首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In our electron microscopy, acidiphils in the pituitary autografts placed in the renal capsules of immature male rats underwent a sequential transformation with the lapse of time: Within 3 and 6 days, all the somaotrophs packed with the large granules of about 350 mmu diameter dispersed. The size and number of the granules in somatotrophs were quickly and markedly reduced with severe modification of cell shape. There was evidence during this time course that Siperstein's or Moriarty's corticotrophs might be synonymous with the stellate shape of acidophils with the arrangement of small granules 150-200 mmu in diameter along the cell acidophils. The "acidophils of the small granule type" possibly related to ACTH production according to Yoshimura et al. (1974) were frequently detected in the grafts as elongated or irregularly shaped cells. Their minute granules 100-150 mmu in diameter were also distributed in row in the cytoplasmic peripheral area. Gradual loss of the minute granules below 100 mmu in diameter eventually made the acidophils to transform into agranular cells. Our own idea that ACTH secretion might correlate with a series of cells transforming along the acidophil-axis was indirectly supported by the present observation on pituitary grafts. On the other hand, basophils rapidly degenerated and died away. Ten and 20 days after autografting, the graft cells which might be principally composed of the cells of acidophil origin enormously proliferated through mitotic division, showing the homologous fine structure, without the normal cell individuality. They always contained three different size and shape of granules simulataneously. Significance of such a rapid and strong response of acidophils to the ectopic replacement in the immature male rats was discussed from the view-point of hypothalamic regulation to simple protein hormones.  相似文献   

2.
Explants and enzyme-dispersed cells of adrenal medulla from 10-12 day old rats were studied in culture for up to 3 weeks. Adrenomedullary chromaffin cells, nerve cells and satellite cells were clearly discernible. The nerve cells were few in number and did not show catecholaminespecific fluorescence. Chromaffin cells stored catecholamines, as judged by the Falck and Hillarp method, in varying amounts decreasing with age of the cultures and the distance from the explants. Exocytosis profiles observed with the electron microscope suggested that cultured chromaffin cells also released catecholamines. Moreover, the cells formed processes and frequently migrated into the outgrowth. After 6 days in culture, the great majority of chromaffin cells stored noradrenaline as revealed by electron microscopy with few adrenaline-storing cells being visible. Granular vesicles (approximately 80-240 nm in diameter) with cores of different electron densities were occasionally present in the same cell suggesting the occurrence of mixtures of primary and secondary amines. Apart from "chromaffin" granules, small clear and dense-cored vesicles (approximately 40-60 nm) were found both in the somata and cell processes. Chromaffin cells and their processes were often closely apposed and occasionally formed specialized attachment zones. As a whole, chromaffin cells in culture resembled small granule-containing cells in sympathetic ganglia. 0.5 mM dbcAMP prevented dedifferentiation of chromaffin cells as judged by the lack of processes, the size and amount of "chromaffin" granules and the high number of adrenaline-storing cells present after 6 days in culture. NGF caused a striking increase in the number of axons growing out from explants.  相似文献   

3.
Summary Magnocellular neurones in the supraoptic nucleus of the homozygous Brattleboro rat, which are unable to produce vasopressin, were investigated by immunocytochemistry to identify both the oxytocin cells and the abnormal neurones, which in normal animals would produce vasopressin. The abnormal cell profiles were significantly more rounded than those of the oxytocin cells. Both cell types showed evidence of hyperactivity, but the Golgi apparatus was more extensive in the oxytocin cells, probably as a result of the failure of the abnormal cells to produce vasopressin and its neurophysin and the resultant reduction in hormone packaging. Neurosecretory granules (NSG) 160 nm in diameter were found in the oxytocin perikarya but were absent from the abnormal cell bodies. In addition, a population of small dense granules (SDG) 100 nm in diameter was observed in both types of neurone, in numbers equal to the NSG in oxytocin cells.Injection of a low, non-lethal dose of the axonal transport inhibitor colchicine resulted in a rapid and equal accumulation of both NSG and SDG in oxytocin perikarya and of SDG in the abnormal perikarya after one day. The effects of colchicine were reversed 2–3 days after administration. The SDG, which may contain a co-transmitter or co-hormone substance, are thus produced at a similar rate to NSG, and appear to be transported from the perikarya for subsequent release at the nerve endings.  相似文献   

