首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thirty-seven sets of crystallographic enzyme data were selected from Protein Data Bank (PDB, 1995). The average temperature factors (B) of the critical residues at the active site and the whole molecule of those enzymes were calculated respectively. The statistical results showed that the critical residues at the active site of most of the enzymes had lowerB factors than did the whole molecules, indicating that in the crystalline state the critical residues at the active site of the natural enzymes possess more stable conformation than do the whole molecules. The flexibility of the active site during the unfolding by denaturing was also discussed.  相似文献   

2.
Crystallographic B factor of critical residues at enzyme active site   总被引:1,自引:0,他引:1  
Thirty-seven sets of crystallographic enzyme data were selected from Protein Data Bank (PDB, 1995). The average temperature factors (B) of the critical residues at the active site and the whole molecule of those enzymes were calculated respectively. The statistical results showed that the critical residues at the active site of most of the enzymes had lower B factors than did the whole molecules, indicating that in the crystalline state the critical residues at the active site of the natural enzymes possess more stable conformation than do the whole molecules. The flexibility of the active site during the unfolding by denaturing was also discussed.  相似文献   

3.
Cottrell GS  Hyde RJ  Lim J  Parsons MR  Hooper NM  Turner AJ 《Biochemistry》2000,39(49):15129-15135
The membrane-bound form of mammalian aminopeptidase P (AP-P; EC 3.4. 11.9) is a mono-zinc-containing enzyme that lacks any of the typical metal binding motifs found in other zinc metalloproteases. To identify residues involved in metal binding and catalysis, sequence and structural information was used to align the sequence of porcine membrane-bound AP-P with other members of the peptidase clan MG, including Escherichia coli AP-P and methionyl aminopeptidases. Residues predicted to be critical for activity were mutated and the resultant proteins were expressed in COS-1 cells. Immunoelectrophoretic blot analysis was used to compare the levels of expression of the mutant proteins, and their ability to hydrolyze bradykinin and Gly-Pro-hydroxyPro was assessed. Asp449, Asp460, His523, Glu554, and Glu568 are predicted to serve as metal ion ligands in the active site, and mutagenesis of these residues resulted in fully glycosylated proteins that were catalytically inactive. Mutation of His429 and His532 also resulted in catalytically inactive proteins, and these residues, by analogy with E. coli AP-P, are likely to play a role in shuttling protons during catalysis. These studies indicate that mammalian membrane-bound AP-P has an active-site configuration similar to that of other members of the peptidase clan MG, which is compatible with either a dual metal ion model or a single metal ion in the active site. The latter model is consistent, however, with the known metal stoichiometry of both the membrane-bound and cytosolic forms of AP-P and with a recently proposed model for methionyl aminopeptidase.  相似文献   

4.
Mechanisms of self-cure from Trypanosoma congolense infection in mice   总被引:4,自引:0,他引:4  
The mechanism(s) of resistance to African trypanosomiasis caused by Trypanosoma congolense was investigated by using the Dinderesso/80/CRTA/3 isolate to which C57B1/6 are resistant (low parasitemia and self-cure) and BALB/c sensitive (high parasitemia and death). The resistance of C57B1/6 is similar to that found in some natural hosts of African trypanosomes such as certain indigenous West African cattle and wild Bovidae. The antibody response to epitopes exposed on the variant surface glycoprotein of a clone obtained from the Dinderesso/80/CRTA/3 isolate was measured by a complement-mediated lysis assay in C57B1/6 and BALB/c. After infections with 10(4), 10(5), or 10(7) motile organisms, antibody appeared in C57B1/6 4 to 8 days earlier than in BALB/c. Peak antibody titers were similar in both strains but were reached about 4 days earlier in C57B1/6. In this strain, antibody appeared during and controlled the first wave of parasitemia, whereas in BALB/c, parasitemia reached a plateau above 10(8) organisms per ml before antibody could be detected, and at this time the animals were dying. At peak antibody response, the proportion of immunoglobulin (Ig) M and IgG antibody was the same in both strains. The antibody response had the same kinetics in C57B1/6 and BALB/c after injection of 10(4), 10(5), and 10(7) lethally irradiated but intact parasites, but the peak titers were 10(3) to 10(4) times lower than after live challenge. The response to nonirradiated trypanosomes appeared to be T cell independent, because the antibody titers were the same in congenitally athymic nu/nu and normal C57B1/6, and no evidence for the induction of T cell activity could be demonstrated in the infected nude mice. A role for trypanolytic serum factors in resistance could not be demonstrated. The extent of immunosuppression after infection with nonirradiated organisms was compared in the two strains by measuring the in vitro response of their splenic lymphocytes to concanavalin A, pokeweed mitogen, and allogeneic cells and their ability to mount an in vivo response to an unrelated trypanosome challenge. Both strains were partially immunosuppressed during rising parasitemia, but as C57B1/6 controlled parasitemia, immunosuppression was gradually reversed, whereas in BALB/c it became worse. Several explanations might account for the resistance of C57B1/6 to the Dinderesso/80/CRTA/3 isolate of T. congolense. It appears that an early immune response is a decisive factor in this resistance.  相似文献   

