首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel Cu/Zn-containing superoxide dismutase (SOD) was isolated from the fungal strain Humicola lutea 103. Previously, a protective effect of this enzyme (HLSOD) against tumor growth and also superoxide production in Graffi tumor-bearing hamsters (TBH) were established. The aim of the present study was to investigate the effect of HLSOD on the activity of endogenous SOD and catalase in the cells from TBH during tumor progression. Our results point out that transplantation of Graffi tumor causes a significant decrease in SOD activity in the cells from liver of the hosts (from 35 to 59% compared to the control). In the tumor cells relatively low levels of SOD (about 7 U mg protein(-1)) were found, and Cu/ZnSOD was the main isoenzyme in total SOD activity. Tumor growth resulted in a reduction of catalase activity, which correlated with the process of tumor progression. A single dose (65 U) treatment with HLSOD caused an increase in endogenous SOD and catalase activity in healthy animals and resulted in restoration of the antioxidant ability in liver cells of the hosts at the early stage of tumor progression. The results show the possible participation of HLSOD in the host oxidant-antioxidant balance, which is probably one of the factors of its immunoprotective action established earlier.  相似文献   

2.
A novel thermostable MnSOD was purified to electrophoretic homogeneity from the fungal strain Humicola lutea 110. The preparation of the pure metalloenzyme was performed using treatment with acetone followed by ion exchange and gel permeation chromatography. We found that the activity of this enzyme comprises about 80% of the total superoxide dismutase activity in the crude extract, containing two proteins: MnSOD and Cu/ZnSOD. The MnSOD has a molecular mass of approximately 76 kDa and 7200 U/mg protein specific activity. It is a tetrameric enzyme with four identical subunits of 18 860 Da each as indicated by SDS-PAGE, amino acid analysis and mass spectrometry. N-terminal sequence analysis of MnSOD from the fungal strain revealed a high degree of structural homology with enzymes from other eukaryotic sources. Physicochemical properties were determined by absorption spectroscopy and circular dichroism measurements. The UV absorption spectrum was typical for an MnSOD enzyme, but displayed an increased absorption in the 280 nm region (epsilon280 = 10.4 mM(-1). cm(-1)), attributed to aromatic amino acid residues. The CD data show that MnSOD has two negative Cotton effects at 208 and 222 nm allowing the calculation of its helical content. The ellipticity at 222 nm is 6800 deg. x m(2) x dmol(-1) and thus similar to the values reported for other MnSODs. The MnSOD from H. lutea 110 is stable over a wide range of pH (4.5-8), even in the presence of EDTA. The enzyme is thermostable at 70-75 degrees C, and more stable than MnSODs from other sources.  相似文献   

3.
In order to evaluate the toxicity of multi‐walled carbon nanotubes (MWCNTs‐COOH) at a molecular level, the effect of MWCNTs‐COOH on antioxidant enzyme copper–zinc superoxide dismutase (Cu/ZnSOD) was investigated using fluorescence spectroscopy, UV/vis absorption spectroscopy, circular dichroism (CD) spectroscopy and isothermal titration calorimetry (ITC). By deducting the inner filter effect (IFE), the fluorescence emission spectra and synchronous fluorescence spectra indicated that there were interactions between MWCNTs‐COOH and Cu/ZnSOD. Moreover, the microenvironment of the amino acid residues in the enzyme was changed slightly. The UV/vis absorption and CD spectroscopic results showed appreciable conformational changes in Cu/ZnSOD. However, the results of a Cu/ZnSOD activity determination did not show any significant difference. In other words, MWCNTs‐COOH has no significant effect on enzyme activity. The ITC results showed that the binding of MWCNTs‐COOH to Cu/ZnSOD was a weak endothermic process, indicating that the predominant force of the binding was hydrophobic interaction. Moreover, it was essential to consider the IFE in fluorescence assays, which might affect the accuracy and precision of the results. The above results are helpful in evaluating the oxidative stress induced by MWCNTs‐COOH in vivo. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
A progressive suppression of the phagocytic ability of peritoneal macrophages and polymorphonuclears (PMNs) in hamsters with transplanted myeloid tumors was previously established. The i.p. application of Cu/Zn SOD, isolated from the fungal strain Humicola lutea (HLSOD) (2 injections before and 5 injections after tumor transplantation) induced the mean survival time of the animals as well as a temporally stimulating action on the macrophage and PMNs phagocyting indices. In the present work, the superoxide production of peritoneal macrophages and PMNs during 30 days of tumor progression was followed. Effects of the application of HLSOD in an optimal protective dose on the superoxide production in peritoneal macrophages and blood PMNs were examined. The spontaneous and phorbol-myristate acetate (PMA)-inducible O2- production in both types of phagocytes was 4-5-fold increased in tumor-bearing hamsters (TBH), as compared to the controls, at day 14 after tumor transplantation (the day of tumor appearance in transplanted animals). Furthermore, O2- production was also similar to the control values for the following days of observation. HLSOD treatment of TBH induced a normalization of superoxide production in macrophages and PMNs. Therefore, the established decrease of superoxide anions in phagocyting cells of TBH indicates possible effects of HLSOD on the host antioxidant defense.  相似文献   