4.
Characterization of Newly Formed and Aged Granules in the Neurohypophysis   总被引:1,自引:0,他引:1  
Neurosecretory granules from the rat and bovine neurohypophysis were isolated and some of their biochemical and biophysical properties studied. Neurosecretory granules (NSG) from rat neurohypophysis were labeled, in vivo, with [35S]cysteine and isolated on isoosmotic gradients. Whereas 1 day after labeling most of the radioactivity was found in the lower part of the gradient, 35 days later the isotope was also located in the lighter NSG-containing fraction. Different analytical procedures showed that the lighter fraction, both in bovine and rat NSG, contain more subpopulations of neurophysin-like material than the heavier fraction. The first material to be released during stimulation of secretion, in vivo or in vitro, is mobilized from the heavy NSG. Isolation of rat NSG, at different times during and after dehydration of the animals, reveals that the newly synthesized material is found in the heavy NSG-containing fraction. Furthermore, the results indicate that the newly synthesized NSG are more resistant to lysis than the lighter granules. The results are discussed in relation to the maturation and degradation processes of the granule content and to the functional state of the NSG.  相似文献   

5.
The ultrastructure and cytochemistry of fetal porcine adrenal medullae have been studied at 60, 80, and 100 days of gestation. Adrenal medullae from fetuses at 60 days of pregnancy consisted of norepinephrine cells only. Some cells containing chromaffin granules were seen in the process of mitosis. A few epinephrine cells were present in the outer medullary zone at 80 days at pregnancy, their number increasing by the 100 day of pregnancy. Chromaffin cells containing both norepinephrine and epinephrine storing granules were also present at 80 and 100 days of gestation. Norepinephrine and epinephrine specific granular vesicles in the fetal adrenal medullary cells were smaller than those reported for the adult pig. The general ultrastructural characteristics of the porcine fetal adrenal medulla were similar to those reported for prenatal adrenal medulla of other species.  相似文献   

6.
In early pregnancy the equine placenta consists of a simple apposition of fetal and maternal epithelia, but it becomes more complex with the formation of microcotyledons between 75 and 100 days of gestation. Although the placental barrier maintains an epitheliochorial arrangement throughout the course of pregnancy, a thinning of the maternal epithelium and a progressive indentation of the chorionic epithelium by fetal capillaries shortens the length of the diffusion pathway and reduces the amount of placental tissue between fetal and maternal bloodstreams. These structural modifications may reflect the changing requirements of the fetus for O2 and other metabolites as gestation proceeds. During the first 200 days of pregnancy there is evidence of intense pinocytotic activity by the cells of the trophoblast. From the 100th day of pregnancy there is a pronounced development of smooth endoplasmic reticulum, while rough endoplasmic reticulum and irregular, dense, membrane-bound bodies are a prominent feature of the paranuclear cytoplasm from Day 200. These changes suggest that the cells of the trophoblast become more highly involved in synthetic processes with increasing gestational age.  相似文献   

7.
Virus-like particles (80 mmu to 100 mmu in diameter) occur in the endoplasmic reticulum of germ cells in the ovaries of fetal guinea pigs, and are confined to this population of cells. Using these particles as a marker, the phagocytosis of degenerating germ cells by somatic cells in the cortex of the ovary was traced.  相似文献   

8.
Electron-microscope immunocytochemistry was used to determine the subcellular distribution and presence of immunoreactive relaxin throughout pregnancy and early lactation in the corpus luteum of a marsupial, the tammar wallaby. Membrane-bound, electron-dense granules were a prominent feature of the luteal cell cytoplasm. The highest numbers of granules were observed between days 20 and 24 of the 26-day gestation, with a rapid clearance immediately after birth. Relaxin immunogold particles were present only in small, electron-dense granules (200–350 nm in diameter), with no particles observed in larger granules (>400 nm diameter), nuclei or mitochondria. Relaxin immunoreactivity was low throughout early and mid pregnancy but increased markedly between days 21 and 22 and remained high over the last 4 days of pregnancy. The number of granules containing relaxin immunogold particles and the density of immunostaining were both reduced on the day of expected births (day 26). Our data demonstrate that electron-dense granules in the luteal cell cytoplasm of a pregnant marsupial contain relaxin. The peptide is produced in greatest amounts at the end of pregnancy, consistent with a role in parturition. Received: 3 March 1997 / Accepted: 26 May 1997  相似文献   

