首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Recent studies have demonstrated a selection pressure for reduced mRNA secondary-structure stability near the start codon of coding sequences. This selection pressure can be observed in bacteria, archaea, and eukaryotes, and is likely caused by the requirement of efficient translation initiation in cellular organism.  相似文献   

2.
3.
Based on their activity as effectors for the ATPase activity of Escherichia coli replication factor Y and as templates for primosome-directed DNA synthesis, single-point mutations in the L- and H-strand primosome assembly sites from pBR322 DNA have been grouped into four classes (Abarzúa, P., Soeller, W., and Marians, K. (1984) J. Biol. Chem. 259, 14286-14292). In this report, the effect of various ligands on the characteristic activities of primosome assembly site class II mutants has been examined. Both Mn2+ and spermidine can, at low levels, substitute for Mg2+ in the activation of wild-type sites as effectors for factor Y-catalyzed hydrolysis of ATP. Class II mutant sites characteristically require higher levels of these ligands for activation, suggesting that the specific higher order structure of an active primosome assembly site is maintained through base pairing within the single-stranded DNA sequence. This conclusion is supported by the following. 1) Excess levels of the E. coli single-stranded DNA-binding protein can inactivate wild-type sites at 1 mM Mg2+. Either the addition of NaCl to 80 mM or an increase in the Mg2+ concentration to 5 mM protects against this inactivation. Class II mutant sites, however, cannot be stabilized by 80 mM NaCl at 1 mM Mg2+, and only some class II mutants can be stabilized at 5 mM Mg2+. 2) Active second-site revertants, isolated in vivo and in vitro, of inactive primosome assembly sites containing multiple-base substitutions have mutated to restore lost base pairs in the proposed stem and loop structure of the sites.  相似文献   

4.
The Cin recombinase is known to mediate DNA inversion between two wild-type cix sites flanking genetic determinants for the host range of bacteriophage P1. Cin can also act with low frequency at secondary (or quasi) sites (designated cixQ) that have lower homology to either wild-type site. An inversion tester sequence able to reveal novel operon fusions was integrated into the Escherichia coli chromosome, and the Cin recombinase was provided in trans. Among a total of 13 Cin-mediated inversions studied, three different cixQ sites had been used. In two rearranged chromosomes, the breakpoints of the inversions were mapped to cixQ sites in supB and ompA, representing inversions of 109 and 210 kb, respectively. In the third case, a 2.1-kb inversion was identified at a cixQ site within the integrated sequences. This derivative itself was a substrate for a second inversion of 1.5 kb between the remaining wild-type cix and still another cixQ site, thus resembling a reversion. In analogy to that which is known from DNA inversion on plasmids, homology of secondary cix sites to wild-type recombination sites is not a strict requirement for inversion to occur on the chromosome. The chromosomal rearrangements which resulted from these Cin-mediated inversions were quite stable and suffered no growth disadvantage compared with the noninverted parental strain. The mechanistic implications and evolutionary relevance of these findings are discussed.  相似文献   

5.
A method for the theoretical prediction of the antigenic determinants and the antigen-interactive receptor sites of immunological proteins from their primary structure would constitute a useful tool for their study. Such a method developed in this laboratory uses hydrophilicity, accessibility, flexibility, and recognition profiles, together with the predicted secondary structure (alpha-helices, beta-sheets, and turns). The secondary structure is determined by a modification of the method of Lim (1974), as described below. A study of human and mouse class I and class II major histocompatibility complex (MHC) antigens, central to the regulation of immune responses and to the phenomenon of graft rejection, was carried out using the above method. Comparison of the predictions with some of the available experimental and theoretical information supports the validity and usefulness of the approach.  相似文献   

6.
We analyze the correlation between pause sites and changes in enzyme boundaries within the elongation complex in template-instructed MDV-1 RNA replication. A Monte-Carlo simulation is carried out to follow the refolding events in the replica and in the portion of template strand upstream of the site where nucleotide incorporation takes place. We introduce and verify the hypothesis that the refolding events upstream of the replication fork are involved in the regulation of replication by leading to a partial relaxation of interaction between the enzyme and the growing chain. This relaxation is carried out by replacing enzyme-product binding by intra-chain pairing of the bases involved.  相似文献   

