首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We searched for SNPs in 417 regions distributed throughout the genome of three Oryza sativa ssp. japonica cultivars, two indica cultivars, and a wild rice (O. rufipogon). We found 2800 SNPs in approximately 250,000 aligned bases for an average of one SNP every 89 bp, or one SNP every 232 bp between two randomly selected strains. Graphic representation of the frequency of SNPs along each chromosome showed uneven distribution of polymorphism-rich and -poor regions, but little obvious association with the centromere or telomere. The 94 SNPs that we found between the closely related cultivars 'Nipponbare' and 'Koshihikari' can be converted into molecular markers. Our establishment of 213 co-dominant SNP markers distributed throughout the genome illustrates the immense potential of SNPs as molecular markers not only for genome research, but also for molecular breeding of rice.  相似文献   

2.
It is generally accepted that Oryza rufipogon is the progenitor of Asian cultivated rice (O. sativa). However, how the two subspecies of O. sativa (indica and japonica) were domesticated has long been debated. To investigate the genetic differentiation in O. rufipogon in relation to the domestication of O. sativa, we developed 57 subspecies-specific intron length polymorphism (SSILP) markers by comparison between 10 indica cultivars and 10 japonica cultivars and defined a standard indica rice and a standard japonica rice based on these SSILP markers. Using these SSILP markers to genotype 73 O. rufipogon accessions, we found that the indica alleles and japonica alleles of the SSILP markers were predominant in the O. rufipogon accessions, suggesting that SSILPs were highly conserved during the evolution of O. sativa. Cluster analysis based on these markers yielded a dendrogram consisting of two distinct groups: one group (Group I) comprises all the O. rufipogon accesions from tropical (South and Southeast) Asia as well as the standard indica rice; the other group (Group II) comprises all the O. rufipogon accessions from Southern China as well as the standard japonica rice. Further analysis showed that the two groups have significantly higher frequencies of indica alleles and japonica alleles, respectively. These results support the hypothesis that indica rice and japonica rice were domesticated from the O. rufipogon of tropical Asia and from that of Southern China, respectively, and suggest that the indica-japonica differentiation should have formed in O. rufipogon long before the beginning of domestication. Furthermore, with an O. glaberrima accession as an outgroup, it is suggested that the indica-japonica differentiation in O. ruffpogon might occur after its speciation from other AA-genome species.  相似文献   

3.
Shen YJ  Jiang H  Jin JP  Zhang ZB  Xi B  He YY  Wang G  Wang C  Qian L  Li X  Yu QB  Liu HJ  Chen DH  Gao JH  Huang H  Shi TL  Yang ZN 《Plant physiology》2004,135(3):1198-1205
DNA polymorphism is the basis to develop molecular markers that are widely used in genetic mapping today. A genome-wide rice (Oryza sativa) DNA polymorphism database has been constructed in this work using the genomes of Nipponbare, a cultivar of japonica, and 93-11, a cultivar of indica. This database contains 1,703,176 single nucleotide polymorphisms (SNPs) and 479,406 Insertion/Deletions (InDels), approximately one SNP every 268 bp and one InDel every 953 bp in rice genome. Both SNPs and InDels in the database were experimentally validated. Of 109 randomly selected SNPs, 107 SNPs (98.2%) are accurate. PCR analysis indicated that 90% (97 of 108) of InDels in the database could be used as molecular markers, and 68% to 89% of the 97 InDel markers have polymorphisms between other indica cultivars (Guang-lu-ai 4 and Long-te-pu B) and japonica cultivars (Zhong-hua 11 and 9522). This suggests that this database can be used not only for Nipponbare and 93-11, but also for other japonica and indica cultivars. While validating InDel polymorphisms in the database, a set of InDel markers with each chromosome 3 to 5 marker was developed. These markers are inexpensive and easy to use, and can be used for any combination of japonica and indica cultivars used in this work. This rice DNA polymorphism database will be a valuable resource and important tool for map-based cloning of rice gene, as well as in other various research on rice (http://shenghuan.shnu.edu.cn/ricemarker).  相似文献   