9.
Neurophysin, vasopressin and oxytocin were localized in different portions of the supraopticohypophysial tract (SHT) using the unlabeled antibody enzyme technique at the ultrastructural level. In vasopressin-positive supraoptic perikarya, vasopressin and neurophysin were present in all neurosecretory granules. Within the zona interna of the median eminence, vasopressin and neurophysin were present in two populations of axons, one with granules of 1300-1500 A and one with granules of 900-1300 A. Following exposure of thin sections of median eminence to antiserum to neurophysin, reaction products were present in granules and in the extragranular cytoplasm in the axons with larger granules; in all other cases reaction product was confined to the granules. Vasopressin-positive fibers were also presented in large numbers of the zona externa of the median eminence and many terminated on the pituitary primary portal plexus. A few oxytocin fibers were present on the portal capillaries in the infundibular stalk. In the posterior pituitary all axon profiles were neurophysin positive. Neurophysin was present as both a granular and cytoplasmic pool. Vasopressin-containing axons account for 90% of the neuronal elements in the posterior pituitary and oxytocin for the remaining 10%. Findings on the subcellular distribution of these peptides are related to current theories on transport and release of neurohormones.  相似文献   

10.
The objectives were to (a) determine the age in development when GnRH is first detectable in the brain and (b) observe the distribution of GnRH throughout the fetal and early postnatal period. GnRH was localized immunohistochemically in fetal (15, 16, 17 and 19 days of gestation) and early postnatal (1- and 7-day-old) mice with the peroxidase-antiperoxidase (PAP) method of Sternberger. In the organum vasculosum of the lamina terminalis (OVLT) and in the median eminence of the fetus, GnRH was first detected at 17 days of gestation. In the OVLT, GnRH was found ventral to the preoptic recess of the third ventricle near the ventral surface of the brain. In addition, GnRH was located adjacent to the superficial portal capillaries near the surface of the median eminence. At 19 days of gestation, the distribution of GnRH was similar to that observed at 17 days and there was a marked increase in amount. In the newborn mouse, GnRH was undetectable in the OVLT and its content in the median eminence was decreased as compared to that observed in the fetus. By the seventh postnatal day, a considerable accumulation of GnRH had occurred in the OVLT and median eminence. In the OVLT, it was associated with capillaries ventral to the preoptic recess, and its distribution in the median eminence was similar to that in the adult mouse. In both the OVLT and median eminence of the fetal and early postnatal mouse GnRH appeared to be stored in axons and axon endings, but was not detectable in nerve cell bodies or ependymal cells. These observations suggest that the potential for neuroendocrine control of gonadotropin secretion exists in the fetal mouse early as 17 days of gestation.  相似文献   

11.
Light and electron microscopy of the pacemaker ganglion of the scorpion heart indicate that it is about 15 mm long and 50 μm in diameter and extends along the dorsal midline of the heart. The largest cell bodies (30–45 μm in diameter) occur in clusters along the length of the ganglion. The ganglion appears to be innervated with fibers from the subesophageal and first three abdominal ganglia. The cardiac ganglion is surrounded by a neurilemma and a membranous sheath. The latter is apparently derived from connective tissue cells seen outside the ganglion. Nerve fibers other than those in the neuropil areas are usually surrounded by membrane and cytoplasm of glial cells. Often there are several layers of glial membrane, forming a loose myelin. The cardiac nerves to the heart muscle are also surrounded by a neurilemma, and the axons are surrounded by glia. The motor nerves contain lucent vesicles 60–100 nm and opaque granules 120–180 nm in diameter. In the cardiac ganglion, some nerve cell bodies have complex invaginations of glial processes forming a peripheral trophospongium. In the neuropil areas, nerve cell processes are often in close apposition. The septilaminar configuration typical of gap junctions is common, with gap distances of 1–4 nm. In tissues stained with lanthanum phosphate during fixation, we found gaps with unstained connections (1–2 nm diameter) between nerve-nerve and glial-nerve cell processes. Annular or double-membrane vesicles in various stages of formation were also seen in some nerve fibers in ganglia stained with lanthanum phosphate. Nerve endings with electron-lucent vesicles 40–60 nm in diameter are abundant in the cardiac ganglion, suggesting that these contain the excitatory transmitter of intrinsic neurons of the ganglion. Less abundant are fibers with membrane-limited opaque granules, circular or oblong in shape and as much as 330 nm in their longest dimension. Also seen were some nerve endings with both vesicles and granules.  相似文献   

12.
In the chick, at the thoracic level, the dorsal branches of spinal nerves form at 4 days of incubation (stage 25) and reach the skin between 5 1/2 and 6 days (stages 28-29). At 6 days, the growing nervous peripheral processes ("axons") form large bundles (200-1,000 fibers). At 10 days, young Schwann cells divide the bundles into groups of axons. The perineurium and endoneurium differentiate between 10 and 14 days (but epineurium is formed after hatching). At 14 days of incubation, the adult pattern of cutaneous innervation is established. At this same stage, myelogenesis begins but develops mainly after hatching : 1% of the axons is myelinated at 16 days of incubation, 4% at hatching, 40% in 6-week old chickens and 60% in adults. Thus, less than 10% of myelinated axons of the adult are already myelinated at hatching. Two modes of myelogenesis were observed: 1) early myelination, starting in the embryo around axons measuring about 1 micrometer in diameter: 2) delayed myelination, occurring in the older chickens after an increase in axon diameter. These observations suggest that there is, in the development of chick skin innervation, a critical stage (14-15 days of incubation) apparently corresponding to the stabilization of cutaneous nerve supply.  相似文献   