5.
Alkaline phosphatase (AP) from a North Atlantic marine Vibrio bacterium was previously characterized as being kinetically cold-adapted. It is still unknown whether its characteristics originate locally in the active site or are linked to more general structural factors. There are three metal-binding sites in the active site of APs, and all three metal ions participate in catalysis. The amino acid residues that bind the two zinc ions most commonly present are conserved in all known APs. In contrast, two of the residues that bind the third metal ion (numbered 153 and 328 in Escherichia coli AP) are different in various APs. This may explain their different catalytic efficiencies, as the Mg2+ most often present there is important for both structural stability and the reaction mechanism. We have mutated these key residues to the corresponding residues in E. coli AP to obtain the double mutant Asp116/Lys274, and both single mutants. All these mutants displayed reduced substrate affinity and lower overall reaction rates. The Lys274 and Asp116/Lys274 mutants also displayed an increase in global heat stability, which may be due to the formation of a stabilizing salt bridge. Overall, the results show that a single amino acid substitution in the active site is sufficient to alter the structural stability of the cold-active Vibrio AP both locally and globally, and this influences kinetic properties.  相似文献   

6.
7.
Trans-sialidases are key enzymes in the life cycle of African trypanosomes in both, mammalian host and insect vector and have been associated with the disease trypanosomiasis, namely sleeping sickness and nagana. Besides the previously reported TconTS1, we have identified three additional active trans-sialidases, TconTS2, TconTS3 and TconTS4, and three trans-sialidase like genes in Trypanosoma congolense. At least TconTS1, TconTS2 and TconTS4 are found in the bloodstream of infected animals. We have characterised the enzymatic properties of recombinant proteins expressed in eukaryotic fibroblasts using fetuin as model blood glycoprotein donor substrate. One of the recombinant trans-sialidases, TconTS2, had the highest specific activity reported thus far with very low sialidase activity. The active trans-sialidases share all the amino acids critical for the catalytic reaction with few variations in the predicted binding site for the leaving or acceptor glycan. However, these differences cannot explain the orders of magnitudes between their transfer activities, which must be due to other unidentified structural features of the proteins or substrates selectivity. Interestingly, the phylogenetic relationships between the lectin domains correlate with their specific trans-sialylation activities. This raises the question whether and how the lectin domains regulate the trans-sialidase reaction. The identification and enzymatic characterisation of the trans-sialidase family in T. congolense will contribute significantly towards the understanding of the roles of these enzymes in the pathogenesis of Animal African Trypanosomiasis.  相似文献   

8.
Titration of cysteine residues of spinach glutamine synthetase with 5-5' dithiobis (2-nitrobenzoic acid) indicates that there are five such residues per monomer of enzyme and that two of these five are on the surface of the molecule. The presence of substrates, or either of the competitive inhibitors methionine sulfoximine or phosphinothricin, completely protects both of the surface sulfhydryls from titration. This suggests that both are located at the active site. In the absence of Mg2+ and ATP, both surface sulfhydryls must be modified before loss of activity. We conclude that while both of the cysteine residues are located at the active site, only one of them may be involved in catalysis. Because the cysteine residue which is implicated in catalysis can be protected by Mg2+ and ATP, we believe that it may be located at or near the binding site of these ligands.  相似文献   