7.
K Ohta  T Shibata    A Nicolas 《The EMBO journal》1994,13(23):5754-5763
Transient double-strand breaks (DSBs) occur during Saccharomyces cerevisiae meiosis at recombination hot spots and are thought to initiate most, if not all, homologous recombination between chromosomes. To uncover the regulatory mechanisms active in DSB formation, we have monitored the change in local chromatin structure at the ARG4 and CYS3 recombination hot spots over the course of meiosis. Micrococcal nuclease (MNase) digestion of isolated meiotic chromatin followed by indirect end-labeling revealed that the DSB sites in both loci are hypersensitive to MNase and that their sensitivity increases 2- to 4-fold prior to the appearance of meiotic DSBs and recombination products. Other sensitive sites are not significantly altered. The study of hyper- and hypo-recombinogenic constructs at the ARG4 locus, also revealed that the MNase sensitivity at the DSB site correlates with both the extent of DSBs and the rate of gene conversion. These results suggest that the local chromatin structure and its modification in early meiosis play an important role in the positioning and frequency of meiotic DSBs, leading to meiotic recombination.  相似文献   

8.
Summary The family of lambdoid phages displays a varying specificity of integration into the host chromosome. The phage DNA failed to get inserted at the secondary site(s) of the gal operon (frequency <2.6x10-8) in the presence of the primary (normal) att site. By contrast, 80 and the att80 hybrid (x80) became integrated into wild-type Escherichia coli at at least two secondary att sites of the btuB locus, and the latter near purE and purC as well (frequency 2x10-3-10-4). The integration of 80 and att80 into btuB occurred with about the same frequency as in cells in which the normal insertion site had been deleted (0.7-4.0x10-6). An analysis of the secondary lysogens with the prophage in btuB showed them to be polylysogens; the additional prophage(s) was found at the primary att site. We also failed to observe the integration into other loci of 80 and att80 with the formation of secondary monolysogens (frequency <0.0035 at MOI-10-3 or 10). It is presumed that these prophages become integrated at secondary att sites only if the primary site is occupied.Abbreviations MOI multiplicity of infection (PFU/cell) - PFU plaque-forming unit - TP transducing phage - P1/HfrH P1vir multiplied on HfrH - Rif-R rifampin-resistance - Int int protein  相似文献   

9.
10.
The microtubule-associated protein tau is believed to be a natively unfolded molecule with virtually no secondary structure. However, this protein self-associates into filamentous forms in various neurodegenerative diseases. Since these filamentous forms show a remarkable degree of higher order due to their regular widths and periodicity, it is widely speculated that tau does contain secondary structures that come together to form tertiary and quaternary structures in the filamentous form. The purpose of this review is to use the primary sequence of tau along with predictive methods in an effort to identify potential secondary structural elements that could be involved in its normal and pathological functions. Although there are few predicted structural elements in the tau molecule, these analyses should lead to a better understanding of the structure/function relationships that regulate the behavior of tau.  相似文献   

11.
The integration of phage λ occurs by a reciprocal genetic exchange, promoted by the product of phage int gene, at specific sites on the phage and bacterial genomes (att's). Lysogenic bacteria thus contain two att's which bracket the inserted prophage. Genetically, the phage, bacterial and prophage att's differ from each other, indicating that each site has specific elements which segregate during recombination.In hosts that lack the bacterial att, phage integration occurs at about 0.5% the normal frequency. It results from Int-promoted recombination between the phage att and any one of many secondary sites in the bacterial genome. To analyze these sites, we measured Int-promoted recombination at the secondary prophage att's. We found that they differed from the normal prophage att's and from the phage att. The secondary sites, therefore, do not appear to carry any of the specific elements of the phage or bacterial att's.The transducing phage isolated from secondary site lysogens integrate at two loci. In the absence of helper, they insert via homology with the bacterial DNA. Co-infection with helper results in their integration at the normal bacterial att.  相似文献   