5.
The gene for the Cu,Zn superoxide dismutase (Cu,ZnSOD) from Saccharomyces cerevisiae was cloned and expressed in Escherichia coli LMG194. The sod gene sequence obtained is 465 bp and encodes 154 amino acid residues. The sod gene sequence was cloned into the E. coli periplasmic expression vector pBAD/gIIIA, yielding pBAD-1. E. coli was transformed using the constructed plasmid pBAD-1 and induced by adding 0.02% l-arabinose to express Cu,ZnSOD protein. The results indicated that Cu,ZnSOD enzyme activity in the periplasmic space was about fivefold to sixfold higher in the recombinant E. coli strains bearing the sod gene than in the control strains. The yields of Cu,ZnSOD were about threefold higher at 48 h than at 24 h in the recombinant E. coli cells. Significantly higher survival of strains was obtained in cells bearing the sod gene than in the control cells when the cells were treated by heat shock and superoxide-generating agents, such as paraquat and menadione.  相似文献   

6.
东方山羊豆Cu/ZnSOD基因的克隆及表达分析   总被引:2,自引:0,他引:2  
Li YK  Wang XM  Gao HW  Ren AQ  Wang Z  Sun GZ 《遗传》2012,34(1):95-101
超氧化物歧化酶是一种广泛存在于真核生物中的金属酶类,在植物的抗逆性中起到重要的作用。文章采用RACE方法,从东方山羊豆中克隆了Cu/ZnSOD基因,并对其进行了初步分析。该基因cDNA序列全长935 bp,开放阅读框600 bp,编码199个氨基酸,蛋白质分子量为20.35 kDa。通过实时荧光定量PCR结果分析,该基因在东方山羊豆叶中表达量最多,茎中次之,根中最少。在NaCl和PEG诱导下,Cu/ZnSOD基因表达量先上调后下降。NaCl诱导24 h后,该基因的表达量显著低于对照。ABA胁迫抑制了该基因的表达。亚细胞定位结果表明,Cu/ZnSOD蛋白定位于叶绿体中。实验结果证明,Cu/ZnSOD基因主要在东方山羊豆的绿色组织中表达,在抵抗渗透性胁迫方面起到一定作用。  相似文献   

7.
《Free radical research》2013,47(5):299-309
Copper, zinc superoxide dismutase (Cu, ZnSOD) and manganese superoxide dismutase (MnSOD) activities were measured in mouse large intestinal mucosa during dimethylhydrazine (DMH) carcinogenesis. Mice were divided into five groups. Group A was subcutaneously injected with DMH (20mg/kg) weekly and fed with a diet containing 0.2% cholic acid (C) and 0.8% indole (I). Group B was injected with DMH and given indole feeding. Group C was treated with DMH injection and cholic acid feeding. Group D was given DMH injection alone. Group E was an age-matched control group given 0.9% NaCl injection. The experiment last 21 weeks. The Cu, ZnSOD activity of intestinal mucosa in group A animals began to increase significantly at the 7th week of the experiment. In groups B, C and D, however, this enzyme was not elevated statistically until the 16th week, and then each of these groups kept an increased Cu, ZnSOD level the rest of the experimental period. MnSOD activity was elevated statistically in group C animals at the 7th week. The enzyme activity in group A and D animals increased at the 9th week, but the enzyme activity did not increase statistically until the 11th week in group B. After the 16th week of the experiment the increased activity of MnSOD in all experimental groups returned to the level of the control group. Large intestinal cancer tissues had increased Cu, ZnSOD activity and decreased MnSOD activity.  相似文献   