9.
The NADP-linked glutamate dehydrogenase (NADP-gluDH) purified from epimastigotes of the Tulahuén strain, Tul 2 stock, of Trypanosoma cruzi, was inhibited by Cibacron Blue FG3A, and inactivated by preincubation with phenylglyoxal or Woodward's Reagent K. The inhibition by Cibracron Blue FG3A, competitive towards NADPH with an apparent Ki of 20 microM, suggests that the enzyme presents the "dinucleotide fold" characteristic of most dehydrogenases and kinases. The inactivation of the NADP-gluDH by preincubation with phenylglyoxal, with a reaction order of 1, and the partial protection afforded by alpha-oxoglutarate, suggest the presence of one arginine residue in the active site of the enzyme, which might participate in the binding of alpha-oxoglutarate through interaction with one of the carboxyl groups of the substrate. The inactivation of the NADP-gluDH by preincubation with Woodward's Reagent K suggests the presence of a carboxyl group, from an aspartic or glutamic acid residue, at the active site, which might participate in the binding of the cationic substrate NH+4. The presence of NADPH during preincubation with the reagent increased the inactivation rate, which suggests that binding of the coenzyme increases the exposure of the reactive carboxyl group.  相似文献   

10.
SYNOPSIS. Dividing forms of Trypanosoma simiae and T. congolense in stained thin blood films taken from pigs infected by wild Glossina morsitans submorsitans were measured employing a technique which took account of the distance between the divided kinetoplasts, the positions of the nucleus or nuclei and the lengths of the original and developing flagella.
Analysis of these measurements showed that binary fission in these trypanosomes consisted of a gradual increase in the distance between the divided kinetoplasts along the long axis of the body; progressive outgrowth of a daughter flagellum from the blepharoplast associated with the posteriorly placed kinetoplast; migration of the nucleus toward the posterior end of the body; separation of the divided nuclei in the direction of the long axis of the body; and fission of the cytoplasm in an antero-posterior direction and finally separation into two individuals by a stepped, sliding motion.
No evidence to support syngamy or other type of germ cell reproduction was observed.  相似文献   

11.
Sarcosine oxidase from Corynebacterium sp. U-96 is inhibited by iodoacetamide (IAM) and the inhibition is prevented by the substrate analog, sodium acetate. To elucidate the mechanism of inhibition of the enzyme by IAM, we determined the amino acid sequences around the IAM-reactive cysteine residues, and the effects of the modification on the enzyme activity and the oxidation-reduction of the FAD moieties of the enzyme. The enzyme was specifically labeled with [14C]IAM, and the labeled subunit B was digested with trypsin and chymotrypsin. The HPLC profiles of the proteolytic digests showed mainly two radioactive peaks. The 14C-labeled peptides were purified, and their N-terminal sequences were determined to be Cys-Gly-Thr-Pro-Gly-Ala-Gly-Tyr (TC-1) and Ala-Gly-Ile-Ala-Cys-Xaa-Asp-Xaa-Val-Ala(-)- (TC-2). Peptide TC-2 contains a covalent FAD-binding sequence [Asx-His-Val-Ala; Shiga et al. (1983) Biochem. Int., 6, 737]. [14C]IAM-incorporation into the TC-1 sequence was strongly inhibited by sodium acetate. The N-terminal amino acid sequence of the CNBr fragment containing the TC-1 sequence (65 residues) was determined. According to the secondary structure predictions, Gly-Thr-Pro-Gly-Ala-Gly of the TC-1 sequence is located between the beta sheet and alpha helix of the sequence, indicating the presence of an AMP-binding site in the TC-1 region. The activity of the enzyme treated with IAM in the presence and absence of sodium acetate was not inhibited by sodium sulfite, which is known to react specifically with covalent FAD.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Acetate kinase catalyzes the magnesium-dependent transfer of the gamma-phosphate of ATP to acetate. The recently determined crystal structure of the Methanosarcina thermophila enzyme identifies it as a member of the sugar kinase/Hsc70/actin superfamily based on the fold and the presence of five putative nucleotide and metal binding motifs that characterize the superfamily. Residues from four of these motifs in M. thermophila acetate kinase were selected for site-directed replacement and analysis of the variants. Replacement of Asp(148) and Asn(7) resulted in variants with catalytic efficiencies less than 1% of that of the wild-type enzyme, indicating that these residues are essential for activity. Glu(384) was also found to be essential for catalysis. A 30-fold increase in the magnesium concentration required for half-maximal activity of the E384A variant relative to that of the wild type implicated Glu(384) in magnesium binding. The kinetic analysis of variants and structural data is consistent with nonessential roles for active site residues Ser(10), Ser(12), and Lys(14) in catalysis. The results are discussed with respect to the acetate kinase catalytic mechanism and the relationship to other sugar kinase/Hsc70/actin superfamily members.  相似文献   

