rodent cell hybrids without regard to the species of origin of the mitotic inducer. The presence of the antigen in the cytoplasm of interphase cells and the chromosomes of mitotic cells suggests a relationship between the presence of the antigen on chromosomes and the process of chromosome condensation and decondensation.  相似文献   

5.
True endomitosis in the anther tapetum of the liliaceous plant Eremurus is described. The nuclear membrane does not disappear, but during metaphase the chromosomes are condensed, often considerably more than in normal mitosis. When the pollen mother cells (PMCs) go through the last premeiotic mitosis, the tapetal cells have one diploid nucleus which divides while the cell remains undivided. The two diploid nuclei may undergo an endomitosis and the resulting tetraploid nuclei a second endomitosis. An alternative pathway is an ordinary mitosis—again without cell division—instead of one of the endomitotic cycles. The cytological picture in the tapetum is further complicated by restitution in anaphase and fusion of metaphase and anaphase groups during mitosis, processes which could give rise to cells with one, two, or three nuclei, instead of the expected two or four. No sign of the so-called “inhibited” mitosis is seen in these tapetal cells. When the PMCs are in leptotene-zygotene, very few tapetal nuclei are in endomitosis. When the PMCs have reached diplotene, almost 100% of cells which are not in interphase show an endomitotic stage.  相似文献   

6.
The ability of brain nuclei to give rise to condensed chromosomes was studied inRana pipiens eggs which had undergone meiotic maturation in vivo, in blastomeres of two-cell embryos which had been arrested at metaphase by the injection of cytostatic factor (CSF) from mature eggs, and in immature fully grown ovarian oocytes with and without prior CSF injection. Chromosomes from brain nuclei were found to condense within 4 h in mature eggs and this chromosome condensation activity was enhanced by the chelation of free Ca2+ in the nuclear isolation medium. Chromosomes also condensed in CSF-arrested blastomeres whether they were placed in the blastomere 30 min before the CSF injection or as long as 22 h after the CSF. Both the Ca2+-sensitive CSF, 1CSF, and the Ca2+-insensitive CSF, 2CSF, resulted in chromosome condensation within arrested blastomeres. The condensation was accompanied by the formation of multipolar spindles and asters. However, it was found that cytoplasm in CSF-arrested blastomeres does not arrest mitosis at metaphase when transferred into a cleaving blastomere. Other experiments demonstrated that chromosome condensation does not occur in ovarian oocytes even when supplied with CSF. The results are interpreted as indicating that CSF does not directly bring about chromosome condensation, but arrests the cell cycle at metaphase and stabilizes the cytoplasmic conditions of metaphase which, in turn, induce chromosome condensation in foreign nuclei as well as spindle and aster formation.  相似文献   

7.
In contrast to those of metaphase chromosomes, the shape, length, and architecture of human interphase chromosomes are not well understood. This is mainly due to technical problems in the visualization of interphase chromosomes in total and of their substructures. We analyzed the structure of chromosomes in interphase nuclei through use of high-resolution multicolor banding (MCB), which paints the total shape of chromosomes and creates a DNA-mediated, chromosome-region-specific, pseudocolored banding pattern at high resolution. A microdissection-derived human chromosome 5-specific MCB probe mixture was hybridized to human lymphocyte interphase nuclei harvested for routine chromosome analysis, as well as to interphase nuclei from HeLa cells arrested at different phases of the cell cycle. The length of the axis of interphase chromosome 5 was determined, and the shape and MCB pattern were compared with those of metaphase chromosomes. We show that, in lymphocytes, the length of the axis of interphase chromosome 5 is comparable to that of a metaphase chromosome at 600-band resolution. Consequently, the concept of chromosome condensation during mitosis has to be reassessed. In addition, chromosome 5 in interphase is not as straight as metaphase chromosomes, being bent and/or folded. The shape and banding pattern of interphase chromosome 5 of lymphocytes and HeLa cells are similar to those of the corresponding metaphase chromosomes at all stages of the cell cycle. The MCB pattern also allows the detection and characterization of chromosome aberrations. This may be of fundamental importance in establishing chromosome analyses in nondividing cells.  相似文献   

