首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bak but not Bax is essential for Bcl-xS-induced apoptosis   总被引:2,自引:0,他引:2  
Bcl-x(S), a proapoptotic member of the Bcl-2 protein family, is localized in the mitochondria and induces apoptosis in a caspase- and BH3-dependent manner by a mechanism involving cytochrome c release. The way in which Bcl-x(S) induces caspase activation and cytochrome c release, as well as the relationship between Bcl-x(S) and other proapoptotic members of the Bcl-2 family, is not known. Here we used embryonic fibroblasts derived from mice deficient in the multidomain proapoptotic members of the Bcl-2 family (Bax and Bak) and the apoptotic components of the apoptosome (Apaf-1 and caspase-9) to unravel the cascade of events by which Bcl-x(S) promotes apoptosis. Our results show that Bak but not Bax is essential for Bcl-x(S)-induced apoptosis. Bcl-x(S) induced activation of Bak, which in turn promoted apoptosis by apoptosome-dependent and -independent pathways. These findings provide the first evidence that a proapoptotic Bcl-2 family protein induces apoptosis exclusively via Bak.  相似文献   

2.
We have previously reported that pretreatment of HL-60 human promyelocytic leukemia cells with the non-tumor-promoting protein kinase C (PKC) activator bryostatin 1 potentiates induction of apoptosis by the antimetabolite 1-[beta-D-arabinofuranosyl]cytosine (ara-C) (Biochem Pharmacol 47:839,1994). To determine whether this phenomenon results from altered expression of Bcl-2 or related proteins, Northern and Western analysis was employed to assess the effects of bryostatin 1 and other PKC activators on steady-state levels of Bcl-2, Bax, Bcl-x, and Mcl-1 mRNA and protein. Pretreatment of cells for 24 h with 10 nM bryostatin 1, or, to a lesser extent, the stage-1 tumor-promoter phorbol dibutyrate (PDB) significantly potentiated apoptosis induced by ara-C (100 microM; 6 h); in contrast, equivalent exposure to the stage-2 tumor promoter, mezerein (MZN), which, unlike bryostatin 1, is a potent inducer of differentiation in this cell line, failed to modify ara-C-related cell death. Neither bryostatin 1 nor PDB altered expression of bcl-2/Bcl-2 over this time frame. In contrast, MZN down-regulated bcl-2 mRNA levels, but this effect was not accompanied by altered expression of Bcl-2 protein. None of the PKC activators modified expression of Bax or Bcl-x(L) mRNA or protein; levels of Bcl-x(S) were undetectable in both treated and untreated cells. However, expression of Mcl-1 mRNA and protein increased modestly after treatment with either bryostatin 1 or PDB, and to a greater extent following exposure to MZN. Combined treatment of cells with bryostatin 1 and MZN resulted in undiminished potentiation of ara-C-mediated apoptosis and by antagonism of cellular maturation. These effects were accompanied by unaltered expression of Bcl-2, Bax, and Bcl-x(L), and by a further increase in Mcl-1 protein levels. When cells were co-incubated with bryostatin 1 and calcium ionophore (A23187), an identical pattern of expression of Bcl-2 family members was observed, despite the loss of bryostatin 1's capacity to potentiate apoptosis, and the restoration of its ability to induce differentiation. Finally, treatment of cells with bryostatin 1+/-ara-C (but not ara-C alone) resulted in a diffuse broadening of the Bcl-2 protein band, whereas exposure of cells to taxol (250 nM, 6 h) led to the appearance of a distinct Bcl-2 species with reduced mobility, phenomena compatible with protein phosphorylation. Together, these findings indicate that the ability of bryostatin 1 to facilitate drug-induced apoptosis in human myeloid leukemia cells involves factors other than quantitative changes in the expression of Bcl-2 family members, and raise the possibility that qualitative alterations in the Bcl-2 protein, such as phosphorylation status, may contribute to this capacity. They also suggest that increased expression of Mcl-1 occurs early in the pre-commitment stage of myeloid cell differentiation, and that this event does not protect cells from drug-induced apoptosis.  相似文献   