13.
Summary Nerve fibres of the neurosecretory hypothalamo-hypophyseal tract were studied in embryonic C3H mouse neural lobes; at least four glands at each gestational day 15–19 were examined.Single axons and small bundles of fibres are visible at gestational days 15 and 16. By day 17 large fibre bundles penetrate between glial cells. They increase in number during the next two days.Electron-lucent and electron-dense vesicles are seen in the fibres of the 15th and 16th gestational days. In the 17–19 day-old embryos development is characterized by a successive rise in the number of the two types of vesicles. The mean diameter of the electron-lucent vesicles is approximately unchanged in all the stages examined (50 nm). The electron-dense vesicles increase in size from approximately 80–90 nm at days 15–16 to 140 nm at the 19th gestational day.By day 19 contacts between neurosecretory fibre terminals and the outer basement membrane of internal and peripheral capillaries are occasionally observed. The possibly adrenergic nature of a few terminals contacting peripheral vascular structures in 17 and 18 day-old embryos is suggested.This investigation was supported by grant No. 2180-020 from the Swedish Natural Science Research Council. The skilful technical assistance of Mrs. Ulla Wennerberg is gratefully acknowledged.  相似文献   

14.
Four endocrine cell types were identified ultrastructurally in the pancreas of the grass lizard, Mabuya quinquetaeniata. These cells were similar in shape, location and frequency to the previously described B-, A-, D- and PP-cells. The secretory granules of the B-cells were round or oval in profile, with an internal core of variable shape. The mean diameter of the B-cell granules was 780 nm (range 350–1000 nm). The A-cell granules were round, oval or irregular in shape and highly electron dense, with a narrow electron lucent space between the core and the limiting membrane. The mean diameter of these granules was 450 nm (range 200–750 nm). The D-cell granules were round, oval or irregular and of moderate electron density, with an average diameter of 340 nm (range 200–500 nm). The limiting membrane was closely apposed to the core or separated from it by a narrow lucent space. PP-cell granules were round with high electron density and with a narrow space between the core and the limiting membrane, and their average diameter was 150 nm (range 50–350 nm); these secretory granules accumulated at the cytoplasmic process. Tracing of the cytoplasmic processes of PP-cells in serially cut ultrathin sections revealed that most of these processes ended in the vicinity of blood capillaries, indicating that the PP-cells were endocrine rather than paracrine.  相似文献   

15.
Summary Acid phosphatase (AcPase) was localized by means of electron-microscopic histochemistry and estimated biochemically in the posterior pituitary of rats deprived of water, given 2% NaCl ad libitum, or given tap water ad libitum over 6 days. Autophagic vacuoles, some of which gave a positive AcPase reaction, often contained neurosecretory granules (NSG) in nerve endings of control animals on tap water. Nerve endings of water-deprived or salt-treated rats were depleted of NSG, but frequently contained dense membranous residual bodies, some of which appeared to enclose microvesicles. Smooth endoplasmic reticulum located in axons and terminals appears to be a source of hydrolytic enzymes for neurohypophysial lysosomes. The total amount of AcPase per posterior lobe increased progressively to 40% above control levels after 6 days of water deprivation or salt administration, and this increase may reflect accelerated production of neuronal components in neurohypophysial cells whose secretory rate has been stimulated by elevated body osmolarity.Supported by the Medical Research Council of Canada.Medical Research Associate of the Medical Research Council of Canada.  相似文献   

16.
Young male rats were castrated at 7 days of age, and treated with testosterone propionate daily from 7 to 34 days of age. At 13 months of age, motor axons and terminals innervating the levator ani (LA) muscle were stained with tetranitroblue tetrazolium (TNBT). The number of separate axons innervating individual muscle fibers was counted, and muscle fiber diameter was measured. Previous studies have shown that this androgen treatment increases muscle fiber diameter and delays synapse elimination, measured as (1) a greater percentage of muscle fibers innervated by multiple axons and (2) larger motor units. The present results indicate that the androgenic effect on synapse elimination is permanent, in that high levels of multiple innervation persisted for 12 months after the end of androgen treatment. In contrast, the effect on muscle fiber diameter was not maintained for this period. This dissociation of androgenic effects on the pattern of innervation from androgenic effects on muscle fiber diameter offers further evidence that the androgenic maintenance of multiple innervation is not dependent on muscle fiber size. In addition, circulating testosterone levels were measured at 50 and 60 days of age in animals similarly treated with androgen or oil from 7 to 34 days of age. By 60 days of age, testosterone levels in hormone-treated animals had dropped below detectability, comparable to levels in oil-treated controls. This provides additional evidence that androgen treatment during juvenile development can have permanent effects on the adult pattern of innervation in the LA muscle.  相似文献   