8.
BACKGROUND: The accurate duplication and packaging of the genome is an absolute prerequisite to the segregation of chromosomes in mitosis. To understand the process of cell-cycle chromosome dynamics further, we have performed the first detailed characterization of a mutation affecting mitotic chromosome condensation in a metazoan. Our combined genetic and cytological approaches in Drosophila complement and extend existing work employing yeast genetics and Xenopus in vitro extract systems to characterize higher-order chromosome structure and function. RESULTS: Two alleles of the ORC2 gene were found to cause death late in larval development, with defects in cell-cycle progression (delays in S-phase entry and metaphase exit) and chromosome condensation in mitosis. During S-phase progression in wild-type cells, euchromatin replicates early and heterochromatin replicates late. Both alleles disrupted the normal pattern of chromosomal replication, with some euchromatic regions replicating even later than heterochromatin. Mitotic chromosomes were irregularly condensed, with the abnormally late replicating regions of euchromatin exhibiting the greatest problems in mitotic condensation. CONCLUSIONS: The results not only reveal novel functions for ORC2 in chromosome architecture in metazoans, they also suggest that the correct timing of DNA replication may be essential for the assembly of chromatin that is fully competent to undergo mitotic condensation.  相似文献   

9.
Summary Epithelial kidney cell cultures of Microtus agrestis contain 10 to 25% binucleated cells. Observations of living cells under the phase contrast microscope showed that binucleated cells can arise by nuclear mitosis without cytoplasmic division. When binucleated cells divide the two nuclei are highly synchronized as they enter mitosis. In mitosis the chromosomes of both nuclei combine to a common metaphase plate leading to polyploid cells. In one case a tripolar spindle was seen after formation of a metaphase by the chromosomes of the two nuclei of a binucleated cell. This tripolar mitosis resulted in one binucleated and one mononucleated cell. The DNA-content (Feulgen photometry) and the distribution of heterochromatic bodies of the nuclei were corresponding to a tetraploid, a triploid and a haploid chromosome set. This suggests the possibility of somatic segregation of complete haploid sets.Supported by the Deutsche Forschungsgemeinschaft.  相似文献   

10.
We have isolated and partially characterized a major intranuclear matrix polypeptide from rat liver. This polypeptide, which is reversibly stabilized into the intranuclear matrix under conditions which promote intermolecular disulfide bond formation, has a Mr of 62,000 and pI of 6.8-7.2 as determined by two-dimensional IEF/SDS-PAGE. A chicken polyclonal antiserum was raised against the polypeptide purified from two-dimensional polyacrylamide gels. Affinity-purified anti-62-kD IgG was prepared and used to immunolocalize this polypeptide in rat liver tissue hepatocytes. In interphase hepatocytes the 62-kD antigen is localized in small, discrete patches within the nucleus consistent with the distribution of chromatin. The staining is most prominent at the nuclear periphery and somewhat less dense in the nuclear interior. Nucleoli and cytoplasm are devoid of staining. During mitosis the 62-kD antigen localizes to the condensed chromosomes with no apparent staining of cytoplasmic areas. The chromosomal staining during mitosis is uniform with no suggestion of the patching seen in interphase nuclei. Fractionation and immunoblotting studies using rat hepatoma tissue culture cells blocked in metaphase with colcemid confirm the chromosomal localization of this 62-kD intranuclear protein during mitosis. The 62-kD polypeptide fractionates completely with metaphase chromosome scaffolds generated by sequential treatment of isolated chromosomes with DNAse I and 1.6 M NaCl, suggesting that this major 62-kD intranuclear protein may be involved in maintaining metaphase chromosomal architecture.  相似文献   

11.
RNA synthesis almost ceases in mitosis. It is ambiguous whether this temporal, negative control of RNA synthesis is solely because of the nature of chromosomes per se, (i.e., their condensed state), or to a physical loss of RNA polymerases along with other nuclear proteins which have been shown to pass into the cytoplasm in mitosis, or to their combined feature. Aside from such regulatory considerations, a question has also been raised as to whether RNA polymerases are constituents of metaphase chromosomes. To clarify these aspects of RNA polymerase-chromatin interaction in mitosis, the enzymes in chromosomes were quantitated and their levels compared to those in interphase nuclei and cells at various phases of the cell cycle. The results show that the amounts of form I, form II, and probably form III enzymes bound to a genome-equivalent of chromatin stay constant during the cell cycle. Thus, the mechanism for the negative control of RNA synthesis in mitosis appears to exist in the chromosomes per se, but not to be directly related to the RNA polymerase levels. This quantitative conservation of chromatin-bound RNA polymerases implies that they may persist as structural components of the chromosomes in mitosis.  相似文献   