3.
The BH3 domain of Bcl-2 proteins was regarded as indispensable for apoptosis induction and for mutual regulation of family members. We recently described Bcl-x(AK), a proapoptotic splice product of the bcl-x gene, which lacks BH3 but encloses BH2, BH4 and a transmembrane domain. It remained however unclear, how Bcl-x(AK) may trigger apoptosis.For efficient overexpression, Bcl-x(AK) was subcloned in an adenoviral vector under Tet-OFF control. The construct resulted in significant apoptosis induction in melanoma and nonmelanoma cell lines with up to 50% apoptotic cells as well as decreased cell proliferation and survival. Disruption of mitochondrial membrane potential, and cytochrome c release clearly indicated activation of the mitochondrial apoptosis pathways. Both Bax and Bak were activated as shown by clustering and conformation analysis. Mitochondrial translocation of Bcl-x(AK) appeared as an essential and initial step. Bcl-x(AK) was critically dependent on either Bax or Bak, and apoptosis was abrogated in Bax/Bak double knockout conditions as well by overexpression of Bcl-2 or Bcl-x(L). A direct interaction with Bcl-2, Bax, Bad, Noxa or Puma was however not seen by immunoprecipitation. Thus besides BH3-mediated interactions, there exists an additional way for mutual regulation of Bcl-2 proteins, which is independent of the BH3. This pathway appears to play a supplementary role also for other proapoptotic family members, and its unraveling may help to overcome therapy resistance in cancer.  相似文献   

4.
To investigate the expression of Bcl-2, Bcl-x, Mcl-1, Bax and Bak proteins in human uterine leiomyomas and homologous myometrium during the menstrual cycle and after menopause.The expression of Bcl-2, Bcl-x, Mcl-1, Bax and Bak in leiomyomas (n=24) and myometrial samples (n=22) from women with leiomyomas was measured by immunohistochemistry and Western blot. Measured by immunohistochemistry, a significant difference between leiomyomas and myometrium was observed only for the Bax protein, in tissues obtained from women in the secretory phase of the menstrual cycle. The Bcl-2 staining was more abundant in leiomyomas than in myometrium only in tissues obtained in the proliferative phase of the cycle. Bcl-2 was more abundant in leiomyomas from women of fertile age than in leiomyomas from menopausal women. No significant differences were observed for the Bcl-x or Bak proteins, whereas the Mcl-1 protein was significantly less abundant in secretory phase leiomyomas than in leiomyomas from menopausal women. Western blot analysis based on pools of tissue extracts from the different groups essentially confirmed the data obtained by immunohistochemistry. Bcl-2 family proteins are expressed in leiomyomas and myometrium in different phases related to and influenced by gonadal steroids. These proteins are suggested to interact with each other in the regulation of programmed cell death, apoptosis, but their specific role in growth control of uterine leiomyomas remains to be investigated.  相似文献   

5.
Although expression of Bcl-2 has been shown to prevent apoptosis under many circumstances, there are several systems in which Bcl-2 fails to promote cell survival. We have previously reported that Bcl-2 and Bcl-x(L) display differential ability to protect WEHI-231 cells from multiple inducers of apoptosis. A possible explanation for this paradox was provided by the discovery of Bax. Bax is a Bcl-2-related protein which can inhibit the ability of Bcl-2 to enhance the survival of growth factor-dependent cell lines in the absence of growth factor. Consistent with the possibility that Bcl-2 function in WEHI-231 cells is inhibited by Bax, WEHI-231 cells were found to express a high level of Bax. To directly test the effects of Bax expression on Bcl-x(L) function, FL5.12 cells were transfected with both genes. Although Bax overexpression can inhibit Bcl-2 from prolonging cell survival upon growth factor withdrawal, Bax overexpression did not inhibit Bcl-x(L) from preventing apoptosis in this cell line. Although Bcl-2 and Bcl-x(L) were both found to be able to form heterodimers with Bax, the majority of Bax in both cases was not complexed to a partner. Our data suggest that Bcl-x(L) does not function by simply preventing the formation of Bax homodimers which promote cell death. Instead Bax appears to display selectivity in its ability to inhibit Bcl-2 but not Bcl-x(L) from prolonging survival. Furthermore, our data suggest that the abilities of Bcl-2 and Bcl-x(L) to promote cell survival are not identical and can be independently regulated within a cell. Regulation of a cell's apoptotic threshold is likely to result from a complex set of interactions among Bcl-2 family members and other, as yet uncharacterised, regulators of apoptosis.  相似文献   