4.
The extent of linkage disequilibrium in rice (Oryza sativa L.)   总被引:1,自引:0,他引:1       下载免费PDF全文
Despite its status as one of the world's major crops, linkage disequilibrium (LD) patterns have not been systematically characterized across the genome of Asian rice (Oryza sativa). Such information is critical to fully exploit the genome sequence for mapping complex traits using association techniques. Here we characterize LD in five 500-kb regions of the rice genome in three major cultivated rice varieties (indica, tropical japonica, and temperate japonica) and in the wild ancestor of Asian rice, Oryza rufipogon. Using unlinked SNPs to determine the amount of background linkage disequilibrium in each population, we find that the extent of LD is greatest in temperate japonica (probably >500 kb), followed by tropical japonica (approximately 150 kb) and indica (approximately 75 kb). LD extends over a shorter distance in O. rufipogon (<40 kb) than in any of the O. sativa groups assayed here. The differences in the extent of LD among these groups are consistent with differences in outcrossing and recombination rate estimates. As well as heterogeneity between groups, our results suggest variation in LD patterns among genomic regions. We demonstrate the feasibility of genomewide association mapping in cultivated Asian rice using a modest number of SNPs.  相似文献   

5.
The rice mitochondrial genomes and their variations   总被引:1,自引:0,他引:1       下载免费PDF全文
Tian X  Zheng J  Hu S  Yu J 《Plant physiology》2006,140(2):401-410
Based on highly redundant and high-quality sequences, we assembled rice (Oryza sativa) mitochondrial genomes for two cultivars, 93-11 (an indica variety) and PA64S (an indica-like variety with maternal origin of japonica), which are paternal and maternal strains of an elite superhybrid rice Liang-You-Pei-Jiu (LYP-9), respectively. Following up with a previous analysis on rice chloroplast genomes, we divided mitochondrial sequence variations into two basic categories, intravarietal and intersubspecific. Intravarietal polymorphisms are variations within mitochondrial genomes of an individual variety. Intersubspecific polymorphisms are variations between subspecies among their major genotypes. In this study, we identified 96 single nucleotide polymorphisms (SNPs), 25 indels, and three segmental sequence variations as intersubspecific polymorphisms. A signature sequence fragment unique to indica varieties was confirmed experimentally and found in two wild rice samples, but absent in japonica varieties. The intersubspecific polymorphism rate for mitochondrial genomes is 0.02% for SNPs and 0.006% for indels, nearly 2.5 and 3 times lower than that of their chloroplast counterparts and 21 and 38 times lower than corresponding rates of the rice nuclear genome, respectively. The intravarietal polymorphism rates among analyzed mitochondrial genomes, such as 93-11 and PA64S, are 1.26% and 1.38% for SNPs and 1.13% and 1.09% for indels, respectively. Based on the total number of SNPs between the two mitochondrial genomes, we estimate that the divergence of indica and japonica mitochondrial genomes occurred approximately 45,000 to 250,000 years ago.  相似文献   

6.
水稻单核苷酸多态性及其应用现状   总被引:6,自引:0,他引:6  
刘传光  张桂权 《遗传》2006,28(6):737-744
单核苷酸多态性(single nucleotide polymorphisms, SNPs)在水稻中数量多,分布密度高,遗传稳定性高。水稻SNPs的发现方法主要有对样本DNA的PCR产物直接测序、从SSR区段检测SNPs和从基因组序列直接搜索等。目前已有多种基因分型技术运用到了水稻SNPs检测,SNPs检测的高度自动化使水稻SNPs基因分型非常方便。单核苷酸多态性在水稻遗传图谱的构建、基因克隆和功能基因组学研究、标记辅助选择育种、遗传资源分类及物种进化等方面的应用具有巨大潜力。  相似文献   

7.
F(1) hybrid sterility and ``hybrid breakdown' of F(2) and later generations in rice (Oryza sativa L.) are common and genetically complicated. We used a restriction fragment length polymorphism linkage map and F(4) progeny testing to investigate hybrid sterility and hybrid breakdown in a cross between ``widely compatible' O. sativa ssp. japonica cultivar Lemont from the Southern U.S. and ssp. indica cultivar Teqing from China. Our results implicate different genetic mechanisms in hybrid sterility and hybrid breakdown, respectively. Hybrid sterility appeared to be due to recombination within a number of putative differentiated ``supergenes' in the rice genome, which may reflect cryptic structural rearrangements. The cytoplasmic genome had a large effect on fertility of both male and female gametes in the F(1) hybrids. There appeared to be a pair of complementary genes that behaved like ``wide compatibility' genes. This pair of genes and the ``gamete eliminator' (S(1)) or ``egg killer' (S-5) may influence the phenotypic effects of presumed supergenes in hybrids. Hybrid breakdown appeared to be largely due to incompatibilities between indica and japonica alleles at many unlinked epistatic loci in the genome. These proposed mechanisms may partly account for the complicated nature of postreproductive barriers in rice.  相似文献   