8.
Copper, zinc superoxide dismutase (Cu, ZnSOD) and manganese superoxide dismutase (MnSOD) activities were measured in mouse large intestinal mucosa during dimethylhydrazine (DMH) carcinogenesis. Mice were divided into five groups. Group A was subcutaneously injected with DMH (20mg/kg) weekly and fed with a diet containing 0.2% cholic acid (C) and 0.8% indole (I). Group B was injected with DMH and given indole feeding. Group C was treated with DMH injection and cholic acid feeding. Group D was given DMH injection alone. Group E was an age-matched control group given 0.9% NaCl injection. The experiment last 21 weeks. The Cu, ZnSOD activity of intestinal mucosa in group A animals began to increase significantly at the 7th week of the experiment. In groups B, C and D, however, this enzyme was not elevated statistically until the 16th week, and then each of these groups kept an increased Cu, ZnSOD level the rest of the experimental period. MnSOD activity was elevated statistically in group C animals at the 7th week. The enzyme activity in group A and D animals increased at the 9th week, but the enzyme activity did not increase statistically until the 11th week in group B. After the 16th week of the experiment the increased activity of MnSOD in all experimental groups returned to the level of the control group. Large intestinal cancer tissues had increased Cu, ZnSOD activity and decreased MnSOD activity.  相似文献   

9.
10.
A full-length complementary DNA clone encoding a cytosolic Cu/Zn superoxide dismutase with a M(r) of 15,588 Da was isolated from a Taenia solium larvae complementary DNA library. Comparison analysis of its deduced amino acid sequence revealed a 71% identity with Schistosoma mansoni, 57.2-59.8% with mammalian and less than 54% with other helminth cytosolic Cu/Zn superoxide dismutase. The characteristic motifs and the amino acid residues involved in coordinating copper and zinc enzymatic function are conserved. The T. solium Cu/Zn superoxide dismutase was expressed in the pRSET vector. Enzymatic and filtration chromatographic analysis showed a recombinant enzyme with an activity of 2,941 U/mg protein and a native M(r) of 37 kDa. Inhibition assays using KCN, H(2)O(2), NaN(3) and SDS indicated that Cu/Zn is the metallic cofactor in the enzyme. Thiabendazole (500 microM) and albendazole (300 microM) completely inhibited the activity of T. solium Cu/Zn superoxide dismutase. Thiabendazole had no effect on bovine Cu/Zn superoxide dismutase; in contrast, albendazole had a moderate effect on it at same concentrations. Antibodies against T. solium Cu/Zn superoxide dismutase did not affect the enzymatic function; nevertheless, it cross reacts with several Taenia species, but not with trematodes, nematodes, pig, human and bovine Cu/Zn superoxide dismutase enzymes. Western blot analysis indicated the enzyme was expressed in all stages. These results indicate that T. solium possesses a Cu/Zn superoxide dismutase enzyme that can protect him from oxidant-damage caused by the superoxide anion.  相似文献   

11.
The present study aims to provide new information about the unusual location of Cu/Zn-superoxide dismutase (Cu/Zn-SOD) in lower eukaryotes such as filamentous fungi. Humicola lutea, a high producer of SOD was used as a model system. Subcellular fractions [cytosol, mitochondrial matrix, and intermembrane space (IMS)] were isolated and tested for purity using activity measurements of typical marker enzymes. Evidence, based on electrophoretic mobility, sensitivity to KCN and H2O2 and immunoblot analysis supports the existence of Cu/Zn-SOD in mitochondrial IMS, and the Mn-SOD in the matrix. Enzyme activity is almost equally partitioned between both the compartments, thus suggesting that the intermembrane space could be one of the major sites of exposure to superoxide anion radicals. The mitochondrial Cu/Zn-SOD was purified and compared with the previously published cytosolic enzyme. They have identical molecular mass, cyanide- and H2O2-sensitivity, N-terminal amino acid sequence, glycosylation sites and carbohydrate composition. The H. lutea mitochondrial Cu/Zn-SOD is the first identified naturally glycosylated enzyme, isolated from IMS. These findings suggest that the same Cu/Zn-SOD exists in both the mitochondrial IMS and cytosol. Ekaterina Krumova and Alexander Dolashki equally contributed to this work.  相似文献   