12.
A role for Drosophila SMC4 in the resolution of sister chromatids in mitosis   总被引:10,自引:0,他引:10  
BACKGROUND: Faithful segregation of the genome during mitosis requires interphase chromatin to be condensed into well-defined chromosomes. Chromosome condensation involves a multiprotein complex known as condensin that associates with chromatin early in prophase. Until now, genetic analysis of SMC subunits of the condensin complex in higher eukaryotic cells has not been performed, and consequently the detailed contribution of different subunits to the formation of mitotic chromosome morphology is poorly understood. RESULTS: We show that the SMC4 subunit of condensin is encoded by the essential gluon locus in Drosophila. DmSMC4 contains all the conserved domains present in other members of the structural-maintenance-of-chromosomes protein family. DmSMC4 is both nuclear and cytoplasmic during interphase, concentrates on chromatin during prophase, and localizes to the axial chromosome core at metaphase and anaphase. During decondensation in telophase, most of the DmSMC4 leaves the chromosomes. An examination of gluon mutations indicates that SMC4 is required for chromosome condensation and segregation during different developmental stages. A detailed analysis of mitotic chromosome structure in mutant cells indicates that although the longitudinal axis can be shortened normally, sister chromatid resolution is strikingly disrupted. This phenotype then leads to severe chromosome segregation defects, chromosome breakage, and apoptosis. CONCLUSIONS: Our results demonstrate that SMC4 is critically important for the resolution of sister chromatids during mitosis prior to anaphase onset.  相似文献   

13.
《The Journal of cell biology》1996,135(5):1207-1218
Xenopus egg extracts initiate DNA replication specifically at the dihydrofolate reductase (DHFR) origin locus with intact nuclei from late G1-phase CHO cells as a substrate, but at nonspecific sites when purified DNA is assembled by the extract into an embryonic nuclear structure. Here we show that late G1-phase CHO nuclei can be cycled through an in vitro Xenopus egg mitosis, resulting in the assembly of an embryonic nuclear envelope around G1-phase chromatin. Surprisingly, replication within these chimeric nuclei initiated at a novel specific site in the 5' region of the DHFR structural gene that does not function as an origin in cultured CHO cells. Preferential initiation at this unusual site required topoisomerase II-mediated chromosome condensation during mitosis. Nuclear envelope breakdown and reassembly in the absence of chromosome condensation resulted in nonspecific initiation. Introduction of condensed chromosomes from metaphase- arrested CHO cells directly into Xenopus egg extracts was sufficient to elicit assembly of chimeric nuclei and preferential initiation at this same site. These results demonstrate clearly that chromosome architecture can determine the sites of initiation of replication in Xenopus egg extracts, supporting the hypothesis that patterns of initiation in vertebrate cells are established by higher order features of chromosome structure.  相似文献   

14.
We studied the effects of actinomycin D, alpha-amanitin, puromycin, and cycloheximide on the cytoplasmic activity of maturing Rana pipiens oocytes that induces chromosome condensation in transplanted brain nuclei. Treatment of oocytes with each inhibitor suppressed the chromosome condensation induced by metaphase oocytes to varying degrees depending upon the dose of inhibitor, despite the fact that untreated metaphase I oocytes already possessed chromosome condensation activity (CCA). Treatment of brain nuclei before injection completely suppressed condensation at all doses used. Chromosome condensation induced by metaphase II oocyte cytoplasm, however, was insensitive to all the inhibitors, even when the brain nuclei were pretreated. Oocytes treated with alpha-amanitin throughout maturation induced chromosome condensation when tested at metaphase II. Removal of the oocyte chromosomes after the germinal vesicle (GV) broke down did not prevent the development of CCA, whereas removal of the entire GV before initiation of maturation deprived oocytes of CCA. The results suggest that metaphase I oocyte cytoplasm stimulates synthesis of brain nuclear RNAs that are translated into proteins necessary for chromosome condensation, whereas metaphase II oocytes possess all the factors for chromosome condensation. In both cases, GV nucleoplasm appears indispensable for the development of CCA, whereas immediate activity of the oocyte genome is not required.  相似文献   

15.
A N Stroud  R Nathan  S Harami 《In vitro》1975,11(2):61-68
Early chromatin condensation in interphase cells (G1) of human peripheral blood lymphocytes has been induced without virus or cell fusion by exposure to allogeneic or xenogeneic mitotic cells. The event, although similar in some ways to the phenomenon described as "premature chromosome condensation," "chromosome pulverization," and "prophasing," differs in that it does not require the presence of viruses and cell fusion before mitosis proceeds in the G1 cell. Early chromatin condensation in interphase cells induced by mitotic cells only, consists of chromatids in the early or late G1 phase of the cell cycle that are not pulverized or fragmented at mitosis. Some of the chromosomes are twice as long as the metaphase chromosomes and exhibit natural bands. Almost twice as many of these bands are produced as by trypsin treatment of metaphase chromosomes. The nuclear membrane is intact and nucleoli are present, to which some chromosomes are attached. The DNA content of the precocious chromosomes in G1 is half the amount of the metaphase complement.  相似文献   