6.
Mcl-1 determines the Bax dependency of Nbk/Bik-induced apoptosis   总被引:1,自引:0,他引:1       下载免费PDF全文
B cell lymphoma 2 (Bcl-2) homology domain 3 (BH3)–only proteins of the Bcl-2 family are important functional adaptors that link cell death signals to the activation of Bax and/or Bak. The BH3-only protein Nbk/Bik induces cell death via an entirely Bax-dependent/Bak-independent mechanism. In contrast, cell death induced by the short splice variant of Bcl-x depends on Bak but not Bax. This indicates that Bak is functional but fails to become activated by Nbk. Here, we show that binding of myeloid cell leukemia 1 (Mcl-1) to Bak persists after Nbk expression and inhibits Nbk-induced apoptosis in Bax-deficient cells. In contrast, the BH3-only protein Puma disrupts Mcl-1–Bak interaction and triggers cell death via both Bax and Bak. Targeted knockdown of Mcl-1 overcomes inhibition of Bak and allows for Bak activation by Nbk. Thus, Nbk is held in check by Mcl-1 that interferes with activation of Bak. The finding that different BH3-only proteins rely specifically on Bax, Bak, or both has important implications for the design of anticancer drugs targeting Bcl-2.  相似文献   

7.
Bcl-2 family proteins are important regulators of apoptosis. They can be pro-apoptotic (e.g. Bid, Bax, and Bak) or anti-apoptotic (e.g. Bcl-2 and Bcl-x(L)). The current study examined Bid-induced apoptosis and its inhibition by Bcl-2. Transfection of Bid led to apoptosis in HeLa cells. In these cells, Bid was processed into active forms of truncated Bid or tBid. Following processing, tBid translocated to the membrane-bound organellar fraction. Bcl-2 co-transfection inhibited Bid-induced apoptosis but did not prevent Bid processing or tBid translocation. On the other hand, Bcl-2 blocked the release of mitochondrial cytochrome c in Bid-transfected cells, suggesting actions at the mitochondrial level. Alkaline treatment stripped off tBid from the membrane-bound organellar fraction of Bid plus Bcl-2-co-transfected cells, but not from cells transfected with only Bid, suggesting inhibition of tBid insertion into mitochondrial membranes by Bcl-2. Bcl-2 also prevented Bid-induced Bax translocation from cytosol to the membrane-bound organellar fraction. Finally, Bcl-2 diminished Bid-induced oligomerization of Bax and Bak within the membrane-bound organellar fraction, shown by cross-linking experiments. In conclusion, Bcl-2 inhibited Bid-induced apoptosis at the mitochondrial level by blocking cytochrome c release, without suppressing Bid processing or activation. Critical steps blocked by Bcl-2 included tBid insertion, Bax translocation, and Bax/Bak oligomerization in the mitochondrial membranes.  相似文献   

8.
Apoptosis of virally infected cells is an innate host mechanism used to prevent viral spread. However, viruses have evolved a number of proteins that function to modulate the apoptotic cascades and thereby favor productive viral replication. One such antiapoptotic protein, myxoma virus M11L, has been shown to inhibit mitochondrial-dependent apoptosis by binding to and blocking the two executioner proteins Bak and Bax. Since M11L has no obvious sequence homology with Bcl-2 or Bcl-x(L), the normal cellular inhibitors for Bak and Bax, and the structure of M11L has not been solved, the mode of binding to Bak and Bax is not known. In order to understand how M11L functions, the crystal structure of M11L was solved to 2.91 A. Despite the lack of sequence similarity, M11L is a structural homolog of Bcl-2. Studies using a peptide derived from Bak indicate that M11L binds to Bak with a similar affinity (4.9 +/- 0.3 microM) to the published binding affinities of Bcl-2 and Bcl-x(L) to the same peptide (12.7 microM and 0.5 microM, respectively), indicating that M11L inhibits apoptosis by mimicking and competing with host proteins for the binding of Bak and Bax. The structure provides important insight into how myxoma virus and other poxviruses facilitate viral dissemination by inhibiting mitochondrial dependent apoptosis.  相似文献   