12.
13.
The cDNA of Cu, Zn containing superoxide dismutase from the Cordyceps militaris SH (cm-SOD) was overexpressed in Escherichia coli BL 21 (DE3) using the pET-21a expression vector. The recombinant cell overexpressed the protein corresponding to 35+/-3% of total bacterial protein in cytosol. The purification was performed through three steps: DEAE-FF, CM-52, and G-100. After this purification procedure, a specific activity of 27272.7 U/mg of protein was reached, corresponding to 6.1-fold purification with a yield of 85.0%. The purity was homogeneous by SDS-PAGE analysis and 94.2+/-1.0% by CZE analysis. A subunit molecular mass of the recombinant enzyme was 15704 Da with a Cu and Zn element. In addition, the dimeric and polymeric structures were observed on MALDI-TOF-MS. Isoelectric point value of 7.0 was obtained for the recombinant enzyme that was sensitive to H2O2 and KCN. The recombinant enzyme remained 80+/-2% residual activity at pH 7.8, at 50 degrees C for 4h incubation. The properties: N-terminal amino acid sequence (the first 12 amino acid residues), pI, subunit molecular mass, thermo-stability of the purified recombinant SOD are similar to that of the native Cu, Zn-SOD from C. militaris (N-cm-SOD).  相似文献   

14.
2-Mercaptobenzimidazole (MBI) is widely utilized as a corrosion inhibitor, copper-plating brightener and rubber accelerator. The residue of MBI in the environment is potentially harmful. In the present work, the toxic interaction of MBI with the important antioxidant enzyme copper-zinc superoxide dismutase (Cu/ZnSOD) was investigated using spectroscopic and molecular docking methods. MBI can interact with Cu/ZnSOD to form an MBI-Cu/ZnSOD complex. The binding constant, number of binding sites and thermodynamic parameters were measured, which indicated that MBI could spontaneously bind with Cu/ZnSOD with one binding site through hydrogen bonds and van der Waals forces. MBI bound into the Cu/ZnSOD interface of two subdomains, which caused some microenvironmental and secondary structure changes of Cu/ZnSOD and further resulted in the inhibition of Cu/ZnSOD activity. This work provides direct evidence at a molecular level to show that exposure to MBI could induce changes in the structure and function of the enzyme Cu/ZnSOD. The estimated methods in this work may be applied to probe molecular interactions of biomacromolecules and other pollutants and drugs.  相似文献   

15.
The interaction of Cu,ZnSOD with H2O2 generates an oxidant at the active site that can then cause either the inactivation of this enzyme or the oxidation of a variety of exogenous substrates. We show that the rate of inactivation, imposed by 10-mM H2O2 at 25 degrees C and pH 7.2, is not influenced by 10-mM HCO3-; whereas the oxidation of 2,2'-azino-bis-[3-ethylbenzothiazoline sulfonate] (ABTS=) is virtually completely dependent upon HCO3-. The reduction of the active site Cu(II) by H2O2, which precedes inactivation of the enzyme, occurred at the same rate in phosphate buffer with or without bicarbonate added. These results indicate that HCO3- does not play a role in facilitating the interaction of H2O2 with the active site copper, but they can be accommodated by the proposal that HCO3- is oxidized to HCO3*, which then diffuses from that site and causes the oxidation of substrates, such as ABTS=, that are too large to traverse the solvent access channel to the Cu(II).  相似文献   

16.
Amino acid sequences of the human kidney cathepsins H and L   总被引:4,自引:0,他引:4  
The complete amino acid sequences of human kidney cathepsin H (EC 3.4.22.16) and human kidney cathepsin L (EC 3.4.22.15) were determined. Cathepsin H contains 230 residues and has an Mr of 25116. The sequence was obtained by sequencing the light, heavy and mini chain and the peptides produced by cyanogen bromide cleavage of the single-chain form of the enzyme. The glycosylated mini chain is a proteolytic fragment of the propeptide of cathepsin H. Human cathepsin L has 217 amino acid residues and an Mr of 23720. Its amino acid sequence was deduced from N-terminal sequences of the heavy and light chains and from the sequences of cyanogen bromide fragments of the heavy chain. The fragments were aligned by comparison with known sequences of cathepsins H and L from other species. Cathepsins H and L exhibit a high degree of sequence homology to cathepsin B (EC 3.4.22.1) and other cysteine proteinases of the papain superfamily.  相似文献   