12.
The initiation of translation is a fundamental and highly regulated process in gene expression. Translation initiation in prokaryotic systems usually requires interaction between the ribosome and an mRNA sequence upstream of the initiation codon, the so-called ribosome-binding site (Shine-Dalgarno sequence). However, a large number of genes do not possess Shine-Dalgarno sequences, and it is unknown how start codon recognition occurs in these mRNAs. We have performed genome-wide searches in various groups of prokaryotes in order to identify sequence elements and/or RNA secondary structural motifs that could mediate translation initiation in mRNAs lacking Shine-Dalgarno sequences. We find that mRNAs without a Shine-Dalgarno sequence are generally less structured in their translation initiation region and show a minimum of mRNA folding at the start codon. Using reporter gene constructs in bacteria, we also provide experimental support for local RNA unfoldedness determining start codon recognition in Shine-Dalgarno--independent translation. Consistent with this, we show that AUG start codons reside in single-stranded regions, whereas internal AUG codons are usually in structured regions of the mRNA. Taken together, our bioinformatics analyses and experimental data suggest that local absence of RNA secondary structure is necessary and sufficient to initiate Shine-Dalgarno--independent translation. Thus, our results provide a plausible mechanism for how the correct translation initiation site is recognized in the absence of a ribosome-binding site.  相似文献   

13.
The A subunit of cholera toxin contains the ADP-ribosyltransferase activity in its major constituent polypeptide A1 (Mr 23,000) which is responsible for the elevation of cAMP typically observed with most mammalian cell types after exposure to the toxin. The primary structure of the A subunit, recently established by sequence analyses, is presented and used as the basis for the secondary structure prediction according to the method of Chou and Fasman. The results indicated the presence of 27% alpha-helix, 25% beta-structure, 12% beta-turn, and 36% random coil. The majority of the beta-structure consisted of six strands located in the NH2-terminal portion of the molecule (residues 33-106) covering one-half of the region corresponding to the A1 polypeptide portion. The beta-sheet domain led immediately into the active site region characterized by the alternating structures of beta-pleated sheet and alpha-helix (residues 95-140) similar to that reported for other NAD+ binding proteins. The presence of this structural feature in the region was confirmed by the use of another predictive method (J. Garnier et al., J. Mol. Biol. 1978, 120, 97-120). In addition, two regions (residues 14-18 and 200-214), previously identified to contain binding sites for the B subunit as evidenced by chemical modification and monoclonal antibody studies, were found to be in alpha-helix configuration.  相似文献   

14.
Peptide-chain secondary structure of bacteriorhodopsin.   总被引:4,自引:3,他引:4       下载免费PDF全文
Ultraviolet circular dichroism spectroscopy in the interval from 190 to 240 nm and infrared spectroscopy in the region of the amide I band (1,600 cm-1 to 1,700 cm-1) has been used to estimate the alpha-helix content and the beta-sheet content of bacteriorhodopsin. Circular dichroism spectroscopy strongly suggests that the alpha-helix content is sufficient for only five helices, if each helix is composed of 20 or more residues. It also suggests that there is substantial beta-sheet conformation in bacteriorhodopsin. The presence of beta-sheet secondary structure is further suggested by the presence of a 1,639 cm-1 shoulder on the amide I band in the infrared spectrum. Although a structural model consisting of seven alpha-helical rods has been generally accepted up to this point, the spectroscopic data are more consistent with a model consisting of five alpha-helices and four strands of beta-sheet. We note that the primary amino acid sequence can be assigned to segments of alpha-helix and beta-sheet in a way that does not require burying more than two charged groups in the hydrophobic membrane interior, contrary to the situation for any seven-helix model.  相似文献   

15.
Prediction of protein secondary structure at 80% accuracy   总被引:11,自引:0,他引:11  
Secondary structure prediction involving up to 800 neural network predictions has been developed, by use of novel methods such as output expansion and a unique balloting procedure. An overall performance of 77.2%-80.2% (77.9%-80.6% mean per-chain) for three-state (helix, strand, coil) prediction was obtained when evaluated on a commonly used set of 126 protein chains. The method uses profiles made by position-specific scoring matrices as input, while at the output level it predicts on three consecutive residues simultaneously. The predictions arise from tenfold, cross validated training and testing of 1032 protein sequences, using a scheme with primary structure neural networks followed by structure filtering neural networks. With respect to blind prediction, this work is preliminary and awaits evaluation by CASP4.  相似文献   