9.
Nbk/Bik (natural born killer/Bcl-2-interacting killer) is a tissue-specific BH3-only protein whose molecular function is still largely unknown. To investigate the mechanism of Nbk action, we established a single- vector adenoviral system based on the Tet-off conditional expression of Nbk. Upon Nbk expression, only Bax-positive, but not Bax-deficient cells were found to undergo apoptosis. Interestingly, Nbk failed to induce apoptosis in the absence of Bax, even despite expression of the related molecule Bak. Re-expression of Bax restored the sensitivity to Nbk. Similarly, Bax wild-type HCT116 cells were highly susceptible, whereas HCT116 Bax knock-out cells remained resistant to Nbk-induced apoptosis. In Bax-positive cells, Nbk induced a conformational switch in the Bax N-terminus coinciding with cytochrome c release, mitochondrial permeability transition and caspase-9 processing. Immunoprecipitation studies revealed that Nbk interacts with Bcl-x(L) and Bcl-2 but not with Bax. Since, in addition, Nbk did not localize to the mitochondria, our data suggest a model in which Nbk acts as an indirect killer to trigger Bax-dependent apoptosis, whereas Bak is not sufficient to confer sensitivity to Nbk.  相似文献   

10.
11.
Apoptosis in Helicobacter pylori gastritis is related to cagA status   总被引:1,自引:0,他引:1  
BACKGROUND: Helicobacter pylori infection increases gastric epithelial cell apoptosis; however, the influence of cagA status is still controversial. We aimed to investigate if cagA status is related to apoptosis in H. pylori gastritis at different anatomic sites of the gastric mucosa. MATERIALS AND METHODS: We studied by immunohistochemistry (streptavidin-biotin method) pro-apoptotic (Bax and Bak) and antiapoptotic (Bcl-2 and Bcl-x) proteins expression, scored from 0 to 4, in gastric biopsies, at the antrum (lesser and greater curvatures), incisura, and corpus (greater curvature) from 50 patients with H. pylori gastritis (22 males, 28 females, median age 40 years) and eight non-infected patients (6 males, median age 39.6 years). H. pylori and cagA status were determined by polymerase chain reaction. RESULTS: Apoptotic proteins were expressed in a granular pattern, in the cytoplasm of foveolar cells; Bax and Bak expression was higher than Bcl-2 and Bcl-x in most cases and was significantly higher in patients infected by cagA-positive strains than in those infected by cagA-negative strains (p = .001). Bak expression was higher at the lesser curvature (antrum and incisura) than in the other regions (p = .002) and was correlated with atrophy. Anti-apoptotic proteins were significantly more expressed at the antral lesser curvature than in the other regions of the stomach (Bcl-2: p = .02; Bcl-x: p < .001). CONCLUSIONS: Infection with cagA-positive strains is significantly associated with overexpression of pro-apoptotic proteins in the gastric mucosa, mainly at the antral lesser curvature, which may have a role on atrophy development. Anti-apoptotic proteins were also overexpressed at the lesser curvature, which may occur to keep epithelial cell turnover or might be related to malignant transformation.  相似文献   

12.
Programmed cell death can be divided into several categories including type I (apoptosis) and type II (autophagic death). The Bcl-2 family of proteins are well-characterized regulators of apoptosis, and the multidomain pro-apoptotic members of this family, such as Bax and Bak, act as a mitochondrial gateway where a variety of apoptotic signals converge. Although embryonic fibroblasts from Bax/Bak double knockout mice are resistant to apoptosis, we found that these cells still underwent a non-apoptotic death after death stimulation. Electron microscopic and biochemical studies revealed that double knockout cell death was associated with autophagosomes/autolysosomes. This non-apoptotic death of double knockout cells was suppressed by inhibitors of autophagy, including 3-methyl adenine, was dependent on autophagic proteins APG5 and Beclin 1 (capable of binding to Bcl-2/Bcl-x(L)), and was also modulated by Bcl-x(L). These results indicate that the Bcl-2 family of proteins not only regulates apoptosis, but also controls non-apoptotic programmed cell death that depends on the autophagy genes.  相似文献   