17.
Reactive oxygen species-scavenging enzyme Cu/Zn superoxide dismutase (SOD) regulated by peroxisome proliferator-activated receptors (PPARs) plays an important role in vascular responsiveness. However, it remains unknown whether statin restores vascular dysfunction through the activation of reactive oxygen species-scavenging enzymes in vivo. We hypothesized that pitavastatin restores vascular function by modulating oxidative stress through the activation of Cu/ZnSOD and PPAR-gamma in hypercholesterolemia. New Zealand White male rabbits were fed either normal chow or a 1% cholesterol (CHO) diet for 14 wk. After the first 7 wk, the CHO-fed rabbits were further divided into three groups: those fed with CHO feed only (HC), those additionally given pitavastatin, and those additionally given an antioxidant, probucol. The extent of atherosclerosis was assessed by examining aortic stiffness. When compared with the HC group, both the pitavastatin and probucol groups showed improved aortic stiffness by reducing aortic levels of reactive oxidative stress, nitrotyrosine, and collagen, without affecting serum cholesterol or blood pressure levels. Pitavastatin restored both Cu/ZnSOD activity (P < 0.005) and PPAR-gamma expression and activity (P < 0.01) and inhibited NAD(P)H oxidase activity (P < 0.0001) in the aorta, whereas probucol inhibited NAD(P)H oxidase activity more than did pitavastatin (P < 0.0005) without affecting Cu/ZnSOD activity or PPAR-gamma expression and activity. Importantly, Cu/ZnSOD activity was positively correlated with the PPAR-gamma activity in the aorta (P < 0.005), both of which were negatively correlated with aortic stiffness (P < 0.05). Vascular Cu/ZnSOD and PPAR-gamma may play a crucial role in the antiatherogenic effects of pitavastatin in hypercholesterolemia in vivo.  相似文献   

18.
19.
Mechanical wounding of Mesembryanthemum crystallinum leaves in planta induced a fast decrease in stomatal conductance, which was related to accumulation of hydrogen peroxide (H(2)O(2)). Higher levels of H(2)O(2) were accompanied by an increase in total activity of superoxide dismutase (SOD) and a decrease in catalase (CAT) activity. Among SOD forms, manganese SOD (MnSOD) and copper/zinc SOD (Cu/ZnSOD) seem to be especially important sources of H(2)O(2) at early stages of wounding response. Moreover, NADP-malic enzyme (NADP-ME), one of the key enzymes of primary carbon metabolism, which is also involved in stress responses, showed a strong increase in activity in wounded leaves. All these symptoms: high accumulation of H(2)O(2), high activities of Cu/ZnSOD and NADP-ME, together with the decrease of CAT activity, were also observed in the major veins of unwounded leaves. The potential role of veinal tissues as an important source of H(2)O(2) during wounding response is discussed.  相似文献   

20.
陆地棉叶绿体铜锌超氧化物歧化酶基因的克隆与表达   总被引:1,自引:0,他引:1  
以陆地棉‘CRI36'的叶片为材料,使用RACE技术克隆到了棉花叶绿体Cu/Zn-SOD酶基因。基因序列全长共1 043 bp,含有完整的开放阅读框。推导的氨基酸序列分析显示含有叶绿体信号肽,和已知植物的叶绿体Cu/Zn-SOD酶蛋白的氨基酸残基的同源性在66%~74%之间。基因的表达谱分析显示:棉花叶绿体Cu/Zn-SOD酶基因主要在叶片、茎中表达,根、花和下胚轴中没有检测到信号,即基因的表达主要在棉花的绿色组织。不同生育期的表达谱结果证实:该基因主要在苗期表达,以后表达逐渐减少。用pET-21a(+)构建了原核表达载体,在大肠杆菌BL21(DE3)的表达结果显示:表达后得到一个29.0 kD的新蛋白,其分子量与预期目标一致。对SOD酶活性的分析证实,重组菌的酶活性显著增加,证明克隆的基因具有活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号