13.
Studies of respiration on glucose in procyclic Trypanosoma congolense in the presence of rotenone, antimycin, cyanide, salicylhydroxamic acid and malonate have indicated the presence of NADH dehydrogenase, cytochrome b-c1, cytochrome aa3, trypanosome alternate oxidase and NADH fumarate reductase/succinate dehydrogenase pathway that contributes electrons to coenzyme Q of the respiratory chain. The rotenone sensitive NADH dehydrogenase, the trypanosome alternate oxidase, and cytochrome aa3 accounted for 24.5 +/- 6.5, 36.2 +/- 4.2 and 54.1 +/- 5.5% respectively of the total respiration. Activities of lactate dehydrogenase, NAD(+)-linked malic enzyme and pyruvate kinase were less than 6 nanomoles/min/mg protein suggesting that they play a minor role in energy metabolism of the parasite. Phosphoenolpyruvate carboxykinase, pyruvate dehydrogenase, succinate dehydrogenase, NADP(+)-linked malic enzyme, NADH fumarate reductase, malate dehydrogenase, and alpha-ketoglutarate dehydrogenase and glycerol kinase on the other hand had specific activities greater than 60 nanomoles/min/mg protein. These enzyme activities could account for the production of pyruvate, acetate, succinate and glycerol. The results further show that the amount of glycerol produced was 35-48% of the combined total of pyruvate, acetate and succinate produced. It is apparent that some of the glycerol 3-phosphate produced in glycolysis in the presence of salicylhydroxamic acid is dephosphorylated to form glycerol while the rest is oxidised via cytochrome aa3 to form acetate, succinate and pyruvate.  相似文献   

14.
Bovine brain glyoxalase I was investigated in order to identify amino acid residues essential for its catalytic activity. This enzyme is a 44-kDa dimeric protein which exhibits a characteristic intrinsic fluorescence, with an emission peak centered at 342 nm. The total of eight tryptophan residues/molecule was estimated by using a fluorescence titration method. Low values of Stern Volmer quenching constants for the quenchers used indicated that the tryptophan residues are relatively buried in the native molecule. Similar results were obtained for glyoxalase I, purified from yeast and human erythrocytes. The activity of bovine brain glyoxalase I was found to be particularly sensitive to 2,3-butanedione and diethylpyrocarbonate, selective reagents for arginine and histidine residues, respectively. A minor effect was observed by treatment of the enzyme with other amino acid-specific reagents. A protective effect of the competitive inhibitor S-hexylglutathione was observed for all reagents used, indicating the presence of modified amino acids in or near the enzyme active site.  相似文献   

15.
Oxalate decarboxylase (OxDC) catalyzes the conversion of oxalate into CO(2) and formate using a catalytic mechanism that remains poorly understood. The Bacillus subtilis enzyme is composed of two cupin domains, each of which contains Mn(II) coordinated by four conserved residues. We have measured heavy atom isotope effects for a series of Bacillus subtilis OxDC mutants in which Arg-92, Arg-270, Glu-162, and Glu-333 are conservatively substituted in an effort to define the functional roles of these residues. This strategy has the advantage that observed isotope effects report directly on OxDC molecules in which the active site manganese center(s) is (are) catalytically active. Our results support the proposal that the N-terminal Mn-binding site can mediate catalysis, and confirm the importance of Arg-92 in catalytic activity. On the other hand, substitution of Arg-270 and Glu-333 affects both Mn(II) incorporation and the ability of Mn to bind to the OxDC mutants, thereby precluding any definitive assessment of whether the metal center in the C-terminal domain can also mediate catalysis. New evidence for the importance of Glu-162 in controlling metal reactivity has been provided by the unexpected observation that the E162Q OxDC mutant exhibits a significantly increased oxalate oxidase and a concomitant reduction in decarboxylase activities relative to wild type OxDC. Hence the reaction specificity of a catalytically active Mn center in OxDC can be perturbed by relatively small changes in local protein environment, in agreement with a proposal based on prior computational studies.  相似文献   