13.
The Bcl-2 family regulates apoptosis by controlling mitochondrial integrity. To clarify whether its prosurvival members function by sequestering their Bcl-2 homology 3 (BH3)-only ligands or their multidomain relatives Bak and Bax, we analyzed whether four prosurvival proteins differing in their ability to bind specific BH3 peptides or Bak could protect isolated mitochondria. Most BH3 peptides could induce temperature-dependent cytochrome c release, but permeabilization was prevented by Bcl-x(L), Bcl-w, Mcl-1, or BHRF1. However, their protection correlated with the ability to bind Bak rather than the added BH3 peptide and could be overcome only by BH3 peptides that bind directly to the appropriate prosurvival member. Mitochondria protected by both Bcl-x(L)-like and Mcl-1 proteins were disrupted only by BH3 peptides that engage both. BH3-only reagents freed Bak from Bcl-x(L) and Mcl-1 in mitochondrial and cell lysates. The findings support a model for the control of apoptosis in which certain prosurvival proteins sequester Bak/Bax, and BH3-only proteins must neutralize all protective prosurvival proteins to allow Bak/Bax to induce mitochondrial disruption.  相似文献   

14.
Cardiac fibroblasts play an essential role in the physiology of the heart. These produce extracellular matrix proteins and synthesize angiogenic and cardioprotective factors. Although fibroblasts of cardiac origin are known to be resistant to apoptosis and to remain metabolically active in situations compromising cell survival, the underlying mechanisms are unknown. Here, we report that cardiac fibroblasts were more resistant than dermal or pulmonary fibroblasts to mitochondria-dependent cell death. Cytochrome c release was blocked in cardiac fibroblasts but not in dermal fibroblasts treated with staurosporine, etoposide, serum deprivation, or simulated ischemia, precluding caspase-3 activation and DNA fragmentation. Resistance to apoptosis of cardiac fibroblasts correlated with the expression of the anti-apoptotic protein Bcl-2, whereas skin and lung fibroblasts did not express detectable levels of this protein. Bcl-x(L,) Bax, and Bak were expressed at similar levels in cardiac, dermal, and lung fibroblasts. In addition, the death of cardiac fibroblasts during hypoxia was not associated with the cleavage of Bid but rather with Bcl-2 disappearance, suggesting the requirement of the mitochondrial apoptotic machinery to execute death receptor-induced programmed cell death. Knockdown of bcl-2 expression by siRNA in cardiac fibroblasts increased their apoptotic response to staurosporine, serum, and glucose deprivation and to simulated ischemia. Moreover, dermal fibroblasts overexpressing Bcl-2 achieved a similar level of resistance to these stimuli as cardiac fibroblasts. Thus, our data demonstrate that Bcl-2 is an important effector of heart fibroblast resistance to apoptosis and highlight a probable mechanism for promoting survival advantage in fibroblasts of cardiac origin.  相似文献   

15.
Developmental expression patterns of Bcl-2, Bcl-x, Bax, and Bak in teeth   总被引:2,自引:0,他引:2  
The ontogenic profile of expression of four members of the Bcl-2 family (Bcl-2, Bcl-x, Bax and Bak) was examined in the mouse by immunohistochemistry using paraffin sections. All four members were expressed in changing patterns during critical stages of tooth morphogenesis. Expression was detected in epithelial cell populations including the dental lamina, internal dental epithelium (IDE; differentiating ameloblasts), stratum intermedium and stellate reticulum cells, as well as in the condensed dental mesenchyme. The temporo-spatial localization of the various members of the Bcl-2 family in dental epithelium and mesenchyme showed striking overlapping areas but often their expression patterns differed. In general, contemporaneous co-expression of the Bcl-2 and Bax proteins, and of the Bcl-x and Bak proteins was noted in various types of cells during the developmental process, with the intensity of Bcl-2>Bax and of Bak>Bcl-x. Expression was pronounced at sites where interaction between surface ectoderm and induced mesenchyme takes place, and at the enamel knot, which is regarded as organization/regulating center for tooth development. Around birth, after the structural maturation was accomplished, the expression was down-regulated. The absence of elevated expression of each of these four members of the Bcl-2 family after birth in the teeth suggests that these proteins are relevant during the accomplishment of the basic architecture but not once the structure of the tooth is established.  相似文献   