16.
The prediction of protein secondary structure (alpha-helices, beta-sheets and coil) is improved by 9% to 66% using the information available from a family of homologous sequences. The approach is based both on averaging the Garnier et al. (1978) secondary structure propensities for aligned residues and on the observation that insertions and high sequence variability tend to occur in loop regions between secondary structures. Accordingly, an algorithm first aligns a family of sequences and a value for the extent of sequence conservation at each position is obtained. This value modifies a Garnier et al. prediction on the averaged sequence to yield the improved prediction. In addition, from the sequence conservation and the predicted secondary structure, many active site regions of enzymes can be located (26 out of 43) with limited over-prediction (8 extra). The entire algorithm is fully automatic and is applicable to all structural classes of globular proteins.  相似文献   

17.
The development of safe and effective antiviral agents has been a slow process, largely because of the difficulty in distinguishing between virus and host functions; materials toxic to the virus are frequently harmful also to the host in which the agent resides. Recently, techniques which target nucleic acid sequences as a means of reducing gene expression have emerged. This antisense armamentarium includes ribozymes, RNA enzymes which cleave other RNA molecules in a sequence-specific manner. We wish to assess the ability of ribozymes to control animal virus infection. Reasoning that the viruses most vulnerable to ribozyme intervention will be those whose complete life cycle is based on RNA (with no DNA stage), we have begun to develop ribozymes directed toward lymphocytic choriomeningitis virus (LCMV), the prototype of the arenavirus family. Using ribozymes of the hammerhead variety, we have identified several sites on the LCMV genome which can be efficiently cleaved in trans. The efficiency of cleavage is site dependent, and we demonstrate that secondary structure at the target site can abolish ribozyme cleavage. Computer-assisted analysis indicates that much of the LCMV genome may be involved in base pairing, which may render it similarly resistant to ribozyme attack. The few remaining open regions of LCMV lack a GUC target site, on which most studies to date have relied. Here we show that AUC, CUC, and AUU are alternative sites which can be cleaved by trans-acting ribozymes. This finding is important given the aforementioned restriction of available sites, imposed by secondary structure.  相似文献   

18.
The results of several secondary-structure prediction programs were combined to produce an estimate of the regions of alpha-helix, beta-sheet and reverse turn for both chicken skeletal-muscle and yeast enolase sequences. The predicted secondary-structure content of the chicken enzyme is 27% alpha-helix and less than 10% beta-sheet, whereas in the yeast enolase a similar helix content but virtually no sheet are predicted. These results are in fair agreement with published experimental estimates of the amount of secondary structure in the yeast enzyme. The enzyme appears to be formed from three domains.  相似文献   

19.
SRP-RNA sequence alignment and secondary structure.   总被引:35,自引:21,他引:14       下载免费PDF全文
The secondary structures of the RNAs from the signal recognition particle, termed SRP-RNA, were derived buy comparative analyses of an alignment of 39 sequences. The models are minimal in that only base pairs are included for which there is comparative evidence. The structures represent refinements of earlier versions and include a new short helix.  相似文献   

20.
The change in average rotation of the DNA helix has been determined for the transfer from 0.05 M NaCl to 3.0 M CsCl, 6.2 M LiCl and 5.4 M NH4Cl. This work, combined with data at lower salt from other laboratories, allows us to relate the intensity of the CD of DNA at 275 nm directly to the change in the number of base pairs per turn. The change in secondary structure for the transfer of DNA from 0.05 M NaCl (where it is presumably in the B-form) to high salt (where the characteristic CD has been interpreted as corresponding to C-form geometry) is found to be -0.22 (+/- 0.02) base pairs per turn. In the case of mononucleosomes, where the CD indicates the "C-form", the change in secondary structure (including temperature effects) would add -0.31 (+/- 0.03) turns about the histone core to the -1.25 turns estimated from work on SV40 chromatin. Accurate winding angles and molar extinction coefficients were determined for ethidium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号