17.
The ultrastructural changes occurring during the differentiation of the pancreatic acinar cell were studied in White Leghorn chick embryos from the onset of pancreatic morphogenesis on day 3 of incubation (day 3) to hatching. Generally, the changes included a loss of some structures, the addition of others and modification of existing structures. Numerous cytoplasmic filaments which were present in the early migrating cells of the pancreatic bud were no longer present on day 5. The nucleoli enlarged temporarily on days 5–6 and then resumed a reduced size. The Golgi apparatus enlarged by day 6 and remained this way throughout the embryonic period. Associated with these changes was the initial appearance of the zymogen granules on day 5. The endoplasmic reticulum was present initially in both the smooth and the rough forms. The rough form and the outer nuclear membrane were both initially studded intermittently with aggregates of ribosomes. Subsequently, there was an increase in the number of attached ribosomes, an increase in the amount of rough reticulum and a decrease in smooth membranes. The ribosomes attached to the membranes appeared to augment the large free ribosome population characteristic of the early cells. Mitochondria did not appear to increase in number but there was an increase in size. The granules varied in kind, number and size with developmental age. The first granules formed (days 3–5) appeared to be miniatures of the mature type. Subsequently, a heterogeneity of granule morphologies was present.  相似文献   

18.
Summary This investigation is concerned with pineal organs of human embryos 60 to 150 days old. At every stage central nerve fibres enter the pineal organ by way of the habenular commissure, but are restricted to the pineal's proximal part. On about the 60th day of the development the sympathetic nervus conarii grows into the distal pole of the pineal organ from a dorso-caudal direction and plays the predominant part in the innervation of the pineal organ. After penetrating, it soon branches out and forms a network in the pineal tissue. Much later, not until the 5th embryonic month, sympathetic nerves appear accompanying the supplying vessels in the perivascular spaces. After a short time these nerves pierce the outer limiting basement membrane and penetrate the parenchyma. Towards the end of the 5th embryonic month the axons of the sympathetic nerves form varicosities containing clear and dense core vesicles. At this point large amounts of laminated granules appear primarily in cell processes, probably of pinealocytes. Isolated granules also occur in the varicosities of axons. The granules encountered here are most likely secretory granules.Dedicated to Professor Bargmann on his 65th birthday.  相似文献   

19.
The growth of the rat lung was studied at six ages, from 18 days of fetal life to old age (i.e. 105 weeks). Most of the increase in lung size appeared to involve cellular hyperplasia rather than hypertrophy, the DNA content of the lung increasing 96-fold from one extreme of life to the other. Pulmonary rates of protein turnover were high and were, age for age, consistently greater than the rates in the whole body. The age-related decline in the rate of lung growth corresponded to a marked decrease in the fractional rate of protein synthesis, i.e. from 93 to 33% per day during fetal and neonatal life. This in turn correlated with a 58% fall in the ribosomal capacity. From weaning onwards, synthesis rates remained between 30 and 40% per day. In contrast, the degradation of lung proteins was unchanged, at 28-38% per day throughout both fetal and post-natal life.  相似文献   

20.
The formation of interrelations of the axons of neurosecretory cells and of ependyme cells with the capillaries of primary portal plexus in rats from the 14th day of embryogenesis till the 9th day of postnatal life was studied using the light and electron microscope methods. During the whole period under study, the basal processes of the ependyme cells reach the primary portal plexus of the capillaries. The terminals of the basal processes are usually separated from the endothelium of the capillaries by two basal membranes and enclosed pericapillary space. After the birth, some basal process penetrate in the pericapillary space and terminate on the endothelium. The surface of contact of the ependyme cell processes with the external basal membrane increases with the age, this being accompanied by the increase of pinocytotic activity. The neurosecretory axons are found in the median eminence already on the 14th day of embryogenesis, but by the 20th day only they reach the external basal membrane and penetrate sometimes in the pericapillary space. After the birth, the number of axons reaching the external basal membrane and the surface of contact between them increase gradually with, apparently, a concomitant intensification of the transport of neurohormones in the portal circulatory system of the hypophysial-hypothalamic complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号