16.
17.
DNA-dependent protein kinase (DNA-PK), a nuclear serine/threonine kinase, is responsible for the DNA double-strand break repair. Cells lacking or with dysfunctional DNA-PK are often associated with mis-repair, chromosome aberrations, and complex exchanges, all of which are known to contribute to the development of human cancers including glioblastoma. Two human glioblastoma cell lines were used in the experiment, M059J cells lacking the catalytic subunit of DNA-PK, and their isogenic but DNA-PK proficient counterpart, M059K. We found that M059K cells were much more sensitive to staurosporine (STS) treatment than M059J cells, as demonstrated by MTT assay, TUNEL detection, and annexin-V and propidium iodide (PI) staining. A possible mechanism responsible for the different sensitivity in these two cell lines was explored by the examination of Bcl-2, Bax, Bak, and Fas. The cell death stimulus increased anti-apoptotic Bcl-2 and decreased pro-apoptotic Bcl-2 members (Bak and Bax) and Fas in glioblastoma cells deficient in DNA-PK. Activation of DNA-PK is known to promote cell death of human tumor cells via modulation of p53, which can down-regulate the anti-apoptotic Bcl-2 member proteins, induce pro-apoptotic Bcl-2 family members and promote a Bax-Bak interaction. Our experiment also demonstrated that the mode of glioblastoma cell death induced by STS consisted of both apoptosis and necrosis and the percentage of cell death in both modes was similar in glioblastoma cell lines either lacking DNA-PK or containing intact DNA-PK. Taken together, our findings suggest that DNA-PK has a positive role in the regulation of apoptosis in human glioblastomas. The aberrant expression of Bcl-2 family members and Fas was, at least in part, responsible for decreased sensitivity of DNA-PK deficient glioblastoma cells to cell death stimuli.  相似文献   

18.
Bcl-w, a prosurvival member of the Bcl-2 family, is essential for spermatogenesis. However, the mechanisms by which Bcl-w participates in the regulation of apoptosis in the testis are largely unknown. To explore the potential role of Bcl-w in the regulation of apoptosis in the testis, the expression of Bcl-w mRNA and protein during testicular development and spermatogenesis, the dimerization with the proapoptosis members of the Bcl-2 family, and the responses to hormonal stimulation in vitro and apoptosis-inducing signals in vivo were investigated. Both Bcl-w mRNA and protein were detected in Sertoli cells, spermatogonia, and spermatocytes, as well as in Leydig cells. The steady-state levels of Bcl-w mRNA and protein were much higher in Sertoli cells than in spermatogonia and spermatocytes. In the adult rat testis, both Bcl-w mRNA and protein in Sertoli cells displayed a stage-specific expression pattern. Bcl-w could form complexes with Bax and Bak but not with Bad. Bax and Bak were immunohistochemically localized to the same cell types as Bcl-w, but with higher expression levels in spermatocytes and spermatogonia than in Sertoli cells. FSH could up-regulate Bcl-w mRNA levels in the seminiferous tubules cultured in vitro, whereas no effect was observed when testosterone was applied. Three animal models that display spermatogonial apoptosis induced by blockade of stem cell factor/c-kit interaction by a function-blocking anti-c-kit antibody, spermatocyte apoptosis induced by methoxyacetic acid, and apoptosis of spermatogonia, spermatocytes, and spermatids induced by testosterone withdrawal after ethylene dimethane sulfonate treatment were employed to check the changes of Bcl-w, Bax, and Bak protein levels during apoptosis of specific germ cells. In all three models, the ratios of Bax/Bcl-w and Bak/Bcl-w were significantly elevated. The present study suggests that Bcl-w is an important prosurvival factor of Sertoli cells, spermatogonia, and spermatocytes and participates in the regulation of apoptosis by binding proapoptotic factors Bax and Bak. The ratios of Bax/Bcl-w and Bak/Bcl-w may be decisive for the survival of Sertoli cells, spermatogonia, and spermatocytes.  相似文献   