16.
5'-p-Fluorosulfonylbenzoyladenosine (FSBA) inactivates rat liver S-adenosylhomocysteinase exhibiting characteristics of an active site-directed reagent. The inactivation is not associated with the covalent binding of the reagent, but is correlated with the loss of 2 sulfhydryl groups/enzyme subunit (Takata, Y., and Fujioka, M. (1984) Biochemistry 23, 4357-4362). Treatment of the FSBA-inactivated enzyme with iodoacetate in the absence of reducing agent and then with [14C] iodoacetate after reduction with 2-mercaptoethanol yielded the enzyme containing approximately 2 mol of radiolabeled S-carboxymethylcysteine/mol of subunit. Analysis of tryptic peptides showed that the radioactivity was associated with 2 carboxymethylcysteine-containing peptides whose amino acid sequences were: Trp-Ser-Ser-Cys(Cm)-Asn-Ile-Phe-Ser-Thr-Gln-Asp-His-Ala-Ala-Ala-Ala-Ile- Ala-Lys and Gly-Glu-Thr-Asp-Glu-Glu-Tyr-Leu-Trp-Cys(Cm)-Ile-Glu-Gln-Thr-Leu-His-Phe- Lys, respectively. These results indicate that the inactivation of S-adenosylhomocysteinase by FSBA is the consequence of formation of a disulfide between two specific cysteine residues on each of the four identical subunits.  相似文献   

17.
The flavoenzyme nitroalkane oxidase catalyzes the oxidation of primary and secondary nitroalkanes to the corresponding aldehydes and ketones plus nitrite. The structure of the enzyme shows that Ser171 forms a hydrogen bond to the flavin N5, suggesting that it plays a role in catalysis. Cys397 and Tyr398 were previously identified by chemical modification as potential active site residues. To more directly probe the roles of these residues, the S171A, S171V, S171T, C397S, and Y398F enzymes have been characterized with nitroethane as substrate. The C397S and Y398 enzymes were less stable than the wild-type enzyme, and the C397S enzyme routinely contained a substoichiometric amount of FAD. Analysis of the steady-state kinetic parameters for the mutant enzymes, including deuterium isotope effects, establishes that all of the mutations result in decreases in the rate constants for removal of the substrate proton by ∼5-fold and decreases in the rate constant for product release of ∼2-fold. Only the S171V and S171T mutations alter the rate constant for flavin oxidation. These results establish that these residues are not involved in catalysis, but rather are required for maintaining the protein structure.  相似文献   

18.
The catalytic domains of two closely related cysteine proteinases (CP1 and CP2) from Trypanosoma congolense, referred to as C1 and C2, were expressed as proforms in Escherichia coli (C1) and in the baculovirus system (C1 and C2). While the bacterial expression system did not allow recovery of active C1, the baculovirus system led to secretion of inactive zymogens which could be processed at acidic pH into mature enzymes. Active C1 and C2 were purified from serum-free culture supernatants by anion-exchange chromatography and characterised. Their kinetic parameters and pH activity profiles confirmed the relatedness between C2 and native CP2 (congopain). These properties also underline major functional differences between C1 and C2, that appear to relate to discrete but essential sequence differences. It is likely that these two enzymes perform distinct roles in vivo, in the parasite and/or in the host-parasite relationships.  相似文献   

19.
《Molecular membrane biology》2013,30(2-3):104-113
Abstract

The serotype-specific glucosyltransferase, GtrV, is responsible for glucosylation of the O-antigen repeating unit of Shigella flexneri serotype 5a strains. GtrV is an integral inner membrane protein with two essential periplasmic loops: the large Loop 2 and the C-terminal Loop 10. In this study, the full length of the Loop 2 was shown to be necessary for GtrV function. Site-directed mutagenesis within this loop revealed that conserved aromatic and charged amino acids have a critical role in the formation of the active site. Sequential deletions of the C-terminal end indicated that this region may be essential for assembly of the protein in the cytoplasmic membrane. The highly conserved FWAED motif is thought to form the substrate-binding site and was found to be critical in GtrV and GtrX, a serotype-specific glucosyltransferase with homology to GtrV. The data presented constitutes a targeted analysis of the formation of the GtrV active site and highlights the essential role of the large periplasmic Loop 2 in its function.  相似文献   

20.
The active site nucleophile of the beta-glucosidase of Agrobacterium faecalis has recently been identified by the use of inhibitors. A combination of site-directed and in vitro enzymatic mutagenesis was carried out on the beta-glucosidase to probe the structure of the active site region. Forty-three point mutations were generated at 22 different residues in the region surrounding the active site nucleophile, Glu358. Only five positions were identified which affected enzyme activity indicating that only a few key residues are important to enzyme activity, thus the enzyme can tolerate a number of single residue changes and still function. The importance of Glu358 to enzymatic function has been confirmed and other residues important to enzyme structure or function have been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号