8.
Ninety accessions which included Chinese common wild rice (Oryza rufipogon) from 8 provinces and traditional cultivars from lower and middle basins of Yangtze River, southeast of China and Yunnan Province as well as some commercial varieties were analyzed by RAPD with 24 primers. A scattered figure suggesting the indica-japonica and wild-domestication differentiations among 90 rice accessions was generated based on RAPD data. The results indicated that Chinese common wild rice, indica and japonica accessions were divided into 3 groups respectively. Chinese common wild rice were somewhat closer to the japonica type than the indica type.  相似文献   

9.
In the research of constructing a rice(Oryza sativa) molecular map, 4 RFLP markers, i.e. RG 229, RG 419, RG 424 and RG 353, detected the null alleles in the indica and japonica parental rice. RG 229 indicated two null alleles in indica rice Gui 630, and each of the other markers revealed a null allele in japonica rice 02428. Genetic analysis in the doubled haploid (DH) population consisting of 81 plants showed that the linkage relationships between these null allele loci and the neighboring molecular markers shown in McCouch' s rice molecular map were changed. In addition, the marker RG 684 could detect its null alleles in some DH plants, though the RG 684 sequence did exist in the genomes of both parents. Appearence of null alleles might be induced by transpositional changes on chromosomes.  相似文献   

10.
Two hundred and seventy-five accessions of cultivated Asian rice and 44 accessions of AA genome Oryza species were classified into 8 chloroplast (cp) genome types (A-H) based on insertion-deletion events at 3 regions (8K, 57K, and 76K) of the cp genome. The ancestral cp genome type was determined according to the frequency of occurrence in Oryza species and the likely evolution of the variable 57K region of the cp genome. When 2 nucleotide substitutions (AA or TT) were taken into account, these 8 cp types were subdivided into 11 cp types. Most indica cultivars had 1 of 3 cp genome types that were also identified in the wild relatives of rice, O. nivara and O. rufipogon, suggesting that the 3 indica cp types had evolved from distinct gene pools of the O. rufipogon - O. nivara complex. The majority of japonica cultivars had 1 of 3 different cp genome types. One of these 3 was identified in O. rufipogon, suggesting that at least 1 japonica type is derived from O. rufipogon with the same cp genome type. These results provide evidence to support a polyphyletic origin of cultivated Asian rice from at least 4 principal lineages in the O. rufipogon - O. nivara complex.  相似文献   

11.
12.
Repetitive DNA sequences are useful molecular markers for studying plant genome evolution and species diversity. The authors report the isolation and characterization of repetitive DNA sequences (pOs139) from Oryza sativa cuhivars "Zhaiyeqing". By Southern blot analysis, the authors discovered that pOs139 sequences were organized not only tandemly, but also highly specifc for the AA genome of Oryza genus. Sequence analysis revealed that the clone pOs139 contains a 355 bp repetitive unit. The genomic DNA of 29 Chinese common wild accessions, and 43 cultivated rice accessions, were analyzed by Southern blot with pOs139 as a probe. The results illustrated that there was significant difference in hybridization patterns between japonica and indica subspecies. Hybridization bands of indica subspecies were much more than those of japonica, and the Chinese common wild rice was similar to indica in hybridization patterns. The copy number estimated by dot blot hybridization analysis indicated that a considerable degree of variation existed among different accessions of O. sativa and the Chinese common wild rice. It is interesting to note that japonica subspecies contains relatively low copy numbers of pOs139-related repetitive DNA sequences, while the indica and Chinese common wild rice contain relatively high copy numbers.  相似文献   