16.
Prematurely condensed chromosomes (PCC) have been obtained by polyethylene glycol (PEG) induced fusion in suspension of the Chinese hamster metaphase cultured cells with those in interphase. As alternative approach the PEG-fusion of the Chinese hamster asynchronous culture cells in monolayer with subsequent incubation in free medium was used. A comparative cytofluorimetric investigation of PCC and chromatin of the interphase nuclei of corresponding ploidy has shown some increase (up to 10%) of acridine orange and olivomycin binding with PCC chromatin. A similar slight increase in low molecular weight ligands binding with chromatin was also found in mitotic chromosomes. The data obtained confirm the opinion about the similarity of events taking place in chromatin during physiological mitosis and premature chromosome condensation. The cytochemical study of chromatin availability to low molecular weight ligands can be used as a criterion for judging on the properties of the artificially condensed chromatin.  相似文献   

17.
Fusion between mitotic and interphase cells results in the premature condensation of the interphase chromosomes into a morphology related to the position in the cell cycle at the time of fusion. These prematurely condensed chromosomes (PCC) have been used in conjunction with u.v. irradiation to examine the interphase chromosome condensation cycle of HeLa cells. The following observations have been made: (I) There is a progressive decondensation of the chromosomes during G1 which is accentuated by u.v. irradiation: (2) The chromosomes become more resistant to u.v.-induced decondensation during G2 and mitosis. (3) There is a close correlation between the degree of chromosome decondensation and the amount of unscheduled DNA synthesis induced by u.v. irradiation during G1 and mitosis: (4) Hydroxyurea enhances the ability of u.v. irradiation to promote the decondensation of chromosomes during G1, G2 and mitosis. Hydroxyurea also potentiates the lethal action of u.v. irradiation during mitosis and G1. These data are discussed in relation to the suggestion that chromosomes undergo a progressive decondensation during G1 and condensation during G2.  相似文献   

18.
Background: The accurate duplication and packaging of the genome is an absolute prerequisite to the segregation of chromosomes in mitosis. To understand the process of cell-cycle chromosome dynamics further, we have performed the first detailed characterization of a mutation affecting mitotic chromosome condensation in a metazoan. Our combined genetic and cytological approaches in Drosophila complement and extend existing work employing yeast genetics and Xenopus in vitro extract systems to characterize higher-order chromosome structure and function.Results: Two alleles of the ORC2 gene were found to cause death late in larval development, with defects in cell-cycle progression (delays in S-phase entry and metaphase exit) and chromosome condensation in mitosis. During S-phase progression in wild-type cells, euchromatin replicates early and heterochromatin replicates late. Both alleles disrupted the normal pattern of chromosomal replication, with some euchromatic regions replicating even later than heterochromatin. Mitotic chromosomes were irregularly condensed, with the abnormally late replicating regions of euchromatin exhibiting the greatest problems in mitotic condensation.Conclusions: The results not only reveal novel functions for ORC2 in chromosome architecture in metazoans, they also suggest that the correct timing of DNA replication may be essential for the assembly of chromatin that is fully competent to undergo mitotic condensation.  相似文献   

19.
T. Kanbe  K. Tanaka 《Protoplasma》1985,129(2-3):198-213
Summary Mitosis in the dermatophyteMicrosporum canis was studied by freeze substitution and electron microscopy, and analyzed by three dimensional reconstruction from serial sections of the mitotic nuclei. The interphase nucleus has associated nucleus-associated organelle (NAO) on a portion of the outer surface of the nuclear envelope, subjacent to which there was dense intranuclear material. The NAO divided and separated on the envelope, and a spindle was formed. The spindle was composed mostly of microtubules extended between opposite NAOs. Pairing of kinetochores was observed in the spindle from an early stage of development, when chromosomes were not so condensed, and remained unchanged while chromosome condensation proceeded until metaphase. Before the completion of nuclear division, daughter nuclei were connected by a narrow spindle channel, and then the nucleolus, whose structure underwent minimal change during mitosis, was eliminated into the cytoplasm.  相似文献   

20.
Chromosome condensation is critical for accurate inheritance of genetic information. The degree of condensation, which is reflected in the size of the condensed chromosomes during mitosis, is not constant. It is differentially regulated in embryonic and somatic cells. In addition to the developmentally programmed regulation of chromosome condensation, there may be adaptive regulation based on spatial parameters such as genomic length or cell size. We propose that chromosome condensation is affected by a spatial parameter called the chromosome amount per nuclear space, or “intranuclear DNA density.” Using Caenorhabditis elegans embryos, we show that condensed chromosome sizes vary during early embryogenesis. Of importance, changing DNA content to haploid or polyploid changes the condensed chromosome size, even at the same developmental stage. Condensed chromosome size correlates with interphase nuclear size. Finally, a reduction in nuclear size in a cell-free system from Xenopus laevis eggs resulted in reduced condensed chromosome sizes. These data support the hypothesis that intranuclear DNA density regulates chromosome condensation. This suggests an adaptive mode of chromosome condensation regulation in metazoans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号