19.
The p14(ARF) tumor suppressor plays a central role in regulating cell cycle arrest and apoptosis. We reported previously that p14(ARF) is capable of triggering apoptosis in a p53-independent manner. However, the mechanism remained unclear. Here we demonstrate that the p53-independent activation of the mitochondrial apoptosis pathway by p14(ARF) is primarily mediated by the pro-apoptotic Bax-homolog Bak. Expression of p14(ARF) exclusively triggers a N-terminal conformational switch of Bak, but not Bax, which allows for mitochondrial permeability shift, release of cytochrome c, activation of caspases, and subsequent fragmentation of genomic DNA. Although forced expression of Bak markedly sensitizes toward p14(ARF)-induced apoptosis, re-expression of Bax has no effect. Vice versa, knockdown of Bak by RNA interference attenuates p14(ARF)-induced apoptosis, whereas down-regulation of Bax has no effect. Bak activation coincides with a prominent, caspase-independent deprivation of the endogenous Bak inhibitors Mcl-1 and Bcl-x(L). In turn, mitochondrial apoptosis is fully blocked by overexpression of either Mcl-1 or Bcl-x(L). Taken together, these data indicate that in the absence of functional p53 and Bax, p14(ARF) triggers mitochondrial apoptosis signaling by activating Bak, which is facilitated by down-regulating anti-apoptotic Mcl-1 and Bcl-x(L). Moreover, our data suggest that the simultaneous inhibition of two central endogenous Bak inhibitors, i.e. Mcl-1 and Bcl-x(L), may be sufficient to activate mitochondrial apoptosis in the absence of BH3-only protein regulation.  相似文献   

20.
Mitochondrial apoptosis regulates survival and development of hematopoietic cells. Prominent roles of some Bcl-2-family members in this regulation have been established, for instance for pro-apoptotic Bim and anti-apoptotic Mcl-1. Additional, mostly smaller roles are known for other Bcl-2-members but it has been extremely difficult to obtain a comprehensive picture of the regulation of mitochondrial apoptosis in hematopoietic cells by Bcl-2-family proteins. We here use a system of mouse ‘conditionally immortalized’ lymphoid-primed hematopoietic progenitor (LMPP) cells that can be differentiated in vitro to pro-B cells, to analyze the importance of these proteins in cell survival. We established cells deficient in Bim, Noxa, Bim/Noxa, Bim/Puma, Bim/Bmf, Bax, Bak or Bax/Bak and use specific inhibitors of Bcl-2, Bcl-XL and Mcl-1 to assess their importance. In progenitor (LMPP) cells, we found an important role of Noxa, alone and together with Bim. Cell death induced by inhibition of Bcl-2 and Bcl-XL entirely depended on Bim and could be implemented by Bax and by Bak. Inhibition of Mcl-1 caused apoptosis that was independent of Bim but strongly depended on Noxa and was completely prevented by the absence of Bax; small amounts of anti-apoptotic proteins were co-immunoprecipitated with Bim. During differentiation to pro-B cells, substantial changes in the expression of Bcl-2-family proteins were seen, and Bcl-2, Bcl-XL and Mcl-1 were all partially in complexes with Bim. In differentiated cells, Noxa appeared to have lost all importance while the loss of Bim and Puma provided protection. The results strongly suggest that the main role of Bim in these hematopoietic cells is the neutralization of Mcl-1, identify a number of likely molecular events during the maintenance of survival and the induction of apoptosis in mouse hematopoietic progenitor cells, and provide data on the regulation of expression and importance of these proteins during differentiation along the B cell lineage.Subject terms: Apoptosis, Immune cell death  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号