13.
Oryza rufipogon Griff. is a wild progenitor of the Asian cultivated rice Oryza sativa. To better understand the genomic diversity of the wild rice, high-quality reference genomes of O. rufipogon populations are needed, which also facilitate utilization of the wild genetic resources in rice breeding. In this study, we generated a chromosome-level genome assembly of O. rufipogon using a combination of short-read sequencing, single-molecule sequencing, BioNano and Hi-C platforms. The genome sequence(399.8 Mb) was assembled into 46 scaffolds on the 12 chromosomes, with contig N50 and scaffold N50 of 13.2 Mb and 20.3 Mb,respectively. The genome contains 36,520 protein-coding genes, and 49.37% of the genome consists of repetitive elements. The genome has strong synteny with those of the O. sativa subspecies indica and japonica, but containing some large structural variations. Evolutionary analysis unveiled the polyphyletic origins of O. sativa, in which the japonica and indica genome formations involved different divergent O. rufipogon(including O. nivara) lineages, accompanied by introgression of genomic regions between japonica and indica. This high-quality reference genome provides insight on the genome evolution of the wild rice and the origins of the O. sativa subspecies, and valuable information for basic research and rice breeding.  相似文献   

14.
Microsatellite markers containing simple sequence repeats (SSR) are a valuable tool for genetic analysis. Our objective is to augment the existing RFLP map of rice with simple sequence length polymorphisms (SSLP). In this study, we describe 20 new microsatellite markers that have been assigned to positions along the rice chromosomes, characterized for their allelic diversity in cultivated and wild rice, and tested for amplification in distantly related species. Our results indicate that the genomic distribution of microsatellites in rice appears to be random, with no obvious bias for, or clustering in particular regions, that mapping results are identical in intersubspecific and interspecific populations, and that amplification in wild relatives ofOryza sativa is reliable in species most closely related to cultivated rice but becomes less successful as the genetic distance increases. Sequence analysis of SSLP alleles in three relatedindica varieties demonstrated the clustering of complex arrays of SSR motifs in a single 300-bp region with independent variation in each. Two microsatellite markers amplified multiple loci that were mapped onto independent rice chromosomes, suggesting the presence of duplicated regions within the rice genome. The availability of increasing numbers of mapped SSLP markers can be expected to increase the power and resolution of genome analysis in rice.  相似文献   

15.
The availability of the draft genome sequence of Oryza sativa L ssp. indica has made it possible to study the rice tRNA genes. A total of 596 tRNA genes, including 3 selenocysteine tRNA genes and one suppressor tRNA gene are identified in 127551 rice contigs. There are 45 species of tRNA genes and the revised wobble hypothesis proposed by Guthrie and Abelson is perfectly obeyed. The relationship between codon usage and the number of corresponding tRNA genes is discussed. Redundancy may exist in the present list of tRNA genes and novel ones may be found in the future. A set of 33 tRNA genes is discovered in the complete chloroplast genome of Oryza sativa L. ssp. indica. These tRNA genes are identical to those in ssp. japonica identified by us independently from the origional annotation.  相似文献   

16.
Molecular mapping of quantitative trait loci in japonica rice.   总被引:1,自引:0,他引:1  
E D Redo?a  D J Mackill 《Génome》1996,39(2):395-403
Rice (Oryza sativa L.) molecular maps have previously been constructed using interspecific crosses or crosses between the two major subspecies: indica and japonica. For japonica breeding programs, however, it would be more suitable to use intrasubspecific crosses. A linkage map of 129 random amplified polymorphic DNA (RAPD) and 18 restriction fragment length polymorphism (RFLP) markers was developed using 118 F2 plants derived from a cross between two japonica cultivars with high and low seedling vigor, Italica Livorno (IL) and Labelle (LBL), respectively. The map spanned 980.5 cM (Kosambi function) with markers on all 12 rice chromosomes and an average distance of 7.6 cM between markers. Codominant (RFLP) and coupling phase linkages (among RAPDs) accounted for 79% of total map length and 71% of all intervals. This map contained a greater percentage of markers on chromosome 10, the least marked of the 12 rice chromosomes, than other rice molecular maps, but had relatively fewer markers on chromosomes 1 and 2. We used this map to detect quantitative trait loci (QTL) for four seedling vigor related traits scored on 113 F3 families in a growth chamber slantboard test at 18 degrees C. Two coleoptile, five root, and five mesocotyl length QTLs, each accounting for 9-50% of the phenotypic variation, were identified by interval analysis. Single-point analysis confirmed interval mapping results and detected additional markers significantly influencing each trait. About two-thirds of alleles positive for the putative QTLs were from the high-vigor parent, IL. One RAPD marker (OPAD13720) was associated with a IL allele that accounted for 18.5% of the phenotypic variation for shoot length, the most important determinant of seedling vigor in water-seeded rice. Results indicate that RAPDs are useful for map development and QTL mapping in rice populations with narrow genetic base, such as those derived from crosses among japonica cultivars. Other potential uses of the map are discussed. Key words : QTL mapping, RAPD, RFLP, seedling vigor, japonica, Oryza sativa.  相似文献   

17.
以耐冷性强弱不同的栽培稻为参比,通过自然冷胁迫与(或)人工冷处理,比较了茶陵野生稻与不同类型栽培稻经冷胁迫后的秧苗成活率、净光合速率和光系统Ⅱ光化学量子效率的变化,对茶陵野生稻苗期耐冷性作出评估.结果表明:经冷胁迫后,茶陵野生稻上述指标值的变化小于典型籼稻和爪哇稻,大于典型粳稻.说明茶陵野生稻苗期耐冷性强于籼稻和爪哇稻,但弱于粳稻.  相似文献   

18.
Zhu Q  Ge S 《The New phytologist》2005,167(1):249-265
The A-genome group in Oryza consists of eight diploid species and is distributed world-wide. Here we reconstructed the phylogeny among the A-genome species based on sequences of nuclear genes and MITE (miniature inverted-repeat transposable elements) insertions. Thirty-seven accessions representing two cultivated and six wild species from the A-genome group were sampled. Introns of four nuclear single-copy genes on different chromosomes were sequenced and analysed by both maximum parsimony (MP) and Bayesian inference methods. All the species except for Oryza rufipogon and Oryza nivara formed a monophyletic group and the Australian endemic Oryza meridionalis was the earliest divergent lineage. Two subspecies of Oryza sativa (ssp. indica and ssp. japonica) formed two separate monophyletic groups, suggestive of their polyphyletic origin. Based on molecular clock approach, we estimated that the divergence of the A-genome group occurred c. 2.0 million years ago (mya) while the two subspecies (indica and japonica) separated c. 0.4 mya. Intron sequences of nuclear genes provide sufficient resolution and are informative for phylogenetic inference at lower taxonomic levels.  相似文献   

19.
SSR (simple sequence repeat) and AFLP (amplified fragment length polymorphism) are PCR-based molecular markers developed in recent years. In this study, the authors analyzed the polymorphisms, inheritance and distribution of SSR and AFLP markers using an F2 population from a cross between cultivar "Aijiao Nante" ( Oryza sativa L. ssp. indica) and an accession of the common wild rice ( O. rufipogon Griff). A total of 200 new markers were obtained including 28 SSR and 172 AFLP markers. Six of the 28 SSR markers were developed by National Key Laboratory of Crop Genetic Improvement (NKLCGI) using DNA sequences from GenBank and the other 22 were from data published previously. The 172 AFLP markers were from a total 228 polymorphic bands amplified using 25 selected primer combinations. Mapping of the 200 new markers using NKLCGI' S previously developed RFLP map based on the same F2 population resolved these markers to all 12 rice chromosomes. Integration of the SSR and AFLP markers into the RFLP map resulted in a high density molecular linkage map containing 612 polymorphic loci.  相似文献   

20.
中国普通野生稻遗传分化的RAPD研究   总被引:18,自引:0,他引:18  
多数学者已认定亚洲栽培稻(OryzasativaL.)的祖先是普通野生稻(O.rufipogon)。然而栽培稻的籼、粳分化是发生在驯化之前还是在驯化之后,也即普通野生稻是否存在籼、粳分化的问题,是十几年来稻作起源研究中争论的热点之一。Second[1]用多个同工酶位点的分析结果得出结论,普通野生稻在驯化为栽培稻之前就已经发生了籼、粳分化,即有籼型普通野生稻和粳型普通野生稻之分。Morishima和Gadrinab[2]用24个形态和生理性状及12个同工酶位点和杂交亲合力等方法证明普通野生稻